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Abstract

These are lecture notes to accompany weeks 7 and 8 of of the second-year MPhil topics
course Advanced Econometrics 1 at Oxford. Depending on time constraints, the lectures
may not cover all of the material included in these notes. If in doubt, feel free to ask me
which material you are responsible for. If you spot any typos, I would be very grateful if

you could point them out. My email address is: francis.ditraglia@economics.ox.ac.uk.
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Chapter 1
Introduction

In this chapter we set the stage for the material to come, introducing the fundamen-
tal problem of causal inference, developing notation for later use, and reviewing some

important facts concerning random variables.

1.1 What are these notes about?

Will earning an MPhil in Economics from Oxford increase your lifetime earnings? Does
eating bacon sandwiches cause cancer? Does watching Fox News cause people to vote
Republican? Will owning a dog increase your lifespan? Each of these questions concerns
the causal effect of a treatment D on an outcome Y. The terminology “treatment”
evokes a medical trial, but we will use the term much more broadly to refer to any variable
D whose causal effect we hope to learn. For us, a treatment could be earning an MPhil,
eating bacon sandwiches, watching Fox news, or owning a dog. These notes will focus on
the case in which D is binary: either zero or one. If you have D = 1 we say that you are
treated; if D = 0 we say that you are untreated. We will be particularly interested in
methods for learning causal effects when the treatment variable is not randomly assigned,
as would be the case in an observational rather than experimental study. So far as [
know, no experiment has yet been carried out in which subjects are randomly compelled
to be dog owners or forced to watch Fox News. Nonetheless papers have been written
and published that attempt to estimate the causal effects of both of these treatments.
We will study methods and assumptions under which observational data can be used
to recover causal effects. We will also consider experiments in which subjects may fail
to comply with their assigned treatments. In this case, the treatments that subjects
actually receive are no longer randomly assigned, even if the treatments that they have

been offered actually were.



1.2 The Fundamental Problem of Causal Inference

The fundamental problem of causal inference is that we can never observe a person’s
counterfactual outcome. In other words, we can never know what her outcome would
have been if her treatment had been different. After finishing her undergraduate degree,
Alice earned an MPhil in Economics at Oxford. She now makes £75,000 per year. Would
she still have earned as much if she had gone straight to work after finishing her under-
graduate degree? Barry was a vegetarian so he never ate bacon sandwiches. He lived to
the ripe old age of 90 and died in a hang-gliding accident, never having developed cancer.
If he had eaten bacon sandwiches every day, would he have died of cancer at the age of 60
instead? Donald watches Fox News 10 hours a day and always votes for the Republican
candidate. If he hadn’t watched Fox News, would he instead vote for the Democrats?

A counterfactual is a within person comparison: it asks how a given person’s out-
come would have been different if her treatment had been different. Because we can
never observe the same person in two different treatment states, we can never actually
make this comparison. You may be wondering about a before-and-after comparison. For
example, what if we looked at Alice’s wage immediately before she earned the MPhil
and then immediately afterwards. Tracking the same person over time can be an ex-
tremely helpful way to untangle cause-and-effect, as you may have gathered from your
exposure to panel data methods. It cannot, however, solve the fundamental problem
of causal inference: comparing Alice’s wages at two different points in time is not the
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same as comparing her wage at the same point in time across two “parallel universes,”
one in which she went straight to work and another in which she went to Oxford. Most
people’s income increases as they gain additional experience, for example. Comparing
Alice’s income before and after might confuse the effect of more experience in the labor
force with the effect of earning an MPhil in Economics. Or perhaps Alice started the
MPhil during an economic boom and finished during a severe downturn. If so, the fact
that her income fell after the MPhil would tell us little of value: perhaps it would have
fallen by more without the degree. Because the idealized within person comparison is
impossible, we will need to develop methods and assumptions that allow us to substitute

a between-person comparison.

1.3 The Potential Outcomes Framework

In order to study causal effects we need a framework that allows us to formally define
them and manipulate them mathematically. Following the bulk of the treatment effects
literature, we will adopt the potential outcomes framework, also know as the Rubin
Causal Model (RCM). With each person i we associate a pair of potential outcomes

(Yio, yi1). These are precisely the counterfactual outcomes that I discussed in the pre-



ceding section. Suppose, for example, that Alice is person i. Then y;, is her wage if
she doesn’t earn the MPhil and y;; is her wage if she does. Even though we can never
observe both y;0 and y;; for the same person, we can still imagine that there is a fact of
the matter regarding what Alice’s wage would have been in a parallel universe where her
treatment had been different. Using this notation, (y;1 — yi0) is the causal effect for Alice
of earning the Oxford MPhil. This need not be the same as the causal effect for Bob of
earning an Oxford MPhil, or indeed the same as the causal effect of anyone else. In other
words, we will allow for the possibility that treatment effects are heterogeneous.
While we never observe both y;o and y;;, we always observe one of them. If Alice is

treated then we observe y;1; otherwise we observe y;0. We can express this as follows
yi = (1 = di)yio + diyin = Yio + di(yir — o) (1.1)

where y; is person i’s observed outcome and d; is an indicator that equals one if she was
treated and zero otherwise. Implicit in this equation and the potential outcomes notation
that we have adopted is a very important assumption that we will maintain throughout
these notes: the stable unit treatment value assumption (SUTVA). This requires
that Alice’s outcome depends only on her own treatment and not the treatments of anyone
else. SUTVA is a strong assumption and it is easy to think of settings where it doesn’t
hold. For example, if Alice gets a flu vaccine this makes Bob less likely to get the flu
regardless of whether he was vaccinated. Finding ways to relax the SUTVA assumption

constitutes a very active area of research in the treatment effects literature.

1.4 Populations, Observables, and Random Variables

The first step of any causal analysis is to specify the population of interest. Suppose
that we hope to learn the causal effect of watching Fox News on voting behavior. Whose
voting behavior are we interested in? All US voters? Swing voters? Often the choice of
population is dictated by circumstance. Perhaps we have access to a fantastic dataset on
Pennsylvania voters but no information about voters from other states. If so, the causal
claims we can make will necessarily be limited to Pennsylvania: the effect of Fox News
could be markedly different, say, in Florida.

These notes assume that we have already specified a population of interest and ob-
served a random sample from it. If our population is Pennsylvania voters, this assumes
that we have observed a representative sample of n voters from the state. But what, pre-
cisely, do we observe? As discussed in the previous section, we can only observe one of a
person’s potential outcomes (y;0, ¥;1), namely the one that corresponds to her treatment
d;, as shown in (1.1). At a bare minimum, we will always assume that both y; and d; are

observed for each person 7 in our sample. Most of the methods we describe below will



in fact rely on observing some additional information w;. For this reason, I will refer to
(yi, d;, w;) as the observables for person i.

Throughout this section and the preceding one I have used lowercase letters: y; rather
than Y; and d; rather than D;, for example. I did this to emphasize that we are talking
about specific values for a particular person. There is, in principle, nothing random about
Alice’s treatment, her observed outcome, or her potential outcomes. Randomness enters
only when we view her as merely one member of a population from which we will draw
a random sample. From this point onwards, we will stop thinking about the values for a
particular person and instead think about random variables that represent the notion of
randomly drawing someone from the population of interest.

The idea is as follows. Suppose that 35% of voters in Pennsylvania watch Fox News
(d; = 1). Then if I randomly sample a single voter, there is a 35% chance that she
watches Fox News. We can represent this as a random variable D with a Bernoulli(0.35)
distribution. Similarly, if we knew the values of y; and w; for every voter in Pennsylvania,
we could construct random variables Y and W that represent the idea of randomly
selecting a voter and observing her values of y; and w;. Using this abstraction, we
will view the observables (y;,d;, w;) for any given person a realization from the joint
distribution of a collection of random variables (Y, D, W). The thought experiment is
that we reach into the state of Pennsylvania, pull out a voter at random, and observe
(yi, d;, w;). Viewed in this way, knowing the values of (y;,d;, w;) for everyone in the
population is the same thing as knowing the joint distribution of (Y, D, W).

Although we can never actually observe the pair (y;o, ;1) for the same person, we
can still émagine reaching into the state of Pennsylvania and learning (yio, yi1, d;, w;) for
a particular person. As above, we can represent this idea using a collection of random
variables: (Yp, Y7, D, W). Knowing (y;0, yi1, d;, w;) for everyone in the population would
be equivalent to knowing the joint distribution of (Y, Y;, D, W). Because these ran-
dom variables are constructed from the values for each individual in the population, the

relationship from (1.1) continues to apply, that is
Y = (1 - D)Yy+ DY, = Yy + D(Y; — Y). (1.2)

Equation 1.2 shows that knowledge of the joint distribution of distribution (Yp, Y3, D, W)
implies knowledge of the joint distribution of (Y, D, W), because Y is a function of
(Yo, Y1, D). The converse, however, is false: knowledge of a person’s observed outcome

and her treatment does now allow use to reconstruct both of her potential outcomes.



1.5 Identification Versus Estimation

These notes mainly focus on the problem of identifying causal effects rather than that
of estimating them. Suppose that we know the joint distribution of (Y D, W) and hope
to learn the value of some quantity 6 in our population of interest. As explained in
the preceding section, knowing the distribution of (Y, D, W) is the same as knowing the
values of (y;, d;, w;) for everyone in the population. If this knowledge would be sufficient
to uniquely pin down 6, then we say that 6 is identified; otherwise we say that it is
unidentified.! The challenge of identifying causal effects is that we observe not the joint
distribution of potential outcomes (Yp, Y1) but only that of (Y, D, W). Our identification
question is whether this observed information, combined with appropriate assumptions,
will allow us determine whether D causes Y.

Identification is about populations rather than samples. Estimation, on the other
hand, asks how we can use a sample of observed data to produce a “best guess” of some
quantity of interest #. In the simplest case, we assume that the researcher observes a
collection of n iid draws (Y;, D;, W) from the population and ask how this information
can be used to construct an estimator § of § with desirable properties. These notes mainly
focus on identification because estimation is meaningless without it: if there is no way
to learn the causal effect of D on Y from knowledge of (y;,d;, w;) for everyone in the

population, there is no way to estimate it using a random sample from this population.

1.6 Our goal: identify the Average Treatment Effect

When treatment effects are heterogeneous, every person in the population could have
her own, unique causal effect: (y;; — yo1). Collecting the individual treatment effects
for each person in our population of interest gives rise to a distribution of causal effects.
Using the random variables defined above, we can represent this distribution using the
random variable (Y; — Yp). If (Y7 — Yg) were simply a constant, i.e. if treatment effects
were homogeneous, asking whether D causes Y would be the same thing as asking if
(Y1 —Y5) = 0. The sign and magnitude of (Y; — Yy) would then tell us the direction and
importance of the effect. When treatment effects are heterogeneous, however, the yes-
or-no question “does D cause Y?” no longer makes sense. Watching Fox News will not
make Bernie Sanders vote Republican, but it might still affect the average swing voter in
western Pennsylvania, for example. Faced with effects that vary across people, the natural
question is “how do they vary?” In other words, what can we say about the distribution

of (Y7 —Yy)? If we could learn the distribution of (Y; — Yj) across the population, we

!Notice the use of the word sufficient in the definition of identification. Saying that @ is identified
doesn’t mean that knowing the joint distribution of (Y, D, W) is necessary to uniquely pin down 6. For
example, uniquely determining the vector of slope coeflicients from a regression of Y on (D, W) would
only require us to know the means, covariances, and variances of these random variables.



could answer a variety of interesting questions. For example: “what fraction of people
benefit from this treatment?” or “what is the variance of treatment effects?”
Unfortunately it is impossible to learn the distribution of treatment effects. As we
discussed above, the fundamental problem of causal inference is that we can never observe
both y;; and y; for the same person. For this reason, there is no way to identify the
joint distribution of (Yy,Y7). If we want to determine the correlation between height and
weight, we need observations of both variables for the same people. So too, identifying
the joint distribution between (Yj, Y1) would require observations of both potential out-
comes for the same people. Because we observe Yj for a subset of the population and
Y] for another subset, there is at least the possibility that we could learn the marginal
distributions of Yy and Y;. What we can never learn is the dependence between them.
This problem severely limits our ability to characterize the distribution of (Y7 — Yj).
Suppose, for example, that we wanted to determine Var(Y; — Yp). By the formula for the

variance of a difference,
Var(Y; — Yy) = Var(Yp) + Var(Y;) — 2Cov (Yo, V7).

Because it depends on a feature of the joint distribution of (Yy, Y;)—mnamely the covariance—
the variance of the distribution of treatment effects cannot be identified. If we were willing
to assume that Y, and Y; are uncorrelated, then we could indeed identify Var(Y; — Yp)
based on knowledge of Var(Yy) and Var(Y]). In most examples, however, this assumption
is untenable. Consider the problem of identifying the returns to an Oxford MPhil in
Economics. More than likely, people who would earn a higher than average wage without
the MPhil (high Y5) would also earn a higher than average wage with an MPhil (high
Y1), implying a positive correlation between between Yy and Y.

It seems as though we have reached an impasse. How can we say anything useful about
(Y1 — Yp) without knowledge of the joint distribution of (Yp, Y;)? Recall a fundamental
property of expectation: linearity. The expectation of a sum equals the sum of the
expectations, and the expectation of a difference equals the difference of expectations.

Thus, taking expectations of both sides
E[Y; — Y] = E[Y1] — E[Yq].

We call E[Y; — Y;] the average treatment effect and abbreviate it ATE. The ATE
measures how large the individual treatment effects (y; — yi0) are on average across
everyone in the population. If the ATE is positive, then the treatment is beneficial on
average; if it is negative, then the treatment is harmful on average. If the ATE is zero,
then the treatment has no effect on average. The primary goal of the treatment effects

literature is to identify the ATE or, failing that, at least an average treatment for some



subset of the population. Undeniably the ATE is a valuable summary of (Y; — Yp), but
it sweeps many important questions under the rug. What fraction of people would be
harmed by the treatment? Is the treatment effect highly variable, or very similar for
nearly everyone? We would love to be able to answer these questions, but unfortunately
we cannot. The ATE thus represents not an ideal measure of the effect of D on Y, but

the best we can manage given the fundamental problem of causal inference.

1.7 Quantile Treatment Effects

If you have studied quantile regression, you may have encountered the term quantile
treatment effect. Don’t let the name fool you: the fact that this quantity is called a
treatment effect does not mean that it has a genuine causal interpretation. Let )y be
the quantile function of Yy and @ be the quantile function of Y;. Then (Qy(0.5) is the
median of Y, while Q1(0.5) is the median of Y;. Both of these quantities are identified
from the marginal distributions of the potential outcomes. Indeed, for any quantile 7,
both Qo(7) and Q1(7) are identified from these marginal distributions. The difference
d(1) = Q1(1) — Qo(7) is typically called the quantile treatment effect of D on Y.
Suppose that Alice’s potential outcome without treatment y;, falls at the 7th quantile
of the distribution of Y. In other words suppose that 7 x 100% of people have a lower
value of Y than Alice, and (1 — 7) x 100% have a higher value of Y;. Then §(7) tells
us how much higher Alice’s value of y;; would need to be in order for her to fall at the
7th quantile of the distribution of Y; as well. Without further assumptions, §(7) lacks a
causal interpretation. Giving it one requires the so-called rank invariance assumption.
This condition requires that if Alice occupies the T7th quantile of the Y{ distribution, then
she also occupies the 7th quantile of the Y; distribution. Under rank invariance, §(7)
is the causal effect of D on Y for a person who would have fallen at the Tth quantile
of Yy had she not been treated. It is difficult to think of real-world examples in which
rank invariance is likely to hold. For this reason we focus on identifying the ATE in the

remainder of these notes.

1.8 The problem to overcome: selection bias

We know from above that Y = (1 — D)Y, + DY;. For a person who is treated we observe
Y1 and for a person who is not we observe Y. So to estimate ATE = E[Y;] — E[Yy], why
not simply compare the average value of Y among those with D = 1 to the average value
of Y among those with D = 0?7 Because D is binary, this idea is precisely equivalent to

regressing Y on D. To see this we use the following lemma.>

2For a proof, see the appendix to this chapter.



Lemma 1.1. Let W be a binary random variable with P(W = 1) = p. Then for
any random variable X, we have Cov(X,W) = p(1 — p) [E(X|W =1) — E(X|W = 0)]

provided that the requisite expectations exist.
Since D is binary, Var(D) = P(D = 1) [1 — P(D = 1)]. Thus, applying Lemma 1.1,

Cov(D,Y)

Varp) = EVID =1 —E(|D =0) (1.3)

Bors =
Does Bors equal the ATE? To find out, we substitute (1.2) into (1.3) yielding

Bors = E(Y|D =1) =E(Y|D =0)
=E[(1-D)Yo+ DY1|D =1] - E[(1 - D)Yy + DY1|D = (]
=EMW[D=1] - E[Y|D = 0].

These manipulations show that Sors may not equal the ATE. The unconditional mean
E(Y1) need not equal the conditional mean E(Y;|D = 1), and similarly E(Y;) need not
equal E(Yy|D = 0), because D may be related to the potential outcomes. This problem
is called called selection bias. To better understand it, consider the following example:
let D =1 if you graduated from university and let Y be your income at age 30. Adding

and subtracting E(Yy|D = 1) from the expression for Sorg, we have

Bors = E(Y1 = Yo|D = 1) + [E(Yo|D = 1) — E(Yo|D = 0)] . (1.4)
TET Difference in altside Options

The first term in (1.4) is the average causal effect of the treatment on the treated
abbreviated TOT. This measures causal effect of graduating from university on income av-
eraged over all the people in the population who chose to graduate from university. When
treatment effects are heterogeneous the TOT need not equal the ATE. Mark Zuckerberg
famously dropped out of Harvard University in his sophomore year (D = 0) but is cur-
rently one of the highest earning people on the planet. Presumably his decision to leave
university was motivated by a belief that his personal treatment effect y;1 — y;0 was nega-
tive: the time he would have spent studying could be put to more lucrative use developing
Facebook. If people have some knowledge of their personal treatment effects and are to
some extent free to choose their treatment, then we would expect E(Y; — Yy|D = 1) to
be higher than the ATE and E(Y; — Yy|D = 0) to be lower.?

The second term in (1.4) measures the difference in average values of Yy between
the treated and the untreated. In the university and income example, this measures the

average difference in outside options between those who ultimately chose to attend

3By the Law of Iterated Expectations (Lemma 1.2), the ATE E(Y; — Yp) is a convex combination of
E(Y: —Yo|D =1) and E(Y; — Yy|D = 0), so it necessarily lies between them.
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university and those who did not.* If higher ability people are more likely to graduate
from university (D = 1) and also have a higher-paying outside option Yy, say because
ability has a direct effect on income, the second term in (1.4) will be positive. Thus, even
if the TOT is equal to the ATE, Sors will not in general identify the average causal effect
of D on Y when individuals can choose their treatment status.

Once you start looking for it, you will find examples of selection bias everywhere.
People who are admitted to hospitals are more likely to die in the next year than people
who are not. This isn’t because hospitals kill people: it’s because sick people are more
likely to go to hospitals. Dog owners are less likely to die over a five year horizon, but
this may simply reflect the fact that healthy people are more likely to get a dog than sick
people: taking care of an animal is a lot of work! Watching Fox News may cause you to

vote Republican, or perhaps voting Republican causes you to watch Fox News.

1.9 Appendix: Proofs and Probability Review

The mathematical level of these notes is fairly modest. I assume throughout, however,
that you are familiar with basic properties of random variables, expectation, variance, and
covariance. In case you need to refresh your memory, this section lists some important

properties that are used throughout the document.

Proof of Lemma 1.1. Let p =P(W = 1) = E(W) and define my = E(X|W = 0) and
my = E(X|W = 1) By the shortcut formula and iterated expectations,

Cov(X, W) = E(XW) — E(X)E(W) = E[WE(X|W)] - E(X)p
= E(X|W =1)p — E(X)p = pm1 — pE(X)

Applying iterated expectations a second time,
E(X) = E[E(X|W)] =mqo(1 —p) +pm
and substituting this equation into the expression for Cov(X, W),

Cov(X, W) = pmy — p[mo(1 — p) + pmu] = (p + p*)m1 — p(1 — p)mg
= p(1 = p)(m1 —mo) = p(1 = p) [E(XW =1) = E(X|W = 0)]

]

4Some authors call the second term in (1.4) the “selection bias.” In contrast I reserve this phrase
for the overall difference between Sors and the ATE that arises when people are free to choose their
treatments.
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Lemma 1.2 (The Law of Iterated Expectations).
EY]=Ex [EY[X)], E[[Z]=Exz[EYI]X,2)]
Lemma 1.3 (Taking out what is known). If f is a measurable function, then
E[f(X)Y[X] = [(X)E[Y|X]
Lemma 1.4 (The Law of Total Probability). For discrete random variables X and Y

PY =y)=> PY =y|X =2)P(X = 1)

all x

Lemma 1.5 (Linearity of Expectation). For RVs X,Y,Z and constants a,b, c
E[laX +bY 4+ ¢] = aE[X] 4+ 0E[Y] +¢, E[aX 4+0bY + ¢|Z] = dE[X|Z] + VE[Y|Z] + ¢

Lemma 1.6 (Bayes’ Theorem).

P(B|A)P(A)
P(B)

P(B|A, C)P(A|C)
P(B|C)

P(A|B) = P(A|B,C) =
Definition 1.1 (Variance and Conditional Variance).
Var(X) =E [(X —E{X})’], Var(X|2)=E[(X —E{X|Z})*|Z]

Definition 1.2 (Covariance and Conditional Covariance).

Cov(X,Y)=E[(X —E{X}) (Y —E{Y})]
Cov(X,Y|Z)=E[(X —E{X|Z}) (Y —E{Y|Z})| Z]

Lemma 1.7 (Shortcut Rule for Variance and Covariance).

Lemma 1.8 (Properties of Variance and Covariance).
(1) Cov(X,X) = Var(X)

(ii) Var(aX + ¢) = a* Var(X)

12



(iii) Var(aX + bY + ¢) = a* Var(X) + b* Var(Y) + 2abCouv(X,Y)
(iv) Cov(aX +bY,Z) = aCou(X,Y) + bCou(X, Z)
Lemma 1.9 (Properties of Conditional Variance and Covariance).

(i) Var(X|X) =0

(i1) Cov(X,Y|X)=0

(iii) Cov(X, X|Z) = Var(X|Z)

(iv) Var(aX + c|Z) = a* Var(X|Z)

(v) Var(aX +bY + ¢) = a*Var(X) + b* Var(Y') + 2abCov(X,Y)
(vi) Cov(aX +bY,Z|W) = aCou(X,Y|W) + bCou(X, Z|W)

Lemma 1.10 (The Law of Total Variance).
Var(Y) = E [Var(Y|X)] + Var(E[Y]X])
Lemma 1.11 (The Law of Total Covariance).

Cou(X,Y) =E[Cov(X,Y|Z)| + Cov[E(X|Z2),E(Y|Z)]

13



Chapter 2
Conditional Independence

To understand the literature on treatment effects, you will need to develop some famil-
iarity with the notion of conditional independence and its properties. This chapter
provides an overview. We begin by defining independence and the closely related idea of
conditional independence, and go on to explain the consequences that these notions have
for expectations. This allows us to propose our first solution to the problem of selection
bias: randomly assigning individuals to treatment.

The remainder of the chapter discusses a set of axioms that allow us to manipulate
conditional independence relationships. Defining conditional independence and deriving
its axioms for all possible kinds of random variables requires some measure theory. If have
the appropriate background, I recommend reading the technical appendix, section 2.6,
alongside the rest of the chapter. If you are not familiar with measure theory, don’t
worry: you will be able to understand everything except the technical appendix. There
are only two terms from measure theory that I use in the body of the chapter. The
first is that of a measurable function. If you haven’t encountered this term before,
it is just a particular way of saying that a function is “well-behaved.” Any continuous
function is measurable, as is any discontinuous function with a finite or countable number
of discontinuities. The second is the terminology “W is Y-measurable.” In words, this
simply means that if we know the realization of the random variable Y then we also know

the realization of the random variable W.

2.1 Intuition and Notation

Two continuous random variables X and Y are independent if and only if their joint
density equals the product of their marginal densities: f(z,y) = f(x)f(y) for all z,y
in the support sets of X and Y.! By the definition of a conditional density, f(y|z) =
f(z,y)/f(x) so an equivalent definition of statistical independence is f(y|x) = f(y) for

IFor discrete RVs, replace densities with mass functions throughout, e.g. p(x,y) = p(z)p(y).
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all x,y in the support sets of X and Y. In other words, X and Y are independent if and
only if knowing X provides no additional information about Y: the conditional density
of Y given X is the same as the marginal density of Y. Of course we could just have
easily reversed the roles of X and Y: an additional equivalent definition of conditional
independence is f(z|y) = f(z).

A closely related property is conditional independence. Two continuous random
variables X and Y are conditionally independent given a third random variable Z if
and only if f(z,y|z) = f(z|2)f(y|z) for all x,y,z in the support sets of X,Y,Z. Us-
ing the definition of a conditional density, f(y|x,z) = f(z,y|z)/f(x|z), this is equiv-
alent to f(ylzx,z) = f(y|z). Reversing the roles of y and z, it is also equivalent to
f(z|y,2) = f(x]z).? If X and Y are conditionally independent given Z, this means that
any dependence between X and Y comes solely from the fact that both are dependent on
Z. In words: if we already know Z, then knowing X tells us nothing additional about Y,
and vice-versa. We define conditional independence for continuous random wvectors anal-
ogously: X and Y are conditionally independent given Z if f(x,y|z) = f(x|z)f(y|z),
or equivalently if f(y|x,z) = f(y|z) or f(x|y,z) = f(x|z). For discrete random vectors,
replace densities with mass functions.?

Independence, conditional and unconditional, is such an important concept in statis-
tics and econometrics that it has its own symbol: “1l.” If we write X LY this means
that X is independent of Y; if we write X Il Y'|Z, this means that X is independent of

Y, given Z. The same notation is used for random variables and random vectors.

2.2 Independence versus Mean Independence

Because our goal is to identify average treatment effects, we will be particularly interested

in the consequences that conditional independence has for means.
Lemma 2.1. Let X, Y, Z be random variables. If X 1Y|Z then
(i) E[XY|Z] = E[X|Z|E[Y|Z]
(i) E[Y|X, Z] = E[Y|Z]
(i) E[X|Y, Z] = E[X]|Z].

Proof. The general case follows as a corollary of Proposition 2.1. Here we will assume

that that X,Y, Z are continuous random variables. Results for discrete RVs follow by

2There are in fact many equivalent definitions of conditional independence. For full details see the
Technical Appendix (section 2.6).
3For a fully general definition of conditional independence, see the Technical Appendix (section 2.6).
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replacing integrals with sums. For (i), use f(x,y|z) = f(z|2)f(y|z) and the definition of

conditional expectation to write

pxviz == [ [ autaldvdy= [~ [ ustelplz) dedy
= [t (| atalorie) dy=Bix12 =1 [ ttollay

[e.9]

— E[X|Z = 2|E[Y|Z = 2.

For (ii), use f(y|x, z) = f(y|z) and the definition of conditional expectation to write

[e.e] o

EIVIX =02 =2 = | yflole.)dy= [ uf(uls) dy = BIY|Z = 2]
The argument for (iii) is nearly identical, combining f(x|y, z) = f(x|z) with the definition

of conditional expectation. ]

Properties (ii) and (iii) of the lemma are often called mean independence. It is
important to remember that conditional independence implies mean independence but
not the other way around. Conditional independence is the stronger assumption. There
is also a version of Lemma 2.1 that holds without conditioning on Z: X |l 'Y implies that
E[XY] = E[X]|E[Y], E[Y|X]| = E[Y], and E[X]|Y] = E[X]. A good exercise would be to
prove these implications for yourself if X and Y are continuous. Similar results also hold
for random vectors: if X 1Y |Z then E[Y | X, Z] =E[Y|Z] and E[ XY, Z] = E[X|Z].
Moreover, if X I'Y then E[Y|X] = E[Y] and E[X|Y]| = E[X].

2.3 Randomize treatments to eliminate selection bias.

Now that we know something about mean independence, we can propose our first solution
to the problem of selection bias, as described in section 1.8 above. Suppose that, instead
of arising naturally from the decisions people make, treatments were randomly assigned to
people, independently of any of their characteristics. In this case, D would be independent
of (Yp,Y1). By an argument nearly identical to that in Lemma 2.1 only without the “Z”
this would imply that E(Yy|D) = E(Yy) and E(Y;|D). Thus,

Bors = E(Y|D = 1) = E(Y|D = 0)
— E(W|D = 1) - E(Y,|D = 0)
— B(Y; - ) = ATE
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if DI (Yp,Y1). In words: there is no selection bias in a randomized experiment in which
subjects are not free to choose their treatment.* Because randomized experiments are
immune to selection bias, experimental studies are considered by many to be a “gold
standard” against which other kinds of studies, such as those based on observational data,
are to be judged. Valuable though they can be when applied carefully and interpreted
correctly, however, randomized controlled trials are no panacea. For a thoughtful recent
critique, see Deaton & Cartwright (2018).

2.4 The Axioms of Conditional Independence

Now that we understand that conditional independence means, we have to learn how to
work with it mathematically. Our approach will be aziomatic: we will state a number
of abstract properties that the independence operator Il satisfies and see how to use
these to derive new properties. The result will be a kind of “algebra” of conditional
independence: we will learn a number of rules with which we can manipulate a given
conditional independence assumption to transform it into new conditional independence
assumptions. All of the axioms of conditional independence can be rigorously proved
from first principles: see the Technical Appendix for details (section 2.6). The names
attached to axioms (i) and (iii)—(v) are taken from Pear] (1988). Axiom (ii) has not been
given a name in the literature, so I have christened it the “redundancy” property. Note
that when we write W = h(Y) where h is a measurable function, this is equivalent to
saying that W is Y-measurable: in other words, knowing the realization of Y tells us

with certainty the realization of W.

Theorem 2.1 (Axioms of Conditional Independence). Let X,Y, Z, W be random vari-

ables defined on a common probability space, and let h be a measurable function. Then:
(i) (Symmetry): X 1Y|Z — Y UX|Z.
(7i) (Redundancy): XYY .
(7ii) (Decomposition): X 1Y |Z and W = h(Y) —= XU W|Z.
(iv) (Weak Union): XU Y|Z and W = h(Y) = X AUY|(W,Z).
(v) (Contraction): X I Y|Z and X I W|(Y,Z) = XI(Y,W)|Z.

We begin with some important discussion of what these properties mean, how they

can be used, and how they relate to properties used by other authors.

4This rules out settings in which some experimental subjects refuse to comply with the treatment
they have been randomly assigned. We take up this more challenging case in a later chapter.
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Random Variables vs. Vectors All of the results from above and the Technical Ap-
pendix, including Proposition 2.1 and Theorem 2.1, hold regardless of whether X,Y, Z, W
are real-valued random variables, random vectors, or arbitrary collections of random vari-
ables and vectors. This is important, as it is typically necessary to find “clever” choices
of XY, Z, W when applying the axioms of conditional independence. Often this requires
defining one or more of these to be a collection of random variables, as we will see in

many of the examples below.

Conditional vs. Unconditional Axioms Axioms (i) and (iii)—(v) are stated con-
ditional on Z, but these same statements also hold wunconditionally by dropping Z.°
Because it is easier to put these unconditional versions of the axioms into words, I omit

explicit conditioning on Z in some of the verbal explanations below.

Symmetry The symmetry property says that if learning Y does not give us any in-
formation about X, then learning X does not give us any information about Y. This is
actually somewhat surprising, as the equality E (1 {Ax}|Y,Z) = E (1 {Ax}|Z) does not
treat X and Y symmetrically. Symmetry only becomes intuitively clear after establishing

Proposition 2.1.

Redundancy The redundancy property says that if I already know Y, then learning
Y a second time provides no additional information about X. Since X_IY|Y implies
Y I X|Y by symmetry, another way of interpreting this condition is that, conditional
on itself, a random variable Y is independent of any other random wvariable. In fact we
can establish a more general result using similar reasoning, namely X_Il W|Y if W is
Y -measurable. A proof of this fact using the axioms of conditional independence appears

in the following section.

Decomposition The decomposition property says that if learning Y provides no in-
formation about X, then learning a function of Y likewise provides no information about
X. If W is a measurable function of Y than it contains at most the same information
content as Y. A common use of decomposition is to drop a random variable from a
conditional independence statement. For example, suppose that X Il (X5, X3)|Z. Since
Xy is (Xo, X3)-measurable, it follows that X; Il X5|Z. Analogously, X1l X3|Z. This

consequence of the decomposition axiom is what some authors call “the decomposition

property.”

Weak Union The weak union property says that if learning Y provides no information

about X, then learning Y after having already learned a function of Y likewise provides no

SFormally, this is equivalent to taking o(Z) = 0.
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information about X. In effect, weak union allows us to add something to our conditioning
set. A common application of this property is to move a random variable from the “left”
of the conditioning bar to the “right.” For example, suppose that X;_Il (X5, X3)|Z. Since
X3 is (X, X3)-measurable, weak union gives Xl (Xs, X3)|(X3, Z). It follows by decom-
position that X Il X5|(X3,Z). Naturally, the same logic shows that X Il X3|(Xs, Z).
This consequence of the weak union and decomposition axioms is what some authors call

the “weak union property.”

Contraction The contraction property is a bit complicated to put into words. In
effect, it allows us to move a random variable from the “right” of the conditioning bar
to the “left”. For example, suppose that Xl X5|(X35, X4) and we want to show that
Xp L (Xo, X3)| Xy If Xl X3| X4, then contraction will give us our desired result.

2.5 More Properties of Conditional Independence

The axioms of conditional independence from Theorem 2.1 provide a simple but powerful

way to deduce new conditional independence relationships from old ones.
Corollary 2.1. X I Y|Z implies (X, Z)1Y|Z.
Proof of Corollary 2.1. By symmetry,
YIX|Z (2.1)
and by redundancy,
YI(X,2)|(X,Z). (2.2)
Now, applying the decomposition property to (2.2)
Y1 Z|(X,Z) (2:3)
and hence, applying the contraction property to (2.1) and (2.3), we obtain Y _I (X, Z)|Z.

The result follows by symmetry. O

Another simple result that can be derived from the axioms of conditional probability
is the following extension of the redundancy property. This does not appear in any
references that 1 have seen, but it is easy to establish using the axioms of conditional

independence.
Corollary 2.2. Let W = h(Y) where h is a measurable function. Then X 1L WY .

Proof of Corollary 2.2. By redundancy X_ Il Y|Y. By decomposition, taking Y to be
“Z)” this yields X_ Il W|Y. O
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The well known-result that X _Il Y|Z implies f(X)1g(Y)|Z also follows directly from

the axioms of conditional independence.
Corollary 2.3. Let f and g be measurable functions. Then X 1Y |Z = f(X)l g(Y)|Z.

Proof of Corollary 2.3. By decomposition, X_Il g(Y')|Z. Hence, by symmetry g(Y) I X|Z.
Applying decomposition a second time, g(Y)ILf(X)|Z. The result follows by a final ap-

plication of symmetry. O

2.6 Appendix: Technical Details

Definition 2.1 (Conditional Independence). Let XY, Z be random variables defined on
a common probability space (€2, 4,P). We say that X is conditionally independent of
Y given Z (with respect to P), written X Il Y'|Z if for all events Ax € o(X) we have
E(1{Ax}|Y,Z) =E(1{Ax}|Z), P-almost surely.

Proposition 2.1 (Equivalent Definitions of Conditional Independence). Let X,Y,Z be
random variables defined on a common probability space (2, A,P). Then the following

statements are equivalent:

(1) XA1Y|Z

(ii) For all real, bounded, measurable functions f, E[f(X)|Y,Z] = E[f(X)|Z]

(7ii) For all, real, bounded, measurable functions f, g, E[f(X)g(Y)|Z] = E[f(X)|Z]E[f(Y)|Z]
(iv) Forall Ax € o(X) and all Ay € o(Y), E[1{Ax N Ay} |Z] = E[1{Ax}|Z]E[1{Ay}|Z]
where all equalities of conditional expectations are understood to hold P-almost surely.

Proof of the Symmetry Property. The symmetry property follows immediately from

the alternative definition of conditional independence given in Proposition 2.1 (iii). O

Proof of the Redundancy Property. Let f and g be real-valued, bounded, measur-

able functions. Since ¢g(Y') is Y-measurable,
E[f(X)gV)Y] =E[f(X)[Y]g(Y) = E[f(X)V]E[g(Y)[Y]

so the result follows by Proposition 2.1 (iii). ]

Proof of the Decomposition Property. Let f be a real-valued, bounded, measurable
function. Since W is a measurable function of Y, we have o(W) C o(Y") and consequently

o(W,Z) Co(Y,Z). Hence, by the tower property of conditional expectation,
E[f(X)W, 2] = E{E [f(X)]Y, Z]|W, Z} .
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But since X_1.Y|Z, Proposition 2.1 (ii) gives E [f(X)|Y, Z] = E[f(X)|Z]. And because
E[f(X)|Z] is (W, Z)-measurable,

ELE [f(X)|Z]|W, 2} = E[f(X)|Z] E[1|W, Z] = E[f(X)[Z].

Thus, E [f(X)|W, Z] = E[f(X)|Z] so the result follows by Proposition 2.1 (ii). O

Proof of the Weak Union Property. Let f be a real-valued, bounded, measurable
function. Since W is a measurable function of Y, we have o(WW) C o(Y). As a re-
sult, it follows that o(Y, W, Z) = o(Y, Z) and hence E[f(X)|Y, W, Z] = E[f(X)|Y, Z].
Now, since X_1.Y|Z, Proposition 2.1 (ii) gives E[f(X)|Y, Z] = E[f(X)|Z]. Finally, since
X1UY|Z and W is Y-measurable, the decomposition property, Theorem 2.1 (iii), gives
XU W|Z and hence E [f(X)|Z] = E[f(X)|Z, W]. Hence, the result follows by Proposi-
tion 2.1 (ii). O

Proof of the Contraction Property. Let f be a real, bounded, measurable function.
Now, since X_LW|(Y,Z) we have E[f(X)|Y,W, Z] = E[f(X)|Y, Z] by Proposition 2.1
(ii). Similarly, since X I Y|Z we have E[f(X)|Y,Z] = E[f(X)|Z]. Combining these
equalities gives E[f(X)|Y, W, Z] = E[f(X)|Z] so the result follows by Proposition 2.1
(i). O
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Chapter 3
Selection on Observables

As we saw in chapter 2, there is no selection bias when D is randomly assigned: a simple
comparison of mean outcomes between treated and untreated individuals identifies the
ATE. In many examples, however, carrying out a randomized controlled trial may be
infeasible, unethical, or even impossible. In this chapter we will consider an assumption
called selection on observables that allows us to identify the ATE from observational data
by conditioning on observed characteristics X. We'll consider two different approaches
to identification that both rely on the selection on observables assumption: one based on

regression adjustment and another based on propensity score weighting.

3.1 Does education cause political participation?

University graduates are more likely to vote, volunteer for political campaigns, contact
their elected representatives, and participate in demonstrations. Does this show that
education causes political participation? Let D = 1 if you attended university and
D = 0 otherwise. Further let Y be an index of political participation, where high values
indicate greater participation and lower values indicate less. It seems hard to believe that
D could be independent of the potential outcomes (Yp,Y7) in this example. University
graduates differ from non-graduates in myriad ways that could also influence political
participation. People from wealthy backgrounds are more likely to graduate from college.
They are also more likely to have the leisure time required for political participation; if
you are struggling to make ends meet it will hard to find time to attend a political rally.
Because it seems far-fetched to imagine anyone carrying out an experiment that forced
some people to attend college and others not to, observational data is the best we can
hope for if our goal is to identify the causal effect of education on political participation.

The assumption that (Y, Y1) LD is clearly untenable, so what could we use instead?
Our main reason for doubting that a simple comparison of mean political participation

across groups could be given a causal interpretation was that university graduates are
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different from non-graduates in more ways than their education level. But perhaps if we
were to condition on these differences, effectively holding them fixed, we could find a way
to make progress. In other words, even if (Y, Y1) are not independent of D, perhaps there
is a collection of observable individual characteristics X such that (Yp,Y;)1L.D|X. For
example, perhaps by conditioning on sex, race, family background and so on we could
break the dependence between college graduation and the potential outcomes. This idea
is called selection on observables because it assumes that selection bias operates solely

through characteristics that we can observe.

3.2 Selection on Observables and Overlap

The methods explored in this chapter rely on two assumptions. First is selection on
observables, as outlined in the previous section. The precise version of this condition that

we will rely on below is as follows.

Assumption 3.1 (Selection on Observables).
E(|X, D) = BV X), and E(Vi|X,D) = B(Yi|X).

Assumption 3.1 says that the potential outcomes (Yp, Y1) are mean independent of
the treatment D conditional on X. This is weaker than but implied by the conditional
independence assumption, namely (Yp,Y;) 1l D|X, described in the previous section.’
Because our goal is to identify a mean, the ATE, we only require a mean independence

assumption. To introduce our second assumption we require the following definition.

Definition 3.1 (Propensity Score). The probability p(X) = P(D = 1|X) of treatment

conditional on an observed random vector X is called the propensity score.
Assumption 3.2 (Overlap). 0 < p(x) < 1 for all © in the support of X.

Assumption 3.2 states that the propensity score is strictly between zero and one for
any value that the covariates X could take on. Since p(x) = P(D = 1|X = x), this
requires that, among people with any fixed value @ of the covariates X, some are treated
(D = 1) and some are untreated (D = 0).

Both Assumption 3.1 and Assumption 3.2 are crucial for the methods described be-
low. Unfortunately the two are somewhat at odds with each other. The more observed
controls X that we condition on, the more plausible the selection on observables as-
sumption (Assumption 3.1) becomes.” At the same time, conditioning on a richer set of

controls makes it harder to satisfy the overlap condition. Suppose that X includes race,

1See part (ii) of Lemma 2.1.
2But beware of bad controls! See section 3.8 for details.
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sex, whether or not you attended an independent secondary school, year of birth, and
post code. It is distinctly possible that every white male who attended an independent
secondary school and was born in 1995 to a wealthy North Oxford family in fact grad-
uated from university. If so, the overlap assumption fails for this particular value of .
A common although not entirely satisfactory solution to the failure of Assumption 3.2 is
to redefine the population of interest by restricting attention to only those values x for
which overlap holds. For example, we might be forced to exclude people born to wealthy
North Oxford families from our population of interest. Note that if we take this route,
we will identify a different ATE than the one we initially set out to recover: one that

corresponds to the restricted population.

3.3 Identification by Regression Adjustment

Our first approach to identifying the ATE using Assumption 3.1 and Assumption 3.2 is
called regression adjustment. The idea is to compare mean values of Y between treated
and untreated individuals within strata defined by a common value x of the covariates.
This yields a conditional ATE given that X = . This quantity, which we denote
ATE(x), is the average treatment effect for a certain kind of person, namely someone
with covariates equal to @, e.g. a white male born to a wealthy North Oxford family in
1995. To convert this into an unconditional ATE we average ATE(x) over the distribution

of X in the population using the law of iterated expectations (Lemma 1.2).

Theorem 3.1. Under Assumption 3.1 and Assumption 3.2,
ATE=E(Y; - Yy) =Ex [E(Y|X,D =1)] - Ex [E(Y|X,D = 0)].
Proof. Since Y =Y, + D(Y; — Y)), under selection on observables

E(Y|X, D) = E(Yo|X, D)+ D[E(Y1]|X, D) — E(Yy| X, D)]
= E(Y|X) + D[E(Y;]|X) — E(Yp| X))

where the first equality follows by the properties of conditional expectation, and the sec-

ond from Assumption 3.1. Substituting D = 0 and D = 1 into the preceding expression,
E(Y[X,D = 0) = E(%|X), E(Y|X,D=1)=E(¥i|X)
which in turn implies that
ATE(X)=EY, - Y|X)=EY|X,D=1)-EY|X,D =0).
The overlap assumption (Assumption 3.2) implies that ATE(X) is well-defined for all
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points in the support of X, since it ensures that there are individuals with D = 1 and

D = 0 for any value of the covariates. Hence, taking the expectation of both sides,
ATE = Ex [ATE(X)] = Ex [E(Y|X, D = 1)] - Ex [E(Y|X, D = 0)

by the law of iterated expectations. ]

3.4 Estimation by Regression Adjustment

Let 7io(X) be a consistent estimator of E(Y|X,D = 0) and i;(X) be a consistent
estimator of E(Y'|X, D = 1). Then, under general conditions,

n

— 1 N N

ATERga = - ; [ (X) — f10(X3)]
is a consistent estimator of the ATE, where RA stands for regression adjustment. The
question remains: how do we obtain jip(-) and fi;(+)? If X is discrete and takes on a small
number of values, we can simply calculate the sample mean of Y at each combination
of (D =0,X = x) for fig(x) and at each combination of (D = 1, X = x) for /().
If X contains any continuous variables, or is discrete but takes on a large number of
values, however, this approach fails. Non-parametric methods, either series or kernel-
based, provide an alternative but perform poorly when the dimension of X is large.
Model-based approaches are also possible, e.g. assuming that E[Y|D = d, X] is linear
in X for a given value of d. If the model is a poor description of the true conditional
mean function, however, this can produce misleading results. Model-based approaches
can also mask failures of the overlap assumption: they will always generate a value for
E[Y|D = d, X = x| even if there are no individuals in the dataset with (D = d, X = x).
The model extrapolates from values that are actually contained in the dataset. Whichever
method is used to construct estimates Jio(+) and fig(), a simple way to carry out inference

that correctly accounts for this first-stage estimation step is to bootstrap pairs (V;, X;).

3.5 Identification by Propensity Score Weighting

Our second approach to identifying the ATE using Assumption 3.1 and Assumption 3.2 is
called propensity score weighting. Whereas regression adjustment compares average values
of Y between treated and untreated individuals with the same value of X, propensity
score weighting calculates the average value of Y across everyone in the population with
weights that depend on each person’s actual treatment D and her predicted probability

of treatment: the propensity score.
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Theorem 3.2. Under Assumption 3.1 and Assumption 3.2,

{D-p(X)}Y
p(X) {1 —p(X)}]

Proof. Since D is binary, D> = D, (1 — D)?> = (1 — D), and D(1 — D) = 0. Hence,

ATE=E(Y; - Y,) =E

DY = D?*Y, + D(1 — D)Y, = DY;
(1—D)Y = (1-D)DY; + (1 - D)*Y, = (1 - D),

since Y = DY) + (1 — D)Y;. Thus,
_ L mioyx] (3.1)
_ X 4 ,

Now, by iterated expectations and Assumption 3.1,

E[(1- D)¥| X]. (3.2)

E[DY:|X] = Epx [E (DY1|D, X)] = Epx [DE (Y1|D, X)| = Ep|x [DE (Y1]|X)]
= E[D|XEY,|X] = p(X)E[Y1|X]

where the final equality uses E[D|X] = P(D = 1|X). Similarly,

E[(1 — D)Y1|X] = Epx [E{(1 — D)Y,|D, X}] = Epx [(1 — D)E (Y| D, X)]
= Epix [(1 = D)E (Yol X)] = E[1 — D|X]E[Y| X]
= [1 = p(X)] E[Yo| X]

Substituting these expressions for E[DY;|X] and E[(1 — D)Yy|X] into (3.1) and (3.2)

B || X] —Bmix. B[ L0 x|~ E0iix)

so we see that

ATE(X) = E(Y1 - Y[ X) = E |:pl();(/) - (11—_291()))2;‘ }
'DY{l—P(X)}—(1_D)Yp(X)‘X}

I p(X) {1 -p(X)}

DY — DYp(X) — Yp(X) + DYp(X) ‘ X}
_ p(X) {1 —p(X)}

[ {D—pXxX)}

=E p(X) {1 —p(X }‘ }
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Therefore, taking iterated expectations,

{D—p(X)}Y D= p(X)} ¥
ATE = Ex [ATE(X)] = Ex (E {p(X) (1 —p(X)} ‘ XD - {p(X) {1 -p(X)}

3.6 Estimation by Propensity Score Weighting

~,

Suppose we already have a consistent estimator p(-) of the propensity score. Then,

& Xy,
ATEpsw = n ; (X)) [1—p(X;)]

where PSW stands for propensity score weighting is a consistent estimator of the ATE
under Assumption 3.1, Assumption 3.2, and appropriate regularity conditions. But how
can we estimate the propensity score? If X is discrete and only takes on a small number
of values, we can estimate the propensity score directly using the sample fraction of
observations with X = a. This approach is no longer possible when any of the elements
of X is continuous and can perform poorly even for discrete X if some values @ are shared
by only a small number of people in the sample. A common model-based approach is to fit
a “flexible” logit model, including levels, squares, and interactions of X . Although fairly
widespread and convenient, this approach has the potential to mask failures of overlap:
the logit model will never give p(X') = 0 or 1 regardless of whether there are values of @ for
which everyone in the sample is either treated or untreated. Moreover, the particular logit
model that we specify could be a poor reflection of the true propensity score. Another
approach uses non-parametric methods, either series or kernel based, to estimate the
propensity score. While less prone to mis-specification that model-based approaches,
non-parametric methods perform poorly when X is high-dimensional. Regardless of the
particular method used, inference for propensity score weighting is somewhat complicated

by the first-stage estimation of p(X). An easy solution is to bootstrap pairs (X, Y;).

3.7 Regression Adjustment versus Propensity Score
Weighting
In theory, both Theorem 3.1 and Theorem 3.2 identify the same quantity, namely the

ATE.? In practice, however, because they require us to use the data in different ways,

estimators based on regression adjustment and propensity score weighting will differ,

31f Assumption 3.2 fails and we are forced to restrict attention individuals with values of X for which
overlap holds, then both theorems identify the ATE for this restricted population.
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sometimes substantially. Recall that regression adjustment requires us to model and
estimate the conditional mean of Y given (D = 0, X) and (D = 1, X) whereas propensity
score weighting requires us to model and estimate the conditional probability that D =1
given X. A particular challenge for propensity score weighting is values of p(X;) that

—_—
are close to zero or one, as this causes the fraction in ATEpgy to become unstable.

3.8 Don’t condition on an intermediate outcome!

The key message of this chapter is that conditioning on the right information can allow
us to identify causal effects even when treatment is not randomly assigned. The key
message of this section is that conditioning on the wrong information can lead us to draw
erroneous causal conclusions even when treatment is indeed randomly assigned. This
problem is commonly known as bad control or conditioning on an intermediate
outcome. We'll use a simple example to explain the problem and how to avoid it. For
simplicity our discussion will be limited to a binary covariate X that is potentially a “bad
control.” Very similar reasoning applies to any covariate, binary or not.

Gwynaeth attended a bilingual French and English high school in Canada. She is
now a university senior lecturer and earns a good living. Did attending a bilingual high
school cause her earnings to be higher than they otherwise would have been? Let Y be a
person’s wage, and define D = 1 if she attends a bilingual high school and zero otherwise.
Gwynaeth chose to attend a bilingual high school: her D was not randomly assigned.
But imagine that we were to carry out an experiment in which we did randomly assign
D, sending half of a group of students to a bilingual high school and the rest to a regular
high school. Since D_ (Yy, Y1), we have E(Y,|D) = E(Yp) and E(Y;|D) = E(Y1). Thus,

E(Y|D = 1) - E(Y|D = 0) = E(¥|D = 1) — E(Y|D = 0) = E(Y; — Y;) = ATE

since Y = (1 — D)Yy + DY;. Because students in this hypothetical experiment are
randomly assigned to high schools, we don’t need to condition on anything to identify
the average treatment effect D on Y: a simple comparison of means suffices. But what
would happen if we nevertheless did choose to condition on something?

Given that she is a university senior lecturer, it will come as no surprise that Gwynaeth
attended university herself. Let X = 1 if a person attended university and zero other-
wise. Should we condition on X to estimate the ATE in our hypothetical experiment?
Absolutely not! College attendance X is an intermediate outcome aka a bad control.
Because D causes X as well as Y, the treatment D is no longer randomly assigned if we
condition on X . In other words, conditioning on X introduces selection bias that was not
present unconditionally. We will examine this in two ways: first intuitively using a simple

stylized model, and then mathematically, building on our earlier derivations. Consider
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the following stylized model:

(i) Two factors increase a person’s wage: knowledge K and innate ability A.

(ii) Attending a bilingual high school increases K more than attending a regular one.
(iii) The top 30% of people in the population distribution of (K + A) attend university.

Because D was randomly assigned it is independent of A. This is no longer true,
however, conditional on X. First consider the group of people from our experiment who
attended university (X = 1). Among them, those who didn’t attend a bilingual high
school (D = 0) will have higher average ability than those with did (D = 1). Why is this
the case? Our second assumption was that those who didn’t attend a bilingual school
end up with a lower value of K, on average, than those who did. Thus, for them to make
it into the top 30% of (K + A) requires a higher value of A. Putting it another way, if
you did attend a bilingual school, then you can make in into the top 30% of (K + A) with
a lower value of A. Because those with (D = 1, X = 1) have lower ability than those
with (D = 0,X = 1) and lower ability implies lower wages,

EY|D=1,X=1-E[Y|D=1X =0] < E[Y;|X = 1] - E[Y;|X = 1] = ATE(X =1).

A similar argument shows that, that among those who did not attend university, those
with D = 1 will have lower average ability than those with D = 0.* It follows that

E[Y|D=1X=0—E[Y|D=1,X =0] < E[V1|X = 0] — E[Yp|X = 0] = ATE(X = 0).

In this simple model, conditioning on university attendance would lead us to understate
the true treatment effect. Now that we understand the basic intuition, we’ll take a more

mathematical look at the problem of a bad control.

Lemma 3.1. Let X be a binary RV and suppose that E(Y;) = E(Y;|D) for j =0,1. If
E(Y;|X, D) = E(Y;|X) for j =0,1 then at least one of the following must hold:

(i) X1LD
(ii) E(Y;|X) = E(Y;) for j = 0,1

Proof of Lemma 3.1. Since Y; is mean independent of D for j = 0,1 and X is binary,

the law of iterated expectations gives

E(Y:) = EM1|D) = Exp [E(Y4|D, X)]
—E(Y1|D, X = 0)P(X = 0|D) + E(Y1|D, X = DP(X = 1|D)

4If you did not make it into the top 30% of the distribution of (K 4 A) in spite of receiving the extra
boost to K that comes from D = 1, then you must have had a low value of A.
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and similarly for Y. Further imposing that (Y;, Y7) are mean independent of D given X

E(Yy) = E(Ys|X = 0)P(X = 0|D = d) + E(Yo|X = )P(X = 1|D = d) (3.3)
E(Y;) = B(Y)|X = 0)P(X = 0|D = d) + E(Y;|X = )P(X = 1|D = d). (3.4)

The left-hand sides of (3.3) and (3.4) do not depend on the value d that the treatment
D takes on. Thus, to avoid a contradiction between E(Y;|D) = E(Y;) and E(Y;|X, D) =
E(Y;|X), the RHS cannot depend on d either. There are only two ways that this is
possible. The first is if X Il D so that P(X = z|D = d) = P(X = x) and

E(Yy) = E(Yp|X = 0)P(X
E(Yi) = E(Vi|X = 0)P(X

0) + E(Yp|X = 1)P(X
0

1)
)+ EM|X = 1DP(X =1

).

If X and D are dependent, then the only way that the RHS (3.3) and (3.4) could not
involve d is if E(Y;|X =0) = E(Y;|X = 1) = E(Y}) and similarly for Yy, so that

E(Y|X = 0)P(X = 0|D = d) + E(Yy|X = )P(X = 1|D = d) = E(Yp)
E(Y1|X = 0)P(X =0|D =d) + E(Yi|X = )P(X = 1|D = d) = E(Y,)

since P(X =0|D =d) + P(X = 1|D = d) = 1 for any value of d. O

Lemma 3.1 tells us that if treatment is randomly assigned, then any covariate X
that is both related to treatment and affects the average potential potential outcomes
is necessarily a bad control. Given that D is mean independent of (Yj,Y7), such an X
cannot satisfy E(Y;|X, D) = E(Y;|X), the selection on observables assumption. This
means that we cannot identify the ATE by conditioning on X and using, for example,
regression adjustment or propensity score weighting. In our example from above, college
attendance (X) was both affected by attending a bilingual high school (D) and in turn
affected wages. Given that D was randomly assigned, the lemma shows that college
attendance is a bad control in the wages and high-school experiment.

Lemma 3.1 does not say that conditioning on a covariate that is related to D and
Y is always bad. Indeed the whole point of this chapter is to try to eliminate selection
bias by finding covariates that are related to D and Y. The lemma concerns a setting
where we have already solved the selection problem by randomly assigning D. It tells us
when conditioning on X would introduce selection bias that was not there to begin with.
This may strike you as odd: why would we bother to condition on X if we already knew
that the treatment had been randomly assigned? There are two answers to this question.
First, it is fairly common in practice for researchers to condition on covariates when
analyzing experimental data, either to estimate conditional ATEs for people with different

characteristics or to reduce the variance of their overall ATE estimator by “projecting
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out” sources of noise in Y. Lemma 3.1 tells us that this is perfectly fine provided that
these covariates were measured before assigning the treatment: because D is randomly
assigned, we know that any pre-existing characteristics of individuals, e.g. sex or age, will
be independent of treatment and hence cannot be bad controls.

Second, the reasoning used in our proof of Lemma 3.1 also applies to settings in which
D is not randomly assigned. Suppose that we have a set of “good controls” W that satisfy
Assumption 3.1, i.e. (Yp,Y]) are mean independent of D given W. Now suppose that
we are considering adding an additional binary variable X to our set of controls. We
should only add X if (Yp,Y)) are mean independent of D given the full set of controls
(W, X). Suppose this is the case. Then, by iterated expectations and our two of mean

independence assumptions,

E(Yi|W,D, X = 0)P(X = 0|W, D) + E(Yi|W,D, X = 1)P(X = 1|W, D)
E(Y:[W, X = 0)P(X = 0|W, D)+ E(Y,|W, X = )P(X = 1|W, D)

and similarly for Yj, yielding

E(Yo|W) = E(Y,[W, X = 0)P(X = 0|W, D) + E(Yy|W, X = )P(X = 1|W, D)
E(Vi|W) = E(Yi|W, X = 0)P(X = 0|W, D) + E(Y|W, X = )P(X = 1|W,D),

The left hand sides of these equations do not depend on D. By reasoning similar to that
used in the proof of Lemma 3.1, the only way that the right hand sides could not depend
on D is if either X |l D|W or E(Y;|W, X) = E(Y;|W). If X is determined after D, it is
unlikely that the first of these conditions hold. If X satisfies the second condition, then
conditioning on it is completely irrelevant in any case: it will neither help us to identify

ATEs, conditional or unconditional, nor will it improve the precision of our estimates.
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Chapter 4

Instrumental Variables and Local

Average Treatment Effects

In section 1.8 we showed that an OLS regression of Y on D does not in general identify
the ATE: selection bias is the norm rather than the exception in social science. One pos-
sible solution, considered in chapter 3 is to make the selection on observables assumption.
Under this assumption, conditioning on observed characteristics X suffices to break any
dependence between D and (Yp, Y;). Selection on observables, however, is a very strong
assumption. How likely is it that we truly observe all the factors that create dependence
between D and (Yp, Y1)? As an alternative to selection on observables, this chapter con-
siders the use of an instrumental variable Z to identify causal effects. For simplicity we
focus on the case where Z, like D, is binary. We first review the “textbook” homoge-
neous effects IV model before addressing our key question for this chapter: what does an

instrumental variable identify in a world of heterogeneous effects?

4.1 Instrumental Variables with Homogeneous Effects

Suppose that Y = a + D + U, where (Y, D) are observed random variables, U is
an unobserved random variable, and («a, ) are unknown constants. Under standard

conditions, the OLS estimator for § converges in probability to

Cov(D,U)
Var(D)

~ Cov(D,Y) pBCov(D,D)+ Cov(D,U)
Pors = Var(D) Var(D) =0+

which does not equal 5 unless Cov(D,U) = 0. Suppose we have an instrumental variable
Z such that Cov(Z,U) = 0 (exogeneity) and Cov(Z, D) # 0 (relevance). Then, under
standard conditions, the instrumental variables (IV) estimator of § converges to

_ Cov(Z,Y) pCov(Z,D)+ Cov(Z,U)

Prv = Cov(Z,D) Cov(Z, D) =p+

Cov(Z,U)

Cov(Z, D) = b
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What do we make of Y = a+ 8D + U in light of our discussion of potential outcomes
from above? This is a homogeneous treatment effects model. In other words the
model (implicitly) assumes that the treatment effect is the same for everyone. We can
express this model in the potential outcomes notation from above as follows. To find Y,
set D = 0; to find Yi, set D = 1. This gives

Yo=a+U Yi=a+pB+U = Y, -Y,=p

so the ATE equals the constant 5. But what if the assumption of homogeneous treatment
effects is incorrect? Does IV still identify a meaningful causal quantity? To answer
this question, we will drop the assumption that ¥ = « + D + U where («, ) are
constants and study the behavior of the IV estimand [, = Cov(Z,Y)/Cov(Z, D)
under heterogeneous treatment effects.

When D and Z are both binary, as we will assume they are in these notes, the IV
estimand can be written in a simpler form. Applying Lemma 1.1 to the numerator and
denominator of Sy

pl—p[EX|Z=1)-EY|Zz=0)] EX[Z=1)-EY|Z=0)

V= i) EDZ=1)_E(DZ=0] EDZ=1)_EDZ=0

where p = P(Z = 1). The rightmost fraction in (4.1) is often called the Wald estimand.
Substituting sample means for population expectations gives the Wald estimator, a

convenient shorthand for 31\/ in the binary-treatment /binary-instrument case.

4.2 Non-compliance and the Intent-to-Treat Effect

Loosely speaking, an instrument is a variable Z that only affects Y through its affect
on D. In the preceding section we assumed that Z was relevant, Cov(Z, D) # 0,
and exogenous, Cov(Z,U) = 0. These two assumptions sufficed to identify the ATE
under homogeneous treatment effects. Because it only involves D and Z, the relevance
assumption is unchanged in a heterogeneous effects model, as we will see below. In
contrast, the exogeneity assumption Cov(Z,U) = 0 explicitly involves the additive error
term U from the homogeneous effects model. We will need to find alternative assumptions
to take its place if we wish to allow different people to have different treatment effects.
Before we can state these assumptions, however, we need to develop some terminology
and definitions that are specific to the heterogeneous effects case.

While IV methods are routinely applied to observational datasets, the definitions
we need to introduce are easiest understood by considering an experimental example.
The influential “Moving to Opportunity” (MTO) intervention from the mid 1990s of-

fered vouchers to families living in high-poverty neighborhoods that would allow them
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to relocate to low-poverty areas. A number of influential recent papers in economics
have studied the causal effect of the MTO intervention, e.g. on labor market outcomes
later in life. Although vouchers were assigned at random, for obvious reasons families
could neither be compelled to move if they received one nor prevented from moving if
they did not. Nearly 50% of the families offered vouchers through the MOT interven-
tion chose to remain in their original neighborhoods while 20% of those not offered a
voucher nevertheless moved to a low-poverty neighborhood. This phenomenon is called
non-compliance: subjects in social experiments can only be offered treatment rather
than compelled to take it up.

Let Z =1 for families who were offered a voucher and D = 1 for those that moved to
a low-poverty neighborhood. Non-compliance means that Z may not equal D. Crucially,
while Z was randomly assigned, D was not: families chose whether or not to move, and
those who did likely differed in many ways from those who did not. For this reason, a
naive comparison of E[Y|D = 1] against E[Y|D = 0] will be polluted by selection bias, as
detailed in section 1.8. But what about conditioning on Z rather than D? The so-called

intent-to-treat estimand does exactly this, regressing Y on Z rather than D:
ITT=E[Y|Z=1] - E[Y|Z =0].

Notice that the ITT is precisely the same thing as the numerator of the Wald estimand.
Because Z was randomly assigned, the ITT identifies the ATE of Z on Y: the average
causal effect of being offered a voucher on labor market outcomes.!

There is nothing wrong with the I'TT. It answers a perfectly well-defined causal ques-
tion and is immune to selection bias. At the same time, the intervention was called
moving to opportunity for a reason: we don’t expect that being offered a voucher, on its
own, could affect labor market outcomes for families that did not, in fact, relocate. In
other words, it is the causal effect of D that truly interests us, not the causal effect of
Z. Under perfect compliance, Z = D so the ITT equals the ATE. If everyone who is
offered a voucher moves, and everyone who is not offered a voucher stays put, then the
effect of being offered a voucher is the same as the effect of actually moving. By driving
a wedge between Z and D, however, non-compliance causes the I'TT and ATE to differ.
Recall that 50% of families offered a voucher (Z = 1) chose not to move (D = 0). Since
Y = (1 - D)Yy + DY), we have

ElY|Z =1] = Epjz=: [E(Y|Z = 1, D)]
—E[Yy|Z=1.D=0P(D=0[Z=1)+E[Y,|Z=1,D=1P(D=1]Z=1)

1 1
= xE%|Z=1D=0)+7xEX|Z=1D=1)

1See section 2.3, changing the notation so that Z replaces D.
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This calculation shows that E[Y|Z = 1] contains a mixture of Y, and Y; with mixing
weights that depend on the extent of non-compliance. In effect, families that choose
not to move despite being offered a voucher dilute E[Y|Z = 1] so that it averages over
the outcomes of both treated and untreated families. Non-compliance causes similar
challenges for interpreting E[Y|Z = 0]. Since 20% of families who were not offered a

voucher chose to relocate,

ElY|Z = 0] = Epjz=0 [E(Y|Z =0, D)]
—E[Yy|Z=0,D=0P(D=0[Z=0)+E[},|Z=0,D=1P(D =1]Z =0)

1 1
= xEM|Z=0,D=0)+: xE1|Z=0,D=1).

Again we obtain a mixture of Yy and Y] that depends on the extent of non-compliance.
None of these calculations in any way contradicts our earlier claim that the I'TT identifies
the average causal effect of Z on Y. They merely show the challenges involved in trying

to relate this quantity to the causal effect of interest, that of D on Y.

4.3 Compliers, Defiers, and Friends

In the previous section we showed that E[Y|Z = 0] and E[Y|Z = 1] each contain a
mixture of Yy and Y;, making it difficult to relate the causal effect of being offered
treatment, the I'TT, to that of actually receiving it. But there is a second and more
subtle challenge lurking here. Notice that E(Y|Z = 1) involves E(Yy|Z = 1,D = 0)
while E(Y|Z = 0) involves E(Yy|Z = 0,D = 0). While these are both averages of Yy,
they average over different kinds of families. Families who did not choose to move despite
being offered a voucher (Z = 1, D = 0) are probably very different from those that didn’t
move but weren’t offered a voucher (Z = 0,D = 0).? Perhaps the group with Z = 0
and D = 1 is much poorer, making it harder for them to move even with a voucher. Or
perhaps they are less ambitious, and less willing to take advantage of the opportunity
presented by moving to a new neighborhood. Whatever the reasons behind their choice
not to move, we would likely expect their values of Y to differ systematically from those
of other families. Similarly, E[Y|Z = 0] involves E[Y;|Z = 0, D = 1] while E[Y|Z = 1]
involves E[Y;|Z = 1, D = 1]. Both are averages of Y] but, again, for different groups of
families. Those that chose to move despite not being offered a voucher (Z = 0,D = 1)
may be richer, making it easier for them to move. The might also be more ambitious,
and hence more willing to take advantage of the opportunity presented by the voucher.
We would probably expect them to have higher values of Y; than the typical family.

To make it easier to discuss these different types of families, and as a lead-in to our

2Remember that Z was randomly assigned, but D is something that families could choose.

35



derivations for IV under heterogeneous effects, we introduce the notion of compliance
types.® The idea is to consider every possible rule that a family could use to decide
whether or not to move, depending on whether they were offered a voucher. Mathemat-
ically, this involves listing every function that maps Z to D. Because both are binary,
there are four possibilities. We give each a name corresponding to the “type” (T') of

family that would adopt it:

Never-taker: T'=n <= D(Z)=0

Always-taker: T'=a <= D(Z)=1

Complier: T'=¢ <= DZ)=Z
Defier: T=d <= D(Z)=(1-2).

In the MTO example, never-takers are the families that would never choose leave their
current neighborhood, regardless of whether they are offered a voucher. Similarly, always-
takers are families that would always choose to move to a lower-poverty area, regardless
of whether they are offered a voucher. As their name suggests, compliers are the families
that comply with their treatment offer: they move when given a voucher and stay put
otherwise. Defiers are the most exotic of the four compliance types. These are families
with a decidedly contrarian streak: they will only move to a low-poverty neighborhood
when they are not offered a voucher.*

There is a crucial point about compliance types that is easy: they are defined relative
to a particular instrumental variable Z. Consider three different instruments intended
to encourage families to move to low-poverty neighborhoods: Z; is an offer to provide
help looking for a new apartment, Z, is a voucher worth $500 per month towards rent for
families that move, and Zj3 is title to a house, completely free of charge, in a low-poverty
area. Someone who is a never-taker for Z; could easily be a complier for Z; and an
always-taker for Z3. Our intuition is that Z; provides the weakest inducement to move
while Z3 provides the strongest. This point will be especially important below, where
we will show that IV identifies the ATE for compliers when treatment effects can vary

across individuals (or families).

4.4 The Local Average Treatment Effects Model

Having defined the four compliance types—always-takers, never-takers, compliers, and
defiers—we can now state the assumptions that take the place of instrument exogeneity

when treatment effects may be heterogeneous. The first is unconfounded type.

3Much of the literature refers to these as the “LATE Principal Strata.” The meaning of LATE will
be clarified below, but principal stratum is exceedingly vague, so I prefer to avoid the term.

40ur definition of “defier” assumes_that Z = 1 should make families more likely to move. If the
reverse is true, simply replace Z with 7 =1 — Z.
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Assumption 4.1 (Unconfounded Type). For all compliance types t € {a,c,n,d}
P(T=t)=P(T=tZ=0)=P(T=t7Z=1).

Assumption 4.1 says that knowing the value of a person’s instrumental variable tells
us nothing about her type. If Z is randomly assigned, as in an experiment like MTO
example, this assumption holds automatically: a person’s type can be viewed as a pre-
existing characteristic just like age, sex, or income. In examples where Z arises from
observational data, Assumption 4.1 is a substantive assumption that could in principle

fail to hold. The second assumption is that there are no defiers.
Assumption 4.2 (No Defiers). P(T' = d) = 0.

Assumption 4.2 says that there are no defiers in the population: everyone is a never-
taker, a complier, or an always-taker. If we view Z as an inducement that lowers the cost
of taking up the treatment, this assumption entails that the instrument shifts everyone
in the same direction or not at all. In the MTO example, this requires that offering a
family a voucher cannot make them less likely to move. For this reason the no defiers
assumption is sometimes called monotonicity. Assumption 4.2 is natural in a model of
rational choice, particularly if Z is a straightforward cost shifter such as the rent voucher
from the MTO example. Nevertheless, it is still a restriction. Under the unconfounded
type and no-defiers assumptions we can calculate the fraction of each compliance type in

the population using the results of the following lemma.

Lemma 4.1. Under Assumptions 4.1 and /.2,

P(D=1Z=1)=P(T=a)+P(T =c)
P(D=0|Z=1)=P(T =n)
P(D =1|Z =0) =P(T = a)
P(D=0/Z=0)=P(T =c)+P(T =n)

Notice that Lemma 4.1 directly identifies the share of never-takers and always-takers
in the population: P(D = 0|Z = 1) equals P(T" = n) while P(D = 1|Z = 0) equals

P(T = a). To obtain the share of compliers, we take differences:
P(T=c¢c)=PD=1|Z=1)—-P(D=1|Z=0). (4.2)

Notice that the right-hand side of (4.2) is precisely the denominator of the Wald estimand
from (4.1): since D is binary, IE(D|Z) = P(D = 1|Z). To keep us from getting bogged
down in book-keeping, I defer the proof of Lemma 4.1 to section 4.6. The intuition

behind the proof, however, is fairly straightforward. Consider P(D = 0|Z = 1). Because
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we have assumed that there are no defiers (Assumption 4.2), a family that is offered a
voucher (Z = 1) but doesn’t move (D = 0) is a never-taker. Since we have assumed
that the fraction of each type is the same among those who are offered a voucher and
those who are not (Assumption 4.1), P(D = 0|Z = 1) tells us the overall fraction of
never-takers in the population. The remaining equations follow by similar reasoning: see
section 4.6. The third and final assumption that replaces the more familiar instrument

invalidity assumption from section 4.1 is called mean exclusion.
Assumption 4.3 (Mean Exclusion). E[Y;|Z = 2, T =t| = E[Y;|T = t| for all (j, 2,1).

In words, Assumption 4.3 says that the average values of (Yp,Y;) for any type ¢ of
family does not depend on whether they were offered a voucher. Mean exclusion does
not require that Y is unaffected by Z. Because Y = (1 — D)Yy + DY}, the instrument
will necessarily affect Y if it affects D. What Assumption 4.3 entails is that Z has no
direct effect on Y: it may shift D but leaves Y, and Y; unchanged. In the MTO example,
this requires that merely being offered a voucher has no effect on labor market outcomes
for a family that does not choose to move. Similarly, it requires that not being offered a
voucher has no effect on labor market outcomes for a family that does choose to move.
Combining Assumptions 4.1, 4.2, and 4.3 we can derive a lemma that will ultimately
allow us to relate the I'T'T to the causal effect of D on Y.

Lemma 4.2. Under Assumptions 4.1, /.2, and /.5.

P(T = )E[Yi|T = a] + P(T =

E[Y|D=1,Z=1]= P(T =a) + P(T =

E[Y|D=0,Z =1 =E[Y|T = n

E[Y|D=1,Z=0=EW|T = d

P(T = n)E[Yo|T = n] + P(T = O)E[Y,|T = ¢
P(T =n) +P(T = ¢)

Lemma 4.2 relates the means of the observed outcome Y given D and Z to the means

E[Y|D=0,Z=0] =

of the potential outcomes (Yj, Y1) for different types of families. In the MTO intervention,
for example, the average value of Y for families that were not offered a voucher but moved
to a low-poverty neighborhood nonetheless, E[Y|D = 1,7 = 0], identifies the average
value of Y; for always-takers. Similarly, the average value of Y for families that were
offered a voucher but chose not to move, E[Y|D = 0, Z = 1], identifies the average value
of Yy for never-takers. So far we have used Assumptions 4.1, 4.2, and 4.3 to derive two
lemmas. Lemma 4.1 tells us something about the denominator of the Wald estimand. And
since E[Y|Z] = Epz [E(Y|D, Z)] by the law of iterated expectations, Lemma 4.2 tells
us something about the numerator of the Wald estimator, i.e. the ['TT. Before combining

them, we require one futher assumption.
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Assumption 4.4 (Existence of Compliers). P(T' =¢) > 0

By (4.2), Assumption 4.4 is equivalent to P(D = 1|Z = 1) # P(D = 0|Z = 0)
under Assumptions 4.1 and 4.2. To put it another way, the lack of a first-stage re-
lationship between Z and D would indicate that there are no compliers in the pop-
ulation. We cannot carry out IV without compliers: notice that the Wald estima-
tor is undefined if E(D|Z = 1) = E(D|Z = 0). Because D is binary, Cov(Z,D) =
p(1 —p)[E(D|Z =1) — E(D|Z = 0)]. Thus, Assumption 4.4 is equivalent to the instru-
ment relevance condition in the textbook homogeneous effects IV case from section 4.1.
We are finally ready to answer our main question for the chapter: what does IV identify

in a world of heterogeneous effects?
Theorem 4.1. Under Assumptions j.1—/./,

EY|Z=1)-EY|Z=0) -
WDV=D—Eww:omen—%W—d

Proof of Theorem 4.1. To begin, consider the numerator of the Wald Estimand. By
the Law of Iterated Expectations,

E(Y|Z = 2) = Epjy. [E(Y|D, Z = 2)

E(Y|D=0,Z =2)P(D =0|Z = z)

(4.3)
+EY|D=1,Z=2P[D=1Z = z).

Now that we have expressed E(Y|Z) in terms of E(Y|D,Z) and P(D|Z), we can sub-
stitute our results from Lemma 4.1 and Lemma 4.2 into (4.3) to relate the numerator of
the Wald Estimand to the average potential outcomes E(Y;|T = t) of the different types

and their prevalence P(T = t) in the population. In particular:

EY|Z=1)=E(Y|D=0,Z=1)P(D=0Z=1)+EY|D=1,Z=0P[D=1|Z=1)
= P(T = n)E(Y,|T = n) + [P(T = o)EMI|T = a) + P(T = o)E(Yi|T = ¢)]

and similarly for Z = 0,

E(Y|Z=0)=E(Y|D=0,Z=0P(D=0/Z=0)+EY|D=1,Z=0)P(D=1Z=0)
= [P(T = n)E(Yo|T = n) + P(T = )E(Y|T = ¢)] + P(T = )E(V1|T = a)

Taking the differences of these two expressions, we find that
EY|Z=1)-EY|Z=0)=P(T =c)E(Y; — Yo|T =¢) (4.4)

since EV1|T = ¢) — E(Yo|T = ¢) = E(Y) — Yy|T = ¢) by the Linearity of Conditional

Expectation. Now consider the denominator of the Wald Estimand. Since D is binary,
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E(D|Z = z) =P(D = 1|Z = z). Thus, by Lemma 4.1 we obtain
ED|Z=1)-ED|Z=0)=P(D=11Z=1)—-P(D=1/Z=0)=P(T =c¢). (4.5)

Since P(T = ¢) # 0 we can divide (4.4) by (4.5), completing the proof. O

Theorem 4.1 shows that IV does not in general identify the ATE in a heterogenous
treatment effects setting. Instead, it identifies the average treatment effect for compliers.
In the MTO intervention, for example, IV would identify the average causal effect of
moving to a low-poverty neighborhood for the kind of family that could be induced to
move by offering them a voucher. This average effect for compliers is typically called
the local average treatment effect or LATE for short. Accordingly, Theorem 4.1 is
sometimes called the LATE Theorem and Assumptions 4.1-4.4 the LATE assumptions.

We discuss the interpretation of LATE in section 4.5 below.

4.5 Who are the compliers? Why should we care?

As shown in section 4.4, IV does not identify the ATE in a world of heterogeneous treat-
ment effects. Instead it identifies the LATE: an average treatment effect for a particular
subset of individuals, namely the compliers. So who are these compliers, and why should
we care about them? The short answer is: we don’t know, and it is unclear whether we
should. The key point to recognize is this: IV came first, and LATE came second. No one
sat down and asked “how can I recover the average treatment effect for the compliers?”
Instead the question was “suppose I run IV in a world of heterogeneous effects. Is there
any way to give an interpretation to the result?” The answer, as we have seen, is yes
but the interpretation is somewhat strained for several reasons. First, we cannot point to
any individual in the sample and say “this is a complier.” A person with (Z =1,D = 1)
could be a complier or an always-taker; a person with (Z = 0, D = 0) could be a complier
or a never-taker. Second, as discussed in section 4.5 above, compliance is only defined
relative to a particular instrumental variable. In the MTO intervention, families were
offered a rent voucher that could be used to move to a low-poverty area. The LATE is
specific not only to the fact that the IV was a rent voucher—as opposed, say, to an offer
of assistance searching for an apartment—but also to the precise amount of the voucher.
A $500 per month rent voucher, for example, identifies a different LATE from a $600 per
month rent voucher if there are any families that would choose to move when offered the
larger amount but not the smaller one.

While we cannot identify individual compliers, it is possible to say something about
the so-called compliant sub-population, i.e. the population of compliers. First, as seen
from (4.2), the denominator of the Wald estimator tells us the fraction of compliers in the

population in the population. If this fraction is large, the fact that IV identifies a LATE
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rather than the ATE is less worrying: when nearly everyone is a complier, the two causal
effects will likely be quite similar. Second, we can estimate the average characteristics
of compliers. Suppose, for example, that we wanted to determine whether compliers are
more likely to be women. Let W be a dummy variable that equals one if a person is
female, zero otherwise. Then P(W = 1|T" = ¢) is the share of women among compliers.

By Bayes’ Theorem, we obtain

P(T=c¢|W =1)P(W =1) P(T =¢[W =1)P(W = 1)

PW =1|T =) = P(T =) - E(D|Z=1) - E(D|Z =0)

(4.6)

using P(T' = ¢) = E(D|Z = 1) — E(D|Z = 0) from Lemma 4.1. Now, P(W = 1) is
simply the share of women in the population but what about P(7" = ¢|IW = 1)? By an
argument nearly identical to the proof of Lemma 4.1, only with additional conditioning

on W =1, we can show that
P(T=cW=1)=ED|Z=1,W=1)—-ED|Z=0W =1). (4.7)

Combining (4.6) and (4.7)

E(D|Z =1,W =1) — BE(D|Z = 0,W = 1)
E(D|Z =1) - E(D|Z = 0)

P(W = 1T = ¢) = P(W = 1)

Since all of the quantities on the right-hand-side of this equation are observable, even
though we cannot tell which women are compliers, we can nevertheless identify the share

of women among compliers.

4.6 LATE Appendix: Proofs

Proof of Lemma 4.1. By the Law of Total Probability

P(D=dZ=z2= > PD=dZ=2T=tP(T==22=2z)
te{a,c,d,n}
= Y PD=dlZ=zT=tP(T=z)

te{a,c,n}

since P(T' = t|Z = z) = P(T = t) by Assumption 4.1 and P(7 = d) = 0 by Assump-
tion 4.2. The key to the rest of the argument is that D is completely determined by Z
and T if I know that your offer is Z = 2z and and your type is T' = ¢, then I know with
certainty what your take-up decision will be. It follows that P(D = d|Z = 2,T = t) is
either zero or one, depending on the values of (d, z, t).

Suppose first that Z = 1 but D = 0. Because you did not take up treatment, you

cannot be an always-taker. Moreover, because D # Z you cannot be a complier. Hence
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P(D=0|Z=1,T=c¢)=P(D=0/Z=1,T =a) =0. If you were a never-taker, then
given Z = 1 you would indeed have D = 0: P(D = 0|Z = 1,T = n) = 1. Therefore, we
see that:

Now suppose that Z = 0 but D = 1. Because you took up treatment, you cannot be
a never-taker. Moreover, because Z # D you cannot be a complier. As a result, we see
that P(D=1|Z=0,T =¢)=P(D =1|Z =0,T = n) = 0. If you were an always-taker,
you would indeed have D = 1: P(D =1|Z =1,T = a) = 1. Hence,

P(D=1|Z=0)=1xP(T=a)+0xP(T=c)+0x P(T =n)
=P(T =a).

Next suppose that Z =1 and D = 1. Because you took treatment, we know that you
cannot be a never-taker: P(D = 1|Z = 1,7 =n) = 0. You could, however, be a complier
or an always-taker: P(D=1|Z=1,T =¢) =P(D =1|Z =1,T = a) = 1. Hence,

P(D=1|Z=1)=1xP(T=a)+1xP(T =c)+0x P(T =n)
=P(T =a)+P(T=c).

Finally, suppose that 7 = 0 and D = 0. Because you did not take up treatment,
you cannot be an always-taker: P(D = 0|Z = 0,7 = a) = 0. You could, however, be
a never-taker or a complier: P(D =0|Z =0,T =n) =P(D =0/Z =0,T =¢) = 1.
Hence,

P(D=1Z=1)=0xP(T=a)+1xP(T =c)+ 1 x P(T =n)
=P(T =a)+P(T =n)

completing the proof. O]
Proof of Lemma 4.2. By the Law of Iterated Expectations,

EIY|D =d,Z = 2] = Erpoaz=y [E(Y|D = d.Z = 2, T)]
— Y E(YID=dZ=2T=0PT=tD=d 2=z *

te{a,c,n}

since P(T" = d) = 0 by Assumption 4.2. In the proof of Lemma 4.1 above, we examined
the probabilities P(D = d|Z = z,T = t) in detail, arguing that they must be either

zero or one, depending on whether the take-up and offer combination (D = d,Z = z)
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is compatible with the type 7" = ¢. In contrast, the present argument involves P(T =
t|D = d, Z = z). Fortunately, the two probabilities are related by the conditional version
of Bayes’ Theorem. In particular, using the fact that P(T' = t|Z = z) = P(T = t) by

Assumption 4.1, we have

P(D=d|Z=2T=tP(T =t)

P(T=tD=d Z=z) = PO = dZ =7

(4.9)

While it may appear that we have made things more complicated rather than less, the
preceding equality is actually very useful: in Lemma 4.1 we have already shown that the
denominator is a sum of type probabilities P(T" = t). Moreover, as argued above, the
first term in the numerator is either zero or one depending on the values of (d,t, z).

Before we can combine all of these ingredients, however, we first need to take a
closer look at the expectation E(Y|D =d,Z =z, T =t). Recall from 777 that ¥ =
DY; + (1 — D)Yy. Taking conditional expectations of this equality, we have

E[Y|D=0,Z=2T=t|=E[Y,|D=0,7Z=2T =1
E[YID=1,Z=2T=t=EW|D=1,Z=2T=1]

A key idea in our proof of Lemma 4.1 above was that, given the way we have defined T,
knowledge of a person’s type t and her treatment offer z immediately implies her take-up
decision d. In other words, D is a function of Z and T'. For this reason, conditioning on
D in addition to Z and T is redundant: a person’s take-up decision cannot provide us
with any further information given that we already know her treatment offer and type. It
follows that we can drop D from the conditioning set in the preceding pair of equalities,

yielding

E[Y|D=0,Z = 2T =t
E[Y|D=1,2=2T =t

E[Yo|Z = 2T =t
EYi|Z =2 T =t].

There is one more simplification that we can apply to the expressions for E [Y|D, Z, T.
Assumption 4.3 states that the conditional mean of Yy and Y; does not depend on Z
after conditioning on 7T": in other words the average potential outcomes for any type of
individual (a,c,n) are unaffected by her treatment offer. Imposing this restriction, the

preceding equalities become

E[Y|D=0,Z = 2T =t
E[Y|D=1,7Z=2T =t

E [Y,|T = 1] (4.10)
EY;|T =1]. (4.11)

The remainder of the argument, though admittedly somewhat tedious, is just algebra.
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For each pair of values (d, z) we first substitute either (4.10) or (4.11) into (4.8), depending
on whether D = 0 or D = 1. We then substitute Lemma 4.1 into (4.9), and the result
into (4.8).

Consider first E[Y|D = 0,7 = 1]. Recall from the proof of Lemma 4.1 above that
the probability P(D = 0|Z = 1,T = t) equals one for T = n and zero for all other
types T = t. (If you do not take when offered, you must be either a never-taker or
defier, but we have assumed that there are no defiers.) By Equation 4.9, this implies that
P(T =t|D =0,Z = 1) equals zero for any T' # n. Hence, substituting Equation 4.9 and
(4.10) into (4.8), we obtain

P(T =n)
P(D = 0]Z = 0)

E[Y|D=0,7Z=1]=E[Y|T =n]

but since P(D = 0|Z = 0) = P(T = n) by Lemma 4.1, the numerator and denominator
cancel, leaving us with E[Y|D = 0, Z = 1] = E[Y,|T = n]. Nearly identical reasoning for
the case in which (D = 1,7 = 0) gives E[Y|D = 1,7 = 0] = E[Y1|T = a, using the fact
that anyone who takes up treatment when not offered must be an always-taker, given
that we have assumed that there are no defiers.

Now consider E[Y|D =1,Z = 1]. Recall from the proof of Lemma 4.1 above that
the probability P(D = 1|Z = 1,T = t) equals one for T' = ¢ and T' = a but zero for
T = n. By Equation 4.9, this implies that P(T = n|D = 0,Z = 1) equals zero. Hence,
substituting Equation 4.9 and (4.10) into (4.8), we obtain

P(T =a)
P(D=1|Z=1)

P(T =c¢)
P(D=1Z=1)

E[Y|D=12Z=1=E[}|T=d +EMIT =

The desired result follows since P(D =1|Z =1) = P(T = a) + P(T = ¢) by Lemma 4.1.

A nearly identical argument gives the required expression for E[Y|D = 0,7 = 0], with

never-takers replacing always-takers. ]
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