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Overview of Today’s Talk

I Causal inference is hard, especially when there are many controls.

I Bayesian approach is appealing, but doesn’t work out-of-the-box

I Find a way to combine the advantages of Bayes with good Frequentist properties
(bias / variance / coverage probability)

I Related to Frequentist literature on “Double Machine Learning” but aims to
improve on finite-sample performance.

I Workshop on Bayesian Causal Inference this Friday: email me for a link!
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The Problem / Model

Yi = αDi + X ′
i β + εi , E[εi |Di , Xi ] = 0, i = 1, . . . , n

I Learn effect α of treatment Di (not necessarily binary)

I Selection-on-observables: p-vector of controls Xi

I OLS: unbiased and consistent estimator of α, but noisy if p is large

I Drop control X (j)
i that is correlated with Di ⇒ biased estimate of α if β(j) 6= 0.
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Naïve Shrinkage Estimator: Ridge Regression
Assume everything de-meaned, X scale-normalized

Unique, closed-form solution even if p > n

α̂naive

β̂naive

 =

D ′D D ′X
X ′D X ′X

 +

 0 0′
p

0p λIp

−1 D ′Y
X ′Y

 , λ ≡ σ2
ε

σ2
β

.

Frequentist Interpretation
Minimize (Y − αD − Xβ)′(Y − αD − Xβ) + λβ′β

Bayesian Interpretation
Posterior mean: σε known, flat prior on α, independent Normal(0, σ2

β) priors on βj
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Regularization-Induced Confounding (RIC)
Term coined by Hahn et al. (2018)

If λ > 0, bias from correlation between D and residuals:

Bias(α̂naive) = ω̂′
[
Ip − (R + λIp)−1R

]
β

Var(α̂naive) = σ2
ε

[
(D ′D)−1 + ω̂′(R + λIp)−1R(R + λIp)−1ω̂

]

Notation
ω̂j = (D ′D)−1D ′Xj , Êj = Xj − ω̂jXj , R = Ê ′Ê

Problem
For λ > 0, bias depends crucially on ω̂ and β; strong confounding ⇒ large bias
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Adding a First-Stage

Just a Projection

Y = αD + X ′β + ε, E[ε|X , D] = 0

D = X ′γ + V , E[V |X ] = 0

Implied by Casual Assumption

Cov(ε, V ) = Cov(ε, D − X ′γ) = Cov(ε, D)− Cov(ε, X ′)γ = 0.

Idea
Maybe adding this regression allows us to learn the degree of counfounding.
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Adding the D on X regression has no effect!
“Bayes Ignorability” – Linero (2023; JASA)

Bayes’ Theorem
π(θ|Y , D, X) ∝ f (Y , D|X , θ)× π(θ)

Cov(ε, V ) = 0⇒ no common parameters!
f (Y , D|X , θ) = f (Y |D, X , θ)f (D|X , θ) = f (Y |D, X , α, β, σ2

ε)× f (D|X , γ, σ2
V )

Problem
Unless prior treats β and γ as dependent, adding the D on X regression has no effect!
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Our Solution: Bayesian Double Machine Learning (BDML)

From Structural to Reduced Form

Yi = αDi + X ′
i β + εi = X ′

i (αγ + β) + (εi + αVi) = X ′
i δ + Ui

Yi = X ′
i δ + Ui

Di = X ′
i γ + Vi

Ui

Vi

∣∣∣∣∣∣ Xi ∼ Normal2(0, Σ), Σ =

σ2
ε + α2σ2

V ασ2
V

ασ2
V σ2

V


BDML Algorithm

1. Place “standard” priors on reduced form parameters (δ, γ, Σ)

2. Draw from posterior (δ, γ, Σ)|(X , D, Y )

3. Posterior draws for Σ =⇒ posterior draws for α = σUV /σ2
V
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BDML versus Frequentist Double Machine Learning (FDML)
e.g. Chernozhukov et al. (2018; Econometrics J.)

FDML Optimizes
Plug in “Machine Learning” estimators of reduced form parameters: (δ̂ML, γ̂ML)

α̂FDML =
∑n

i=1(Yi − X ′
i δ̂ML)(Di − X ′

i γ̂ML)∑n
i=1(Di − X ′

i γ̂ML)2 .

BDML Marginalizes
Posterior for α averages over posterior uncertainty about γ and δ
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Theoretical Results

Yi = X ′
i δ + Ui

Di = X ′
i γ + Vi

Ui

Vi

∣∣∣∣∣∣ Xi ∼ Normal2(0, Σ)

π(Σ, δ, γ) ∝ π(Σ)π(δ)π(γ)

Σ ∼ Inverse-Wishart(ν0, Σ0)

δ ∼ Normalp(0, Ip/τδ)

γ ∼ Normalp(0, Ip/τγ)

Naïve Approach
Analogous but with single structural equation and β ∼ Normal(0, Ip/τβ)

Asymptotic Framework
Fixed true parameters (Σ∗, δ∗, γ∗); n→∞ (large sample); p →∞ (many controls)
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Our asymptotic framework ensures bounded R-squared.

Rate Restrictions
(i) sample size dominates # of controls: p/n→ 0

(ii) sample size dominate prior precisions: τ/n→ 0

(iii) precisions of same order as # controls: τ � p

Regularity Conditions

(i) p < n

(ii) Var(X) ≡ ΣX “well-behaved” as p →∞

(iii) limp→∞
∑p

j=1(δ∗
j )2 <∞, limp→∞

∑p
j=1(γ∗

j )2 <∞

(iv) iid errors/controls, E(Xi) = 0, finite & p.d. Σ∗
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Selection Bias in the Limit

When p and n are large, what are our implied beliefs about selection bias?

SB ≡ [E(Yi |Di = 1)−E(Yi |Di = 0)]− α = [E(Xi |Di = 1)−E(Xi |Di = 0)]′ β

Naïve Model
Degenerate prior centered at zero: SB = γ′ΣX β

σ2
V + γ′ΣX γ

→p 0

BDML
Non-degenerate prior centered at zero: SB→p

σUV
σ2

V + γ′ΣX γ
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Summary of Asymptotic Results

Consistency
Naïve, BDML and FDML all provide consistent estimators of α.

Asymptotic Bias
BDML and FDML have bias of order p2/n2 compared to p/n for Naïve.
√

n-Consistency
Naïve requires p/

√
n→ 0; BDML and FDML require only p/n3/4 → 0.

Why do we focus on variance?
Bias dominates: if p/

√
n→ 0, all three have the same AVAR.
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Simulation Experiment

Yi = αDi + X ′
i β + εi

Di = X ′
i γ + Vi

{Xi}ni=1 ∼ iid Normalp(0, Ip)

{(εi , Vi)}ni=1 | X ∼ iid Normal2
(
0, diag

{
σ2

ε , 1
})

β | (X , ε, V ) ∼ Normalp
(
µβ, σ2

βI

)
.

Linero’s (2023) “Fixed” Design
α = 2, γ = ιp/

√p, µβ = −γ/2, σ2
β = 1/p, n = 200, p = 100
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Two Versions of BDML

Both Versions
LKJ(4) Prior on Corr(U, V ); Independent Cauchy(0, 2.5) priors on SD(U) and SD(V )

Basic Version
Independent Normal(0, 52) priors on the elements of δ and γ.

Hierarchical Version
I Independent Normal(0, σ2

δ ) priors on the elements of δ

I Independent Normal(0, σ2
γ) priors on the elements of γ

I Independent Inverse-Gamma(2, 2) priors on σδ, σγ .
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Two-Step “Plug-in” Bayesian Approaches

Preliminary Regression
D̂i ≡ X ′

i γ̂prelim ← estimate from Bayesian regression of D on X .

HCPH (Hahn et al, 2018; Bayesian Analysis)

1. Bayesian linear regression of Y on (D − D̂) and X

2. Estimation / inference for α from posterior for (D − D̂) coefficient.

Linero (2023; JASA)

1. Bayesian linear regression of Y on (D, D̂, X).

2. Estimation / inference for α from posterior the D coefficient.
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Simulation Results – 3000 Replications
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Only BDML and Linero have correct coverage (Left); Also lower RMSE (Right)
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Zooming In: BDML versus Linero
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Coverage of Linero & BDML-Hier comparable; BDML-Hier: shortest intervals & lowest RMSE
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Thanks for listening!

Summary

I Simple, fully-Bayesian causal inference in a
workhorse linear model with many controls.

I Avoids RIC; Excellent Frequentist Properties

In Progress

I More Simulations; Empirical Examples

I Good “default” prior choices?

I Extensions: partially linear model; treatment
interactions; instrumental variables?
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