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Abstract

Lead exposure still threatens children’s health despite policies aiming to identify
lead exposure sources. Some US states require de jure universal screening while others
target screening, but little research examines the relative benefits of these approaches.
We link lead tests for children born in Illinois between 2010 and 2014 to geocoded
birth records and potential exposure sources. We train a random forest regression
model that predicts children’s blood lead levels (BLLs) to estimate the geographic
distribution of undetected lead poisoning. We use these estimates to compare de jure
universal screening against targeted screening. Because no policy achieves perfect
compliance, we analyze different incremental screening expansions. We estimate that
5,819 untested children had a BLL≥ 5µ/dL, in addition to the 18,101 detected cases.
80% of these undetected cases should have been screened under the current policy.
Model-based targeted screening can improve upon both the status quo and expanded
universal screening.
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1 Introduction

A recent literature has emphasized the role of place in shaping early childhood opportunities,

however “we know little about the relative importance of the different mechanisms that are typically

‘bundled’ together within a neighborhood”, including pollution (Chyn and Katz, 2021). Lead is a

neurotoxic heavy metal that has been widely used in paint, gasoline, and plumbing. Because it does

not decay, it still plagues neighborhoods throughout the United States, contaminating homes, soil,

and water, and endangering human health. Early childhood lead exposure is especially harmful; it is

associated with lifelong developmental impacts, including decreased IQ and increased impulsivity

and delinquency (Aizer and Currie, 2019; Aizer, Currie, Simon, and Vivier, 2018; Feigenbaum

and Muller, 2016; Reyes, 2014; Reyes, 2015; Bellinger, Stiles, and Needleman, 1992; Winter and

Sampson, 2017; Grönqvist, Nilsson, and Robling, 2020). These burdens are disproportionately

borne by communities of color and families of low socioeconomic status, potentially exacerbating

existing inequalities (Zartarian, Xue, Tornero-Velez, and Brown, 2017; Sampson and Winter, 2016).

Lead paint was extensively used in the first half of the last century, until its ban for residential

purposes in 1978 due to its recognized health hazards. The US Department of Housing and Urban

Development estimates that lead paint still lingers in 5.5 million houses inhabited by small children

nationwide, resulting in hazards in a fifth of homes with small children and constituting the major

source of lead exposure today, following the deleading of gasoline between 1973 and 1995 (HUD

(U.S. Department of Housing and Urban Development), 2011; Dewalt et al., 2015). In recognition

of these risks, federal and state agencies continue to enact and fund policies to “get the lead out”,

including disclosure and abatement mandates of known lead hazards in homes. Yet, these policies

appear to have failed to eliminate lead exposure: an estimated 500,000 young children are still

poisoned by lead each year in the US (Aizer, Currie, Simon, and Vivier, 2018).

This paper sheds light on one possible reason for this policy failure: imperfect information on

the location of lead hazards. A recent study using data from the National Health and Nutrition

Examination Survey highlights the potential importance of this channel, finding that US states

detect and report only 64% of the actual cases of BLL≥ 10µg/dL to the CDC (Roberts et al.,

2017). To analyze the role of hidden hazards and undetected lead poisoning, we use machine

learning to predict the BLLs of children who were never tested and identify those most at risk of

lead exposure. Our results highlight that the spatial distribution of lead exposure sources can be

used to better target resources to uncover and remediate hidden lead hazards that would otherwise

contribute to persistent patterns of spatial inequality.

Lead poisoning prevention programs in the United States follow a secondary prevention ap-

proach: blood lead screening identifies lead-exposed children who are then referred for case man-

agement, including removal of exposure sources. Deciding which children to screen is thus crucial

for identifying lead hazards. Federal guidelines mandate that all children on Medicaid be screened
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at ages one and two; guidelines for other children vary by state. Importantly, the screening require-

ment for children on Medicaid is unenforced. Some states, including Illinois, incentivize providers

to achieve high screening rates among Medicaid patients as part of bonus schemes that target

several performance measures (Tong, Artiga, and Rudowitz, 2022). Fourteen states and the Dis-

trict of Columbia currently adopt de jure universal screening, that is testing all children, although

their screening rates fall well short of 100% (Michel, Erinoff, and Tsou, 2020). Other states have

adopted the targeted screening approach recommended by the CDC, wherein testing is required

only for children deemed at high risk for lead exposure, identified through either socioeconomic and

location information or a self-assessment questionnaire (CDC, 1997). Thus, testing is not carried

out in response to symptoms, but rather as a preventative measure. This is a reasonable approach

given that lead exposure is asymptomatic and occurs very early in life for most of the cases in our

sample (CDC, 2013; CDC, 2022).

Currently, the state of Illinois adopts a targeted screening approach. The Illinois Department of

Public Health (IDPH) designates zip codes as high-risk based on housing age and the percentage of

children living below 200% of the federal poverty line (Figure 1). Children must receive a BLL test

at ages one and two if they reside in one of these high-risk zip codes, if they are on Medicaid, or if

they are flagged based on a risk assessment questionnaire. During most of our sample period (2010-

2016), the intervention threshold in Illinois was 10µg/dL, but from 2015 local delegate agencies were

given the option to lower the threshold based on their funding. In 2019, the intervention threshold

was lowered to 5µg/dL statewide.

While targeted screening might better balance the costs of screening with the potential benefits

of early detection and treatment, its efficacy hinges on the quality of the targeting tools available.

At present, these include self-assessment questionnaires (Dyal, 2012; Binns, LeBailly, Fingar, and

Saunders, 1999) and existing estimates of the distribution of exposure risks. Precisely because

screening is targeted, however, the sample of children used to construct these tools is not represen-

tative of the population as a whole and could lead to biased results (Manheimer and Silbergeld,

1998). Moreover, the CDC targeting guidelines were last updated when the intervention thresh-

old was 10µg/dL (Tsoi, C.-L. Cheung, T. T. Cheung, and B. M. Y. Cheung, 2016), so at today’s

5µg/dL reference level, or a proposed threshold of 3.5µg/dL, the benefits of targeted screening may

diminish (Abbasi, Pals, and Gazze, 2020).

To address these concerns, we propose an improved methodology for predicting undetected

childhood lead exposure in Illinois and use it to evaluate a number of alternative targeted screening

policies. Our approach combines flexible machine learning tools with a newly-constructed dataset

linking lead tests to geocoded birth records and a host of other spatial characteristics thought to

predict lead exposure (e.g. housing age, proximity to major roads, and industrial lead emissions).

Under a selection-on-observables assumption, these two ingredients allow us to “fill in” the missing

BLLs for all children born in Illinois between 2010 and 2014, thus estimating the number of above-
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threshold BLLs missed under the current targeted screening policy and the associated costs related

to IQ losses these children bear. We use these predictions to estimate how many of these additional

above-threshold BLLs would be detected under different policies, taking into account compliance

with screening guidelines, as well as different prioritization rules of targeted vs. de jure universal

screening policies. While ours is not the first paper to use machine learning to predict lead exposure

risk, (Lobo, Kalyan, and Gadgil, 2021, Potash et al., 2020), we innovate in several respects. First,

our model recognizes that the harm from lead exposure depends on the BLL itself, rather than

merely whether the BLL exceeds a particular threshold. For this reason, our preferred specification

is a continuous-outcome random forest regression model for BLLs. Second, rather than tuning and

evaluating our models using default metrics, e.g. root mean squared error, we introduce a novel,

policy-relevant metric and use it throughout. Third, we leverage these machine learning results to

shed light on the important and understudied question of how best to design a targeted screening

policy.

We report two main findings. First, we find evidence of significant under-detection: we estimate

that over a quarter of cases of BLLs at or above 5µg/dL went undetected during our sample period.

Second, undetected lead exposure cases appear to be disproportionately located in high-risk zip

codes, where all children are supposed to be screened already under the current policy. As a result,

increasing screening rates in areas already targeted for screening would uncover more cases than

extending de jure universal screening at current compliance rates. Improving screening rates in

these high-risk zip codes could decrease inequality in human capital and labor market outcomes in

Illinois.

This paper contributes to a literature examining the benefits of expanding from targeted to

de jure universal screening. So far, studies have projected the benefits of universal screening

by multiplying the rate of elevated BLLs among the tested by the number of untested children

(Maryland Department of Health and Mental Hygiene, 2015; McMenamin et al., 2018). This

approach makes two crucial assumptions. First, it assumes perfect compliance with a hypothetical

universal screening program. Based on other evidence from other public health screening programs

(Einav et al., forthcoming; Kim and Lee, 2017) this seems unlikely. Second, this approach assumes

that elevated BLLs are just as common among untested children as among tested children, in

other words that BLLs are “missing completely at random.” This assumption seems unlikely to

hold a priori, especially given that existing policies target children thought to be at the highest

risk. Indeed, our analysis suggests that this assumption is incorrect and that using it dramatically

overestimates the benefits of de jure universal screening. Proceeding under the weaker assumption

of selection-on-observables into testing, also known as “missing at random”, we estimated that

the rate of BLLs ≥ 5µg/dL is around one third as high among the untested as among the tested.

Importantly, our analysis adjusts for a large number of observed characteristics, including those

that are currently used to target children for screening. This approach explicitly acknowledges that
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children tested under a targeted screening scheme are, by construction, a higher risk group.

2 Data

We obtained birth records for all 807,694 children born in Illinois between 2010 and 2014 from

IDPH. These birth records include the child’s address, race, ethnicity, parental education level,

parental age, and other demographic information.1 We also obtained records of all 1,105,168 lead

tests performed in Illinois between 2010 and 2016 on children born between 2010 and 2014. We

limit birth records to this time period because we use the highest BLL recorded for each child

by age two as our outcome of interest. We use testing by age two both because the damage of

lead exposure is thought to be more severe at lower ages, and to align with the federal screening

guidelines for children on Medicaid, which specifically require two tests by age two. Each lead test

record contains the name of the child, the date of the blood draw, the type of blood test used

(venous or capillary), the measured BLL, and the laboratory that processed the test. Because

venous tests are more reliable than capillary tests, we default to using each child’s highest venous

test result. If a child has not received a venous test, we instead use the highest capillary test result.

Certain laboratories had minimum reporting limits, meaning all BLLs below a certain threshold

were reported as the threshold limit (e.g. reporting BLL≤ 3µg/dL as 3µg/dL). We determine

minimum reporting cutoffs for each laboratory/test type/year combination by manually reviewing

BLL histograms. The BLL distribution is right-skewed, meaning an absence of tests below a certain

value for a given laboratory likely indicates a minimum reporting limit. We recode these to the

mean BLL of children in the same zip and age cohort. We estimate that 6,943 children in our

sample had their maximum blood lead level by age two analysed in laboratories with a reporting

limit ≥ 5µg/dL.

To obtain information on potential lead exposure sources, we link the lead testing and birth

datasets using a custom fuzzy matching algorithm based on the Jaro-Winkler string distance of first

name, last name, and date of birth, with manual determination of optimal cutoffs (Winkler, 1990).

We use addresses at time of birth because these are observed for both screened and unscreened

children. As such, we might overestimate the number of unscreened children if they have moved out

of state after birth, and we might misallocate children to low- or high-risk zip codes. We successfully

geocode birth addresses for 734,699 children, that is 91% of all birth records in our universe are

included in our analysis. For each census block group, the American Communities Survey provides

data on socioeconomic status, percent homeowners, and social vulnerability index. We obtained

data on housing age from the Zillow Transaction and Assessment Dataset, and geocode these data

for linkage to birth addresses. We also collected the Environmental Protection Agency’s Toxic

1See Table A1 for more details.
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Release Inventory (TRI) data which detail industrial lead emissions by facility, and the location of

state and interstate highways from the Illinois Department of Transportation. We then calculate

the distance from lead-emitting facilities and roadways to each child’s address.

Table 2 shows summary statistics for selected characteristics of children in our sample, stratified

by whether a child was tested for lead exposure by age two ad whether they were born in a low

or high risk zip code. In both low and high risk zip codes, tested children are more likely to be

Black, Hispanic, and have mothers without college education. At birth, they are more likely to live

in census block groups with lower median household incomes and in pre-1930 housing.

3 Methodology

We use machine learning methods to predict the incidence of elevated blood lead levels among

unscreened children in Illinois under selection-on-observables. In particular, our key maintained

assumption is that a child’s BLL Yi is independent of her screening status Si conditional on the

observed covariates Xi given in Table A1. In other words, we assume that

Yi |= Si|Xi. (1)

As is well-known, (1) cannot be directly tested unless one has access to exogenous instrumental

variables or is willing to make parametric functional form assumptions. Given the rich covariate

information at our disposal and the flexible models that we employ, however, we consider (1) to

be a reasonable approximation. Under (1), we can use the observed BLLs for screened children

(Si = 1) with covariates Xi = x to impute the unobserved BLLs for un-screened children (Si = 0)

with the same covariate values. In this section we explain our methodology for doing precisely

this. Section 4 uses the results to carry out policy experiments comparing the effects of alternative

screening policies.

There are many possible ways to approach this prediction problem. One potential approach

would be to use a regression model to predict BLLs themselves based on observed covariates.

Another would be us to use a classification model to predict which children are likely to have

elevated BLLs under the current policy definition, i.e. BLL> 5 µg/dl. A regression approach makes

full use of the information in observed BLLs rather than discretizing based on a single cutoff. On the

other hand, BLLs are subject to measurement error and we are primarily interested in detecting

children with elevated BLLs. Therefore, a measured BLL above the threshold could be a more

reliable indicator than the raw BLL itself; if so, this might favor a classification approach. Because

it is unclear a priori whether a regression or classification approach will work best in practice,

in Section 3.2 we use a holdout sample to choose between a range of regression and classification

models.
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Precisely because it is unclear whether a classification or regression approach will work best, our

methodology is designed to evaluate both classes of model on an equal footing and to accommodate

the outputs of either, should it give the best performance in the holdout dataset. To this end, in

Section 3.1 we introduce a novel policy-relevant evaluation metric that scores models based on the

way that they rank children in terms of their risk of elevated BLLs. This metric is compatible with

both regression models and with any classification model that outputs a probability. We call the

ranking produced under a given model the risk score function r(Xi) for that model. This function

tells us how best to prioritize children for screening based on their observed characteristics, under

the model.

We use the same evaluation metric to score alternative screening approaches in our policy

experiments in terms of how well they identify currently unscreened children with high BLLs.

While it only requires ordinal information from the models under comparison, our evaluation metric

accounts for the fact that higher levels of lead exposure are more harmful than lower levels. To do

so, it scores the rankings according to the cardinal information in observed BLLs from the holdout

dataset. In our policy experiments, however, the BLLs of unscreened children are by definition

unknown, so to score alternative targeting policies we need to impute the missing BLLs. If the

winning model in terms of risk score should happen to be a classification model, we would still need

to relate r(Xi) to BLLs to carry out this imputation. Thus, for consistency, we employ a second step

that estimates m(Xi) ≡ E[Yi|r(Xi)] via local quadratic regression, using data for screened children

under our selection-on-observables assumption. While not strictly necessary for a regression model,

this second step can nevertheless yield improvements, as we discuss futher below.

3.1 Evaluation Metric: Cost-Weighted Targeting Efficiency

To choose an appropriate function r(·) we propose a novel, problem-specific evaluation metric

that we call cost-weighted targeting efficiency (CWTE). To motivate our approach, it is helpful

to begin by considering an alternative that compares screening policies based on false positive and

false negative rates, as illustrated by the confusion matrix in Table 1. Suppose that a BLL of 5µg/dl

or above is considered “elevated.” Then we could view a child with a BLL below 5 who is nonetheless

screened as a “false positive” (type II error) and a child with a BLL above 5 who is not screened

as a “false negative” (type I error). While natural, this approach has three limitations. First, the

false negative rate can always be driven to zero by simply testing more children, regardless of how

effectively a given policy targets those most at risk. Second, even when comparing two policies that

test the same number of children, so that the first criticism does not apply, it is still necessary to

choose how much weight to give to each type of error. Policy A could have a lower false positive rate

than policy B but a higher false negative rate. Third, and most importantly, any hard threshold

for BLLs to count as “elevated” is arbitrary: no level of lead in the blood is considered safe and the
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Environmental Protection Agency has set a maximum contaminant level goal of 0 for lead (EPA,

2021). If a child with a BLL of 4µg/dl is classified as “elevated” is it really reasonable to call this

a false positive?

We designed CWTE to address each of these concerns. The intuition is simple: not all elevated

blood lead levels are created equal. A BLL of 80 µg/dl is far more harmful, hence more costly, than

one of 5µg/dl. For this reason, we assume that policymakers would prefer to identify children with

higher BLLs before children with lower BLLs, all else equal. CWTE evaluates a risk score function

r(·) by comparing the rankings that it produces to an infeasible optimal ranking that perfectly

orders children from highest to lowest BLL. To operationalize this idea, we assign a policy-relevant

dollar value to the deviation between a feasible risk ranking and the optimum. To this end, let c(·)
be an increasing function that gives the cost associated with a BLL of Yi. We take this as the value

of identifying child i as lead-exposed, because of existing evidence suggesting that at least some of

these costs can reasonably be averted with appropriate treatment (Billings and Schnepel, 2018).

In our policy experiments below, we construct c(·) using off-the-shelf estimates of the costs

of lead exposure at a given level. The per-child social cost of lead exposure would sum health

and human capital costs for directly exposed children, including cognitive and non-cognitive losses

(Schwartz, 1994), as well as spillovers in terms of lost productivity of parents and disruption in

peers’ learning (Gazze, Persico, and Spirovska, forthcoming). However, because health costs and

indirect costs are harder to estimate for specific BLLs, we follow the literature and focus on cognitive

costs (Hollingsworth and Rudik, 2021). Specifically, we take the average IQ point loss per 1µg/dl

for different levels of exposure from Lanphear et al., 2005 and Gould, 2009. This is 0.513 for

BLLs ≤ 10 µg/dl, 0.19 for BLLs 10− 19µg/dl, and 0.11 for BLLs ≥ 20 µg/dl. We monetize these

losses considering that one IQ point decrease for a three year old is associated with a present value

earnings loss of $20,568 in 2019 dollars (Klemick, Mason, and Sullivan, 2020). We note that a BLL

of 1µg/dL — the smallest value that appears in our data — implies an IQ cost of around $10,500.

Figure A1 illustrates the costs associated with each blood lead level. We note, however, that the

idea behind CWTE is general: the same approach could be used with any function that assigns a

cost to BLLs.

Having chosen an appropriate cost function c(·), suppose that we decide to screen n out of

a total of N children. The optimal screening policy tests the n children with the highest BLLs

Yi, yielding the highest possible averted cost Cmax(n). Screening n children chosen completely at

random, on the other hand, yields a total averted cost of nE[c(Yi)], on average. Any reasonable

risk score should perform better than random screening, but no risk score can perform better than

the optimal policy. Let Cr(n) be the total averted cost of risk score function r(·), defined as the

sum of c(Yi) over the BLLs Yi of the n children with the highest values of r(Xi). Then we have

nE[c(Yi)] ≤ Cr(n) ≤ Cmax(n).

A natural way to rank two risk score functions, r1(·) and r2(·), is to compare their corresponding
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averted cost functions C1(n) and C2(n) to see which comes closest to the infeasible optimum

Cmax(n). In practice, however, it is unlikely that policymakers have a specific value of n in mind.

Ideally we would prefer a screening policy that performs well over a range of values of n. This

complicates the problem because C1(n) and C2(n) could cross when plotted as a function of n.

Suppose that r1 is extremely reliable in discerning which children will have a BLL above 20µg/dl

but no better than chance at determining which children have a BLL below 5 versus one between

5 and 20. In contrast, r2 is extremely good at distinguishing BLLs in the range from 1 to 10, but

unreliable for larger BLLs. Then we will have C1(n) > C2(n) for sufficiently small values of n

but C1(n) < C2(n) for sufficiently large values of n. This is similar to the problem of comparing

machine learning classifiers using operating characteristic (ROC) curves: if the curves cross, the

ranking of classifiers depends on the desired false positive rate.

To solve this problem, CWTE integrates the averted cost curve, as shown in Figure 2. This idea

is analogous to the area under the curve (AUC) measure for classification problems, constructed

by integrating the ROC curve. To simplify the figure and computations, we normalize all averted

cost curves by Cmax(N), the maximum total averted cost if all children were screened, and replace

the argument n with n/N , the fraction of children screened. This transformation ensures that

averted cost curves always lie within the unit square, and normalizes that of the random screening

rule to coincide with the 45-degree line. Finally, we define CWTE for a risk score function r(·) as
the area between its averted cost curve Cr(·) and that of random screening, relative to the area

between the infeasible optimum averted cost curve and random screening. As such, like the familiar

regression R-squared measure, CWTE lies between zero and one, with higher values indicating

better performance.

3.2 Choosing a Risk Score Function

To construct an appropriate risk score function r(·) for use in our policy experiments below,

we consider a number of alternative machine learning models, including both classification and

regression models, before choosing the one with the best out-of-sample CWTE. Since (1) implies

E[Yi|Xi, Si = 1] = E[Yi|Xi, Si = 0] and P(Yi ∈ A|Xi, Si = 1) = P(Yi ∈ A|Xi, Si = 0)

for any set A, we can use BLLs for children who have been screened, Si = 1, to recover a risk

score function that can rank children who have not. In the regression approach, we estimate

r(x) = E[Yi|Xi = x, Si = 1]; in the classification approach we estimate P(Yi ∈ A|Xi, Si = 1). We

consider three versions of the classification approach, corresponding to different choices of A. The

first two set r(x) equal to P(Yi ≥ 5|Xi = x, Si = 1) and P(Yi ≥ 10|Xi = x, Si = 1), respectively.

This approach equates risk score with the probability of having an elevated BLL, where “elevated”
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is defined as ≥ 5 and 10µg/dl. Each of these definitions yields a binary classification problem.

As discussed above in Section 3.1, however, the use of a hard binary threshold ignores potentially

important distinctions–e.g. 5 versus 80µg/dL–while magnifying unimportant ones–e.g. 4 versus

5µg/dL. For this reason, we consider a third multi-class classification approach based on Figure

A1. In this approach we calculate the conditional probability given Xi = x that Yi falls into each

of the bins [0, 5), [5, 10), [10, 20), and [20,+∞). To convert these four conditional probabilities into

a scalar risk score r(x), we average them with weights equal to the population average BLL within

each bin. This is effectively a discrete approximation to the regression approach described above.

A regression or classification model that is too flexible will correct for selection-on-observables

(low bias) at the cost of making extremely noisy predictions (high variance). In contrast, a rigidly

parametric model will make extremely precise predictions (low variance), but may fail to fully

correct for selection-on-observables (high bias). To navigate this trade-off, we tune, estimate, and

evaluate all of our models using a training-holdout split. Observations that are used for model

estimation are not used for model evaluation, and vice-versa. There is no such thing as “the best”

predictive model; there is only the best predictive model for a given purpose. For this reason,

we explicitly tie our machine learning exercises to the policy question at hand, using the CWTE

evaluation metric described above in Section 3.1 to tune each of our competing risk score models

and choose which to use in our policy experiments below.

The precise details of our machine learning pipeline are as follows. All of the steps described

below are carried out using the R package tidymodels, ensuring that all data processing steps

are consistent across models and fully replicable. We begin by constructing the variables listed in

Table A1 from our raw data and extracting the subset for which Si = 1, tested children. Note that

we exclude the final four variables in the table–distance to provider–from our risk score exercise.2

Starting from the observed continuous BLL variable, we construct three categorical BLL variables

as follows: an indicator that Yi ≥ 5, an indicator that Yi ≥ 10, and a categorical variable that

indicates which of the bins [0, 5), [5, 10), (10, 20], (20,+∞) a given observation of a child maximum

BLL by age two falls into.

We then construct an 80%-20% training-holdout split for model evaluation, and further subdi-

vide the 80% training sample into five equally-sized cross-validation folds for model tuning. Both

the initial training-holdout split and the subsequent cross-validation folds are constructed by sam-

pling randomly within strata defined by the values of the categorical BLL variable. This ensures

that the training and holdout data, and each of the cross-validation folds, have the same proportion

of BLLs within each of the “bins” listed above. Stratification is crucial for accurate model tuning

and evaluation in this example because high BLLs are rare. Without stratification a given cross-

validation fold could end up with zero BLLs above 20µg/dl, purely by chance, leading to unreliable

2These are used below to construct a screening propensity score for our policy experiments.
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tuning results.

Within strata, we sample observations independently and uniformly at the level of individual

children rather than geographic aggregates such as zip codes. This choice is based on our selection-

on-observables assumption and the goal of this paper. We do not aim to predict BLLs in a new

zip code, one for which BLLs are currently unobserved, or a new year, one for which data are not

yet available. Instead, we aim to impute the missing BLLs of children who are already included in

our dataset. In other words, ours is an interpolation exercise rather than an extrapolation exercise.

As a general rule, the design of a cross-validation exercise should mimic the structure of the real

prediction problem as closely as possible. If the goal is to predict BLLs for individuals in a new

zip code, then cross-validation folds should be constructed by sampling whole zip codes to ensure

that the predictive model cannot pick up information from zip code level unobservables. This

information would be unavailable when extrapolating to a new zip code, so it should not be used

in the tuning and training exercise. In contrast, when the goal is to impute the missing BLLs

for children who live in a zip code where we do observe some BLL data, picking up zip code level

unobservables is a feature rather than a bug. Our cross-validation exercise simulates this prediction

exercise exactly: we randomly drop the BLLs for some children in each zip code, use the others to

fill in the gap under selection-on-observables, and check the accuracy of our interpolation against

the real data.

After constructing our training-holdout split and cross-validation folds, we define a tidymodels

“recipe” for processing the predictor variables. This automatically ensures that all data preparation

steps are consistent across sub-samples and models throughout training, tuning, and evaluation.

For example, if a predictor is centered around the sample mean, during tuning this mean should

only be computed using the appropriate portion of the training data, excluding one of the cross-

validation folds. We encode all categorical predictors from Table A1 as an exhaustive set of dummy

variables, including an indicator for “missing” and replace missing values of continuous predictors

with the sample mean of the appropriate subset of the training data.

We use random forests to fit the regression and classification models described above, via the

R package ranger in concert with tidymodels. Random forests are an attractive choice for this

problem because they can approximate complicated non-linearities and interactions between pre-

dictor variables in a computationally efficient way, without requiring the user to explicitly construct

features that capture these nonlinear effects. They also tend to be quite robust to over-fitting and

relatively easy to tune. For the regression model, we use variance as our regression tree splitting

rule; for the classification models, binary and multi-class, we use the Gini index.3 For both re-

gression and classification models, we use 500 trees and tune the parameters mtry–the number of

variables to consider in each recursive split–and min n–the minimum number of observations per

3These are the ranger defaults.
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leaf–via cross-validation with CWTE as our evaluation metric.4 We set all other parameters of

ranger to their default values. For each of these random forest models, regression and classifica-

tion, we construct a parameter grid of 20 combinations of mtry and min n following a space-filling,

Latin hypercube design via tune grid() and grid latin hypercube() from tidymodels. We use

the default parameter choices to construct these tuning grids, but double the default number of

grid points from 10 to 20 to permit some greater granularity. Overall, our random forest models

are quite insensitive to the choice of tuning parameters. Table A2 in the Appendix presents tuning

results for our winning random forest regression model, described below.

As an alternative to the random forest models described above, we consider a number of simpler

models that do not include interactions or non-linear effects for the predictor variables listed in

Table A1.5 We include these as a “reality check” to determine if there is anything to be gained from

the more complicated, but more flexible, random forest alternatives. As an alternative approach

for the continuous random forest model, we consider both plain-vanilla OLS and an elastic-net

penalized vesrion of the same. We tune the penalized version via cross-validation, using the CWTE

as our evaluation metric. As an alternative approach for the two binary classification models,

E[1(Yi ≥ 5)|Xi, Si = 1] and E[1(Yi ≥ 10)|Xi, Si = 1], we additionally consider LASSO-penalized

logistic regression, using the glmnet R package. The LASSO-logistic models have a single tuning

parameter. Again, we tune this via cross-validation using the CWTE as our evaluation metric.

Because glmnet returns parameter estimates along the entire regularization path, i.e. for all values

of the LASSO penalty parameter, there is no tuning grid as such. We carry out an exhaustive

search over all possible values of the tuning parameter.

Elevated blood levels are a comparatively rare event: fewer than 5% of children in our sample,

for example, have a BLL greater than or equal to 5µg/dl. For this reason we estimate two versions of

each of our binary classification models, both random forest and LASSO-logistic: one “plain-vanilla”

and one in which the dominant class is downsampled using step downsample() from the themis

package in tidymodels. We use the default settings for step downsample(), so that elevated and

non-elevated BLLs are equally common in the downsampled data. The cost of balancing the data

in this way, of course, is that we lose information for children with non-elevated BLLs. Whether

this is a worthwhile tradeoff depends on how the problem of class imbalance interacts with the

class of models used for estimation, and the metric used for evaluation. When we incorporate

downsampling into our pipeline, all other steps are left unchanged: tuning is still carried out as

before, for example. All of this is handled dynamically and automatically via our tidymodels

4Note that, while we use CWTE for tuning and model evaluation across all of our specifications, we do
not use it as our tree-splitting criterion within the classification or regression trees that make up our random
forests. While this could be an interesting extension to consider in future work, it would require writing our
own custom implementations of the underlying random forest algorithm. Here we prefer to rely on robust,
well-tested, off-the-shelf packages for computationally intensive tasks.

5We exclude the four distance to provider variables, listed at the bottom of Table A1.
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pipeline.

After tuning all of our alternative models using the 80% training sample, we compare their

performance on the 20% test sample. Results appear in Table A3. To provide a benchmark for

our machine learning results, Table A4 presents the out-of-sample CWTE for a number of “näıve”

models that do not use covariates or machine learning. For example, prioritizing children in the

holdout sample by the average IQ cost of children from the same zip code in the training sample,

yields a CWTE of 0.28. From a comparison of these tables, three features stand out. First, all

of the machine learning models from Table A3 clearly outperform the “näıve” models from Table

A4. Second, downsampling gives mixed results. While it improves the performance of models that

predict the probability that a child has a BLL≥ 10µg/dL, it worsens the performance of those that

predict the probability that a child has a BLL≥ 5µg/dL. Third, the continuous outcome random

forest regression model, in which r(x) = E[Yi|Xi = x, Si = 1] is the clear winner in terms of

CWTE, with a value of around 0.39, outperforming the runner up elastic net model. Figure A2 in

the Appendix plots the proportion of children in the holdout set with BLL≥ 5µg/dL in each vigintile

(5% bin) of risk score as predicted by our winning model. Notably, the lowest 70% of children in

the holdout sample as ranked by our risk score have are less likely to have BLLs 5+ than the

average child in the holdout sample. Very few children in the bottom quartile have elevated BLLs.

Because this is an out-of-sample exercise, it suggests that our model discriminates well between

low- and high-risk children. For the remainder of the paper we will take r(x) to be the estimate of

E[Yi|Xi = x, Si = 1] obtained by re-estimating the winning regression random forest model using

the data for all tested children with tuning parameters set according to the cross-validation exercise

described above.

To give a sense of the covariates from Table A1 that are particularly relevant for predicting Yi,

Table A5 presents variable importances for our top-performing model. These are computed using

ranger with the importance = ‘impurity’ option. Every time a particular predictor variable is

used to make a recursive split in one of the regression trees that make up our random forest, this

improves the in-sample predictive MSE. The impurity variable importance measure averages these

improvements from a given variable across all trees, and then makes relative comparisons across

variables. On the whole, the most important variables are at the neighborhood-level: measures of

the prevalence of lead exposure, characteristics of the housing stock, and socio-economic variables.

We caution that this pattern should not necessarily be given a causal interpretation. Moreover,

it does not imply that individual-level variables have no predictive power. The age of any given

house is likely highly correlated with the age of the houses that surround it, for example. This kind

of multicollinearity presents no problem for machine learning prediction, but it does mean that

variable importances should be taken with a grain of salt.

Notably absent from Table A5 are measures of lead exposure sources outside the home, including

distance to major roads, and industrial lead emissions reported to the Toxic Release Inventory
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(TRI). Bearing in mind the point about multicollinearity mentioned above, we conjecture that

the low predictive power of these variables may be explained by the following factors. First, that

proximity to major roads is not as strong of a predictor of lead exposure is perhaps less surprising

in light of the recency of our sample (birth cohorts 2010-2014). Indeed, Aizer and Currie, 2019

find that the relationship between a child’s BLL and traffic on roads within 50 meters of the

child’s home for children born in the early 1990s but not for those born in 2004. The relationship

between road proximity and child BLLs has likely attenuated over time because the amount of lead

in soil has declined following the deleading of gasoline between 1979 and 1986. As for industrial

lead emissions, we are unaware of a literature discussing attenuation over time. Still, we see two

plausible explanations for the low predictive power of TRI lead emissions. First, Hollingsworth and

Rudik, 2021 note that lead from NASCAR races appears to travel up to 50 miles away. We look at

plants within two kilometers of children’s homes, and most lead is released through stacks. Thus,

it could be that there are no differences at these close distances. Second, lead emissions from TRI

facilities might be generating clusters of lead-exposed children, something that would be picked up

by the neighborhood-level counts of lead-exposed children variables we include in our model, an

example of the multicollinearity concern.

3.3 Policy Experiments

Our main policy experiments are counterfactuals in which some of the unscreened children

from our dataset are shifted into screening while all currently-screened children remain so. Each

experiment corresponds to a different way of deciding which currently-unscreened children are

shifted. We consider a number of possibilities including targeting based on zip code, targeting based

on the risk score measure r(·) from Section 3.2, and targeting based on the screening propensity

score p(x) ≡ P(Si = 1|Xi = x). Because we use a regression-based approach rather than a

propensity-score weighting approach to address selection-on-observables, we require an estimate of

the propensity to be screened, p(x), for this latter policy experiment. We construct this propensity

score via LASSO-penalized logistic regression, where Xi contains all of the variables from Table

A1, including the four distance-to-provider variables.6

We score alternative screening policies by the total averted cost generated by shifting the

relevant children under each policy, using the IQ cost function from Figure A1 and predicted BLLs

based on covariates. We also construct intervals that show how these averted cost figures vary over

the range of predictive uncertainty in BLLs given observed covariates. Because we observe all BLLs

6Our machine learning pipeline for the propensity score model is identical to that of the other LASSO-
logistic models from Section 3.2 with two exceptions. First, because there are approximately equal shares of
screened and unscreened children, there is no need for stratification when constructing training-holdout and
cross-validation splits and no need for downsampling in estimation. Second, because the outcome variable
for this regression is Si, whether or not a child is screened, CWTE is inapplicable, so we use AUC as our
evaluation metric.
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for the population of tested children, by definition, these uncertainty intervals treat r(x) as fixed.

Uncertainty arises because r(x) does not perfectly predict the BLL of a child with Xi = x. We

quantify this predictive uncertainty using a simple bootstrap-based procedure described below.

Our winning risk score function r(x) from 3.2 is the random forest approximation to the con-

ditional mean function E[Yi|Xi = x, Si = 1]. This approximation does the best job of prioritizing

children for screening in the out-of-sample holdout data, using CWTE as the evaluation metric.

While we could in principle use r(x) directly as our BLL prediction for unscreened children with

Xi = x, for consistency with models in which r(Xi) is not a regression function, we employ a second

step local quadratic regression of Yi on r(Xi), using data for the tested. Figure 3 plots the resulting

regression curve (solid) along with the 45-degree line (dashed). As seen from the figure, the winning

random forest regression model slightly over-predicts very low BLLs and under-predicts very high

BLLs. We speculate that under-prediction in the right tail results from the rarity of extremely

high BLLs in our sample and the fact the random forest model uses RMSE as the tree-splitting

criterion. Together these two factors may imply that the model is insufficiently “rewarded” for

distinguishing between very high BLLs. The slight over-prediction of low BLLs could potentially

relate to detection thresholds and measurement error, or merely be a mechanical compensation for

the over-prediction of high BLLs. Fortunately both the over– and under–prediction problems are

completely resolved by our second step, which effectively “re-calibrates” the risk score r(x). Be-

cause m(·) is monotone, this has no implications for the order in which children should be screened,

given their covariates.

In our policy exercises, for an untested child with covariates Xi = x we predict that Yi = m(x)

where m(Xi) ≡ E[Yi|r(Xi), Si = 1] is the regression from 3. To incorporate predictive uncertainty

into our policy analysis, we use a simple bootstrap-based procedure that is justified under our

selection-on-observables assumption. We approximate the distribution of Yi|Xi = x among the

unscreened by computing the residuals from Figure 3 for the 50 tested children whose risk scores

are closest to r(x). We then sample from these residuals and add them to m(x) to approximate the

distribution of Yi|Xi = x. This allows us to capture the heteroskedasticity and asymmetry evident

from Figure 3. In our policy experiments, we use 1000 bootstrap samples to construct uncertainty

intervals for the value of each policy.

4 Results

In our sample, 18,101 tested children have a BLL≥ 5µg/dL and 3,290 tested children have a

BLL≥ 10µg/dL. We estimate substantial underdetection of lead exposure: among children born

between 2010-2014, current testing practices detected 76% of cases of BLL≥ 5µg/dL and 82% of

cases of BLL≥ 10µg/dL. Indeed, our model predicts an additional 5,819 (95%CI 5,696-5,940) of the
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349,489 untested children had BLL≥ 5µg/dL (Table 3). We also predict an additional 699 (95%CI

660-741) of the untested children had BLL≥ 10µg/dL.

To investigate where the hidden costs of children with undetected BLLs are highest, Figure 4

plots the distribution of costs from IQ losses related to lead exposure of untested children in high-

and low-risk zip codes. The distribution of “missed” costs of lead exposure for high-risk zip codes

is shifted to the right with respect to the one for low-risk zip codes, suggesting the most severe

undetected poisoning cases appear to be concentrated in areas already identified as high risk. This

finding is striking as these children should have been tested under Illinois’ existing screening policy.

Table 3 further illustrates this point by showing the number of and costs associated with undetected

cases of above-thresholds BLL in high-risk zip codes. While there are fewer untested children in

high-risk zip codes (112,997 vs. 236,492), 80% of untested children with predicted BLL≥ 5µg/dL

lived in high-risk zip codes (4,671) rather than low-risk ones (1,148). Our model also predicts

that 82% of children with undetected BLL≥ 10µg/dL were in high-risk zip codes (576) rather than

low-risk zip codes (123).

This unequal distribution of lead hazards, which appear concentrated in high-risk zip codes,

suggests that targeted screening has merit. Figure 5 investigates whether our model could be used

to improve targeting via an out-of-sample exercise using the 20% holdout sample. Each panel

plots the distribution of costs from IQ losses across zip codes, comparing low-risk (pink) against

high-risk (blue). The left panel uses the official IDPH definition of risk, while the right panel uses

an alternative definition based on our preferred random forest model, fitted to the 80% training

sample. In particular, we designate the 507 zip codes with the highest average risk scores as “high-

risk”, matching the number of IDPH-designated high-risk zip codes in the holdout sample.7 Based

on the holdout data, we see that children in IDPH-designated high-risk zip codes experience greater

harm from lead exposure on average. For example, the median high-risk zip code has an average

cost per child of $18,600 compared to $16,100 for low-risk zip codes (left panel). As seen in the

right panel of the figure, however, the risk scores estimated by our model from Section 3.2 perform

better, yielding a designation of 507 high-risk zip codes with a median cost of $20,300 per child

compared to $15,800 for our model-designated low risk zip codes. Thus, by adjusting the definition

of high-risk zip codes, which would involve reassigning 35% of high-risk zip codes in Illinois (Table

4), states may be able to detect a higher number of above-threshold BLLs without increasing the

number of high-risk zip codes.

The preceding exercise suggests that there may be gains from re-assigning some zip codes

from high- to low-risk and vice-versa. A similar exercise could be carried out at the individual

level, by asking whether our model can accurately identify low risk children among the currently-

screened solely based on the values of their covariates Xi. If so, policymakers could potentially

7Children in the holdout sample cover 507 out of the 580 official high-risk zipcodes and 1,252 of the 1,364
Illinois zip codes in our sample.
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determine which children should not be prioritized for screening. Figure 6 illustrates the out-of-

sample performance of our risk score by plotting average monetized IQ losses in the holdout sample

against risk scores computed from our preferred random forest model fitted to the training data.

Each point in the plot is a 5% bin of risk score moving from highest to lowest risk along the x-

axis. We see that the average cost declines very rapidly as risk scores fall. This suggests that, if

policymakers desired to identify groups of currently-tested children who are at particularly low risk

of serious adverse consequences from lead exposure, they could do so reliably out-of-sample based

on our model. Note that this exercise, unlike the others that we discuss in this section, does not

rely on selection-on-observables, because it is solely based on data from children who were in fact

screened. More broadly, this figure demonstrates the value of targeting based on a model such as

ours, compared to universal screening.

Next, we investigate the role of compliance with screening guidelines in averting lead exposure

costs. To do so, Table 5 considers two scenarios.8 In Panel A, we examine the effect of increasing

testing rates in zip codes with low testing rates to the level of screening compliance of the median,

75th, and 90th percentile high-risk zip code under the current targeting system. These correspond

to screening rates of 61.1%, 71.4%, and 81.3% (Figure A3). In Panel B, we consider raising the

overall screening rate in Illinois to those same levels, irrespective of zip code of residence. Scenario

A takes it as given that targeting will be carried out at the zip code level–the current practice–while

scenario B imagines targeting in a centralized way across the state. We would expect Scenario B to

yield better individualized targeting, but perhaps at the cost of additional logistical complications.

The question then arises of which additional children would be tested under each scenario. We

evaluate the screening policies under different priority systems: randomly sampling among untested

children, screening based on the propensity scores–highest or lowest–from Section 3.3, considering

children with high vs. low lead exposure risk scores as predicted by our preferred regression random

forest model, and considering children who are closer vs. farther away from screening providers, a

factor that has been shown elsewhere to influence the likelihood of getting tested (Gazze, 2022).

Importantly, we remain agnostic as to the logistical feasibility of each prioritisation system. In

other words, we do not attempt to quantify the costs of prioritizing children for screening in a

particular way. For example, it might be extremely costly to induce children with the highest

risk scores to be screened. Moreover, we do not assume that prioritizing based on distance to

provider is easier. Instead this exercise only considers the correlation between distance to provider

and predicted BLLs. Figure 7 shows that the correlation between predicted BLLs and screening

propensity scores is non-monotonic, and therefore it is plausible that targeting based only on risk

scores might not yield the desired screening rates. For each different policy, we report the average

averted cost per newly-tested child–this reflects costs for children with BLL< 5µg/dL–as well as

8Table 5 uses predictions from our preferred model. Results are qualitatively similar for the runner-up
model, the Lasso-penalized logistic model that predicts the probability that a child has a BLL≥ 5µg/dL.
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the same average restricted to those whom we predict to have BLLs≥ 5µg/dL.

Panel A of Table 5 shows that a de jure universal screening regime such that all zip codes

achieved the same screening compliance as the median high-risk zip code under Illinois’ existing

regime could avert between $15,209 and $15,403 per child screened in costs associated with IQ

losses from lead exposure, depending on the prioritization rule (confidence intervals are very tight).

If we assign an averted cost of zero to children with BLLs below 5µg/dL, the averted cost per

child screened ranges from $1,033 to $1,126. These values are policy-relevant because, given the

current intervention threshold of 5 µg/dl, children with lower BLLs would not be eligible to receive

treatment or other follow-up interventions. Notice that the averted cost falls by over a factor of

ten when we exclude children with BLLs below 5 µg/dl from consideration. This is because the

overwhelming majority of children with detectable levels of lead in their blood have BLLs below 5

µg/dl. Moreover, our IQ cost function is concave so the largestmarginal effect occurs at lower BLLs.

Interestingly, because screening rates are lowest in low-risk zip codes (Figure 8), prioritization rules

that operate within a given zip code do not appear to make much of a difference relative to random

screening. Nevertheless, prioritization based on our risk score measure yields the highest benefits

when looking only at children with BLLs above 5µg/dL and prioritization based on farthest distance

to providers yields the highest benefits overall, while prioritization based on closest distance yields

the smallest benefits. Raising compliance to the 75th or the 90th percentile of current high risk zip

codes would only result in average averted costs between $15,527 and $15,727 and between $15,663

and $15,769, respectively. On the whole, increasing screening rates in every zip code to match that

of the top high-risk zip codes provides benefits only insofar as it leads to detecting more cases of

lead exposure in zip codes already designated as high-risk.

Whereas panel A of Table 5 considers the effect of testing additional children in zip codes

with screening rates below the median zip code, Panel B considers the effect of raising the overall

screening rate in the state of Illinois to the same level by prioritizing children across zip codes. In

this exercise, targeting provides considerable benefits over randomly sampling additional children

to test.9 Regardless of whether we score all BLLs according to Figure A1 or treat those below

5µg/dL as zeros, averted costs are highest when children are prioritized based on our risk score

measure from Section 3.2 (26,370 and $7,659 respectively when screening 61% of children, the

median screening rate in high-risk zip codes). It is also worth noting that in this case prioritizing

children with the highest screening propensity or those that are closest to providers also yields

higher benefits than random sampling, suggesting that there is a relationship between predicted

BLLs and propensity or ability to be screened that could be leveraged with the right policies (see

9Note that, when prioritizing children across the entire state rather than within zip codes, random
screening by definition produces the same average averted cost at the 50%, 75% and 90% screening compliance
rates. When prioritizing within zip codes, however, this is no longer the case because changing the compliance
rate changes the set of zip codes from which the random sample is drawn.
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e.g., Figure 7).

Together, these estimates suggest that careful targeting is crucial for the effectiveness of any

expansion of existing childhood lead screening. Screening need not be universal to be effective,

and de jure universal screening that is not de facto universal may be ineffective. A potential

benefit of de jure universal screening that our analysis does not capture is lower communication

and logistical costs. For example, providers would not need to check a child’s zip code of residence

under a universal screening policy, and this might increase compliance. Such gains in compliance,

however, are far from assured. All zip codes in Chicago are high-risk, implying that every child

in the city should be screened. If this city-wide universal screening policy lowered communication

costs and increased compliance, we would expect to see higher compliance in Chicago compared to

other high-risk zip codes that are more dispersed. But this does not appear to be the case: average

screening rates in Chicago were 65%, compared to 64% in high-risk zip codes outside of Chicago.

In previous work some of us have shown that the relative importance of different lead exposure

sources shifts as the intervention threshold is lowered, which may make it more difficult to identify

children with elevated BLLs using proxies for lead exposure (Abbasi, Pals, and Gazze, 2020). This

pattern may explain why we estimate more than 8 times as many undetected cases of BLL≥ 5µg/dL

relative to ≥ 10µg/dL when there were approximately 5.5 times as many observed cases of BLL≥
5µg/dL as BLL≥ 10µg/dL during the study period. In spite of this, the current definition of high-

risk zip codes appears to cover most undetected cases of both BLL≥ 5µg/dL and BLL≥ 10µg/dL

cases. Because a higher share of BLL≥ 5µg/dL cases than BLL≥ 10µg/dL cases go undetected, our

results highlight the importance of relying on data to identify children most at-risk within areas

already flagged for higher screening.

As we have seen from Table 5, the benefits of targeted screening are large. We would like to

assess whether increasing screening rates among the currently-untested using our risk score measure

passes the cost-benefit test. Carrying out a full cost-benefit analysis, however, requires estimates

of the costs of alternative screening policies as well. The price of private tests in Illinois ranges

up to $43.10 This gives a rough approximation of the marginal direct cost of testing an additional

child. Targeting children based on risk also increases the direct costs of a screening program, by

requiring additional data linkages and analysis. These costs are fixed with respect to the number

of children tested, but recur on a yearly basis as new data become available. We would estimate

that these costs are modest: perhaps in the range of a few thousand dollars of an analyst’s time

per year. There may also be additional logistical and communication costs, although these are

hard to quantify. It is even more challenging to estimate the indirect costs of screening, such as

the opportunity cost of time for parents–these include travel costs to the doctor’s office and health

care service providers–and non-monetary costs, e.g., pain if a venous blood sample is taken (Gazze,

10See https://www.luc.edu/media/lucedu/hhhci/pdf/leadsafeil/LeadSafeILDirectory061 .pdf, accessed in
November 2021).
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2022). As a back-of-the-envelope calculation, suppose that we only assign a positive benefit to

children with BLLs above 5µg/dL–a very conservative assumption. Then we see from Table 5,

that the average benefit per child of expanding screening from the current rate of 49% to 61%

using our risk score measure is $7,659 (Panel B – IQ Cost if BLL 5+ / Risk Score Top). It seems

implausible that total screening costs per child could even come close to this number. Even a

cost of $1,000 per child seems very high. For this reason, we consider it plausible that improving

targeted screening using our model passes the cost-benefit test. Because targeted screening appears

to have higher average benefits than de jure and de facto universal screening, and because achieving

100% universal screening would be at least as costly as targeted screening, it appears that targeted

screening should be more cost-effective than universal screening.

5 Conclusion

We estimate the extent and geographic distribution of undetected lead poisoning in Illinois

using administrative data and machine learning tools. We find that current testing practices failed

to detect 24% of BLL≥ 5µg/dL and 18% of BLL≥ 10µg/dL among children born between 2010 and

2014. Moreover, 80% of Illinois children with undetected BLL≥ 5µg/dL lived in designated high-

risk zip codes where every child should already be tested under Illinois’ current testing guidelines.

The state defines these zip codes as high-risk based on the age of their housing and the relatively

low socioeconomic status of their residents. This suggests that undetected lead poisoning might

exacerbate existing patterns of inequality.

The spatial distribution of lead hazards implies that states may see the largest gains in terms

of averted lead exposure costs from improving compliance with existing zip code-targeted screening

policies, rather than expanding to a de jure universal screening regime as currently advocated

by many. How to increase screening rates remains an open question, however. Travel cost and

inconvenient access to health care providers appear to be one barrier, together with providers’

idiosyncratic lower propensity to refer children for lead screening (Gazze, 2022). Still, we find

that predicted BLLs correlate positively with both proximity to providers and predicted screening

propensity, suggesting that low-cost interventions might shift some of these high-risk children into

screening.

Finally, we demonstrate how machine learning can improve targeted screening by leveraging

detailed demographic and exposure data and providing a more accurate estimate of each child’s

BLL. Our risk score function could be used to categorize zip codes as high-risk in a targeted

screening program. Indeed, by adjusting the definition of high-risk zip codes using our risk scores,

which would involve reassigning 35% of high-risk zip codes, states may be able to detect a higher

number of above-threshold BLLs without increasing the number of high-risk zip codes. Moreover,
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we find that an individual approach to targeting, one that is based on each child’s risk score rather

than the model-based high-risk zip code definition, would achieve even higher benefits. Importantly,

these risk scores could also be used to educate providers and patients about their risk and encourage

proactive home inspections, although response rates have been low (Potash et al., 2020).

Our approach could be adapted for other states to inform lead testing policy, evaluate the effects

of changing intervention thresholds, and identify the children at highest risk for lead exposure.

Further extensions of the model could add data on additional pathways for lead exposure, such as

lead in drinking water or toys, and parental occupational exposure. However, we note that housing

vintage likely partially accounts for the effects of lead in water because the use of lead pipes and

service lines follows historical patterns (Rabin, 2008). Additionally, the missing exposure sources

are understood to represent only a small part of total lead exposure (Zartarian, Xue, Tornero-Velez,

and Brown, 2017).
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Figures

Figure 1: High-Risk Zip Codes in Illinois (2006-Present Designation)

Notes: The figure plots the zip codes currently classified as high-risk according to guidelines by the Illinois
Department of Public Health.
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Figure 2: Constructing Cost-Weighted Targeting Efficiency

Random Screening

Infeasible Optimum

Cr

Fraction of
Children Screened

Fraction of Total
Averted Cost
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1

Notes: The dotted curve gives the averted cost of the infeasible optimal screening rule as a function of the
share of children screened; the dashed line gives the value (in expectation) of random screening. The solid
curve gives the value Cr of a feasible screening policy based on risk score r(·). CWTE equals the area of
the gray shaded region divided by the area between the dotted curve and dashed line. The averted cost
from screening all children is normalized to one.
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Figure 3: Observed and Estimated BLLs

Notes: The figure plots a local quadratic regression of observed BLLs among the tested on risk scores from
the continuous random forest model (solid line), and comparing it to the 45-degree line (dashed line).
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Figure 4: Model-implied Lead Exposure Costs (IQ Losses) per Untested Child in High- and
Low-Risk Zip Codes

Notes: The figures plot the unnormalized distribution of IQ costs of untested children in high-and low-risk

zip codes based on the official definition of zip code risk, imputing BLLs using our preferred random forest

model fitted to the data for all tested children. The relative areas under each curve correspond to the

relative number of zip codes in each group. Vertical lines indicate the median costs for the two groups

rounded to the closest 100.
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Figure 5: Lead Exposure Costs (IQ Losses) per Child in High- and Low-Risk Zip Codes,
Official vs. Model-Based Definition Evaluated in the Holdout Sample
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Notes: The figures plot the unnormalized distribution of IQ costs of children in the holdout sample across

high-and low-risk zip codes based on the official (left) and model-based definition of zip code risk (right).

The relative areas under each curve in a given panel correspond to the relative number of zip codes in each

group. The model-based definition designates the top 507 zip codes by average IQ cost as high risk, the

same number as the official definition in the holdout sample. Vertical lines indicate the median costs for

the two groups rounded to the closest 100.
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Figure 6: Average IQ Costs by Risk Score in the Holdout Sample

Notes: The x-axis plots rank in the risk score distribution from highest to lowest risk, based on our
preferred random forest model fitted using the training data. Each point represents a 5% bin of the risk
score variable. The y-axis plots average IQ costs calculated from the 20% holdout sample.
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Figure 7: Correlation between Predicted Screening Probability and Predicted BLL

Notes: The figure plots a fifth-degree polynomial regression of predicted BLLs on screening propensity
scores for untested children.
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Figure 8: Screening Rates in Low- and High-Risk Zip Codes

Notes: The figure plots the distribution of screening rates in low- and high-risk zip codes for Illinois

children born between 2010 and 2014.
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Tables

Table 1: Confusion Matrix for Evaluating a Hypothetical Screening Policy

Elevated BLL?
No Yes

Unscreened True − False −
Screened False + True +

Notes: The table reports the four possible outcomes of a screening policy in terms of whether a child was
screened (row dimension) and whether the child has an above-threshold BLL (column dimension).
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Table 2: Summary Statistics, by Zip Code Risk Status and Screening Status

Low Risk High Risk

Unscreened Screened Unscreened Screened

n = 236492 n = 178873 n = 112997 n = 206337

Black 0.08 0.13 0.24 0.28
(0.28) (0.33) (0.43) (0.45)

Hispanic 0.13 0.23 0.22 0.33
(0.33) (0.42) (0.42) (0.47)

Teen Mother 0.04 0.08 0.08 0.11
(0.19) (0.27) (0.27) (0.31)

Single Mother 0.24 0.43 0.43 0.54
(0.43) (0.49) (0.49) (0.50)

Mother Education: High School or Less 0.23 0.39 0.37 0.48
(0.42) (0.49) (0.48) (0.50)

Median Income in Block Group 73465.78 62282.59 54509.30 48074.19
(30592.48) (28101.09) (28896.32) (26118.64)

TRI Air Lead Emissions w/in 250m in Birth Year (x100) 0.10 0.11 0.36 0.29
(3.12) (3.34) (5.96) (5.34)

Home Built prior to 1930 0.08 0.12 0.51 0.60
(0.27) (0.32) (0.50) (0.49)

Born in Chicago 0.00 0.00 0.59 0.61
(0.00) (0.00) (0.49) (0.49)

Previous Cases of BLL 5+ at Coordinates 0.01 0.02 0.11 0.15
(0.09) (0.14) (0.31) (0.36)

Previous Cases of BLL 10+ at Coordinates 0.00 0.01 0.05 0.07
(0.06) (0.08) (0.21) (0.25)

BLL 5+ NaN 0.03 NaN 0.06
(NA) (0.17) (NA) (0.24)

BLL 10+ NaN 0.01 NaN 0.01
(NA) (0.07) (NA) (0.11)

Notes: The sample includes children born in Illinois 2010-2014. Screening status is measures by 25 months
of age.
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Table 3: Estimated Number and Costs Associated with Missed BLL 5+ in Illinois and High
Risk Zip Codes

Overall High Risk Zip Codes

N missed: BLL 5+ 5819 4671
(5696, 5940) (4564, 4782)

N missed: BLL 10+ 699 576
(660, 741) (541, 613)

IQ cost missed (million USD): BLL 5+ 429 346
(420, 438) (339, 355)

IQ cost per child missed (USD): BLL 5+ 73656 74200
(73176, 74149) (73700, 74700)

Notes: The table shows estimates from our preferred regression forest model on the number of children
with BLL≥ 5µg/dL and BLL≥ 10µg/dL missed currently in Illinois overall and in high-risk zip codes
(where all children should be screened). We also show the total and average IQ costs associated with these
undetected cases of BLL≥ 5µg/dL. In parentheses, we report confidence intervals based on 1,000
simulations of BLLs for untested children.
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Table 4: Correspondence between Official IDPH Zip Code Designation and Model-Based

IDPH
Model Low High
Low 0.45 0.14
High 0.14 0.26

Notes: The table shows the share of zip codes classified as high risk under the current official IDPH
designation and an alternative produced by ranking zip codes in terms of overall cost of IQ losses due to
lead exposure. This exercise is carried out using the 80% training sample to predict IQ losses and the 20%
holdout sample to assign zip codes.
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Table 5: Estimated IQ Costs Avoided under Different Targeting Rules

Random Screening Propensity Risk Score Distance

Target P-tile Measure Bottom Top Bottom Top Bottom Top

Panel A: Within Zip Codes

50 IQ Cost (USD) 15339 15333 15335 15290 15367 15209 15403
50 (15306, 15373) (15268, 15397) (15268, 15394) (15228, 15355) (15304, 15427) (15150, 15270) (15342, 15465)

50 IQ Cost if BLL 5+ (USD) 1093 1098 1100 1033 1126 1018 1126
50 (1061, 1127) (1038, 1163) (1039, 1163) (972, 1094) (1064, 1187) (956, 1080) (1063, 1192)

75 IQ Cost (USD) 15626 15625 15606 15582 15667 15527 15717
75 (15597, 15655) (15579, 15670) (15560, 15654) (15534, 15625) (15619, 15712) (15480, 15573) (15669, 15765)

75 IQ Cost if BLL 5+ (USD) 1209 1197 1204 1146 1264 1155 1249
75 (1180, 1238) (1151, 1242) (1159, 1249) (1101, 1194) (1218, 1312) (1110, 1203) (1199, 1294)

90 IQ Cost (USD) 15716 15731 15702 15693 15739 15663 15779
90 (15689, 15743) (15693, 15768) (15664, 15740) (15656, 15727) (15702, 15775) (15624, 15699) (15740, 15817)

90 IQ Cost if BLL 5+ (USD) 1235 1233 1231 1196 1279 1213 1261
90 (1209, 1262) (1195, 1270) (1194, 1266) (1161, 1235) (1242, 1317) (1175, 1251) (1226, 1299)

Panel B: Across Zip Codes

50 IQ Cost (USD) 15737 13431 21243 12119 26370 17742 15405
50 (15712, 15763) (13393, 13465) (21127, 21353) (12104, 12134) (26223, 26515) (17655, 17828) (15345, 15462)

50 IQ Cost if BLL 5+ (USD) 1226 214 4260 0 7659 2336 784
50 (1201, 1252) (187, 242) (4140, 4382) (0, 0) (7501, 7826) (2247, 2433) (733, 836)

75 IQ Cost (USD) 15737 13463 19384 12473 21379 17330 14639
75 (15712, 15763) (13436, 13487) (19309, 19453) (12461, 12484) (21301, 21456) (17271, 17390) (14602, 14676)

75 IQ Cost if BLL 5+ (USD) 1226 196 3121 0 3986 2106 532
75 (1201, 1252) (178, 215) (3045, 3194) (0, 0) (3904, 4072) (2044, 2168) (499, 562)

90 IQ Cost (USD) 15737 13701 17823 12805 18758 16846 14573
90 (15712, 15763) (13680, 13722) (17775, 17868) (12793, 12816) (18707, 18809) (16800, 16890) (14544, 14600)

90 IQ Cost if BLL 5+ (USD) 1226 246 2237 0 2504 1871 565
90 (1201, 1252) (230, 263) (2189, 2286) (0, 1) (2453, 2557) (1827, 1917) (540, 589)

Notes: Simulated effect of increasing screening randomly and under different targeting rules among children born in Illinois 2010-2014. Panel A
considers increasing screening rates within zip codes. Panel B considers increasing targeting statewide irrespectively of zip code. Target screening
rates were chosen to coincide with the 50th, 75th, 90th, and 100th percentile, of current high-risk zip codes in Illinois where all children should be
tested, corresponding to screening rates of 61%, 71%,81%, 100%. We evaluate these screening policies under different priority systems: randomly
sampling among untested children, considering children whom we estimate to have high vs. low screening propensity using a LASSO-penalized
logistic regression, considering children with high vs. low lead exposure risk scores as predicted by our preferred regression forest model, and
considering children who are closer vs. farther away from screening providers, a factor that influences the likelihood of getting tested (Gazze, 2022).
For each different policy, we report the average monetized IQ losses from lead exposure in two ways. The first includes losses from all BLLs, even
those below the intervention threshold of 5µg/dL; the second sets any losses for children below this threshold to zero.
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Figure A1: Costs of Lead Exposure from IQ Loss by Blood Lead Level

Notes: The figure plots the estimated costs of having a blood lead level above 0 in terms of monetized IQ
costs. We take the average IQ point loss per 1µg/dl for different levels of exposure from Lanphear et al.,
2005 and Gould, 2009. This is 0.513 for BLLs ≤ 10µg/dl, 0.19 for BLLs 10− 19µg/dl, and 0.11 for BLLs
≥ 20µg/dl. We monetize these losses considering that one IQ point decrease for a three year old is
associated with a present value earnings loss of $20,568 in 2019 dollars (Klemick, Mason, and Sullivan,
2020). We censor the x axis at 30 for ease of visualization, but costs increase linearly after that.
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Figure A2: Share of Children with BLLs 5+ by Risk Score: Continuous Regression Random
Forest, Holdout Sample

Notes: The figure plots the proportion of children in the holdout set with BLL≥ 5µg/dL in each vigintile
(5% bin) of risk score as predicted by our winning model, the random forest continuous regression. The
dashed horizontal line represents the overall share of children with BLLs 5+ in the holdout sample, just
under 5%.
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Figure A3: Screening rates in high-risk zip codes in Illinois

Notes: The figure plots the distribution of screening rates by 25 months of age by zip code of birth in high
risk zip codes in Illinois for birth cohorts in our sample (2010-2014).
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Table A1: Variables in Prediction Models

Variable Variable (cted)

Birth Yr High Risk Zip Code
Gender Zip Code Neighboring High Risk Zip Code
Low Birth Weight Bins Share Rentals in Block Group
Estimated Gestation Length Share in Poverty in Block Group
Father Age Share Female-Headed HHs in Block Group
Birth Weight Median House Age in Block Group
Father Race Block Group Population
Mother Race Share White in Block Group
Mother Education Share Black in Block Group
Father Education Share Hispanic in Block Group
County Indicators Median House Value in Block Group
Twin Birth Share Urban in Block Group
Birth Order Median Income in Block Group
Single Mother Share Insured through Employer in Block Group
Apgar Score Share Directly Purchasing Insurance in Block Group
Mother Age Share on Medicare in Block Group
Father Hispanic Share on Medicaid in Block Group
Child Hispanic Share Uninsured in Block Group
Home Construction Decade Share Pre1939 Homes in Block Group
Effective Home Construction Decade (if Renovated) Share Pre1949 Homes in Block Group
House Is Single-family Share Pre1979 Homes in Block Group
Primary Road within 15m Share Post1999 Homes in Block Group
Primary Road within 30m Month of Birth Indicators
Primary Road within 50m Case of BLL 10+ within a Yr of Birth and w/in 15m
Primary Road within 100m Case of BLL 10+ within a Yr of Birth, 15-30m
Primary Road within 250m Case of BLL 10+ within a Yr of Birth 30-50m
Primary Road within 500m Case of BLL 10+ within a Yr of Birth 50-100m
Primary Road within 750m Case of BLL 10+ within a Yr of Birth 100-250m
Primary Road within 1km Case of BLL 10+ within a Yr of Birth 250-500m
Primary Road within 2km Case of BLL 10+ within a Yr of Birth 500-750m
TRI Air Lead Emissions 500-1000m in Birth Yr Case of BLL 10+ within a Yr of Birth 750-1000m
TRI Air Lead Emissions 500-1000m up to Birth Yr One Previous Case of BLL 5+ at Coordinates
TRI Water Lead Emissions 500-1000m in Birth Yr Second Previous Case of BLL 5+ at Coordinates
TRI Water Lead Emissions 500-1000m up to Birth Yr One Previous Case of BLL 10+ at Coordinates
TRI Soil Lead Emissions 500-1000m up to Birth Yr Second Previous Case of BLL 10+ at Coordinates
TRI Air Lead Emissions 250-500m in Birth Yr Share of t-1 Tract Cohort with BLLs 5+
TRI Air Lead Emissions 250-500m up to Birth Yr Share of t-1 Tract Cohort with BLLs 10+
TRI Water Lead Emissions 250-500m in Birth Yr Size of t-1 Tract Cohort
TRI Water Lead Emissions 250-500m up to Birth Yr Share of t-2 Tract Cohort with BLLs 5+
TRI Soil Lead Emissions 250-500m up to Birth Yr Share of t-2 Tract Cohort with BLLs 10+
TRI Air Lead Emissions w/in 250m in Birth Yr Size of t-2 Tract Cohort
TRI Water Lead Emissions w/in 250m in Birth Yr Distance to Closest Open Provider
TRI Soil Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider w/ Capillary Screening
TRI Air Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider, ˆ2
TRI Water Lead Emissions w/in 250m up to Birth Yr Distance to Closest Open Provider w/ Capillary Screening, ˆ2
Born in Chicago

Notes: Distance variables at the end of the table are only included in the screening prediction model. Our
pipeline creates indicators for each factor level, including missing values.
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Table A2: Tuning Results: Continuous Regression Forest

# Candidate Variables Minimum # Observations in Node CWTE

8 38 0.390

18 33 0.385

35 15 0.375

62 31 0.375

73 22 0.371

53 9 0.369

105 26 0.368

91 19 0.368

127 27 0.368

212 39 0.366

191 35 0.366

119 17 0.365

146 20 0.365

254 29 0.362

155 10 0.361

264 24 0.361

180 7 0.359

231 12 0.359

205 5 0.357

246 3 0.354

Notes: The table shows the 20 pairs of grid values for the two tuning parameters mtry, the number of
variables to consider in each recursive split, and min n, the minimum number of observations per leaf,
together with the CWTE achieved by the continuous random forest model at those parameters. Values are
ordered from top to bottom in terms of highest CWTE achieved, with the winning parameters in the first
row.
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Table A3: Model Performance: Cost-Weighted Targeting Efficiency

Model CWTE

RF: BLL 0.386

Elastic Net: BLL 0.379

OLS: BLL 0.377

Lasso-Logit: 5+ 0.370

Lasso-Logit: 5+, Downsampled 0.368

RF: 1-5, 5-10, 10-20, 20+ 0.366

RF: 5+ 0.364

Lasso-Logit: 10+, Downsampled 0.361

RF: 10+, Downsampled 0.359

RF: 5+, Downsampled 0.358

RF: 10+ 0.338

Lasso-Logit: 10+ 0.329

Notes: This table shows the performance of each tuned model as measured by the cost-weighted targeting
efficiency (CWTE). CWTE is bounded between zero and one, and such that bigger is better, with one
indicating a ”perfect” model. CWTE penalizes ”mis-classification errors” using IQ costs. Given the ordinal
”risk score” from each predictive model that ranks kids from highest to lowest risk, CWTE compares the
model ranking to the true BLL ranking. We estimate four random forest models (RF) that predict
different outcomes: a continuous BLL outcome; the probability of a child having a BLL that falls into one
of four bins (1-5, 5-10, 10-20, 20+); the probability of a child having a BLL ≥ 5 and ≥ 5µg/dL. We also
estimate two Lasso-penalized logistic regression models to predict the two latter binary outcomes, along
with a unpenalized OLS model and a penalized elastic net model, both of which have the same regressors
and outcome variable: our continuous BLL measure. For both RF and Lasso-logit binary models we also
estimate versions in which the dominant class is downsampled so that elevated and non-elevated BLLs are
equally common in the downsampled data.
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Table A4: Performance of Zip Code Benchmark Model

Ranking Variable CWTE

Average BLL 0.276

Share 5+ 0.264

Share 10+ 0.220

Average Monetized IQ Losses 0.278

Notes: The table reports the CWTE of models that prioritize screening untested children by variables
aggregated at the zip code level. Each row represents a different model.
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Table A5: Top Variables in BLL Regression Forest Prediction Model by Variable Importance

Label Relative Importance

Case of BLL 10+ within a Yr of Birth and w/in 15m 100.0

Share of t-2 Tract Cohort with BLLs 5+ 29.2

Share of t-1 Tract Cohort with BLLs 5+ 27.7

Share Pre1949 Homes in Block Group 25.3

Share Pre1939 Homes in Block Group 25.1

Birth Weight 24.4

Median Income in Block Group 23.7

Share on Medicaid in Block Group 20.6

Share Insured through Employer in Block Group 20.4

Size of t-2 Tract Cohort 20.1

Size of t-1 Tract Cohort 19.8

Father Age 19.5

Share Pre1979 Homes in Block Group 19.2

Share of t-2 Tract Cohort with BLLs 10+ 18.9

Share of t-1 Tract Cohort with BLLs 10+ 18.6

Median House Value in Block Group 18.2

Share Post1999 Homes in Block Group 17.8

Share in Poverty in Block Group 16.7

Notes: The table reports variable importance in the continuous random forest model for the top variables
that together explain over 50% of the variation in BLLs. We normalize the importance of the top variable
to 100, and report importance of each other variable relative to it. Variable importance is computed using
ranger with the importance = ‘impurity’ option. Every time a particular predictor variable is used to
make a recursive split in one of the regression trees that make up our random forest, this improves the
in-sample predictive MSE. The impurity variable importance measure averages these improvements from a
given variable across all trees, and then makes relative comparisons across variables. All variables are
available both for children who were tested and children who were never tested.
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