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Example: Worker’s Compensation and Injury Duration1

Background
▶ Worker’s compensation: cash and medical care benefits for work-related injuries.
▶ Run by US States: coverage, amount, and type of benefits varies considerably.
▶ Temporary Total Disability (TTD): unable to work but full recovery expected.
▶ For TTD there is no fixed duration of benefits.

Research Question
Do more generous TTD benefits increase the duration of claims?

Kentucky (KY) Policy Experiment
Increase in maximum TTD benefit from $131 to $217/week on July 15th 1980

1Meyer, Viscusi & Durbin (1995)
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https://www.fsb.miamioh.edu/lij14/411_paper_did_injury.pdf


Example: Worker’s Compensation and Injury Duration2

Treated / Untreated
▶ Low earners unaffected by change
▶ Earnings below old and new max
▶ Policy only affects high earners
▶ Weekly benefits increase

Data
▶ Repeated random samples
▶ Date of injury
▶ Earnings
▶ Duration of benefits

2Meyer, Viscusi & Durbin (1995)
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https://www.fsb.miamioh.edu/lij14/411_paper_did_injury.pdf


Adding a Time Dimension

Old Notation
Y0 and Y1 are the potential outcomes at a single unspecified moment in time.

New Notation
Yt(0) and Yt(1) are the potential outcomes at a specified moment in time t.

Parentheses = Potential Outcomes
Yt(d) is the potential outcome at time t if we set your treatment to d .

New Idea
Use the time dimension to make before-and-after treatment comparisons.
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Two-period Model

▶ Yt is observed in two time periods: t ∈ {Before, After}.
▶ Between these periods some are treated (D = 1) and the rest are not (D = 0).
▶ Before: before anyone has been treated; After: after some people are treated.
▶ Each person has a pair of potential outcome time series:

▶ {YBefore(1), YAfter(1)} if treated between the periods
▶ {YBefore(0), YAfter(0)} otherwise

▶ Observed Outcomes: {YBefore, YAfter}

YBefore = (1 − D)YBefore(0) + DYBefore(1)
YAfter = (1 − D)YAfter(0) + DYAfter(1)

▶ 2nd Period Effect: ∆ ≡ YAfter(1) − YAfter(0) is our causal effect of interest
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Anticipation (aka Ashenfelter Dip)
What is YBefore(1)?
▶ This is not the potential outcome if treated in the first period!
▶ It is the potential outcome in period “Before” if treated after this period.

Why this distinction?
▶ In period “Before” everyone is untreated; why distinguish YBefore(0) and YBefore(1)?
▶ How can a potential outcome depend on a future treatment?

Ashenfelter (1978)
▶ Anticipation: if I know that I will be treated tomorrow, I may change my behavior

in ways that affect my outcomes today.
▶ “All of the trainee [treatment] groups suffered unpredicted earnings declines in the

year prior to training” in a study of the effects of a government training program.
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Anticipation (aka “Ashenfelter Dip”)

Yt(d)

t
Before AfterTreatment Date

YBefore(0)

YAfter(0)

YBefore(1)

YAfter(1)

∆

▶ 2nd Period Treatment Effect: ∆ ≡ YAfter(1) − YAfter(0)
▶ Anticipation: YBefore(1) ̸= YBefore(0)
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More on our Target Causal Effect

TOTAfter ≡ E[YAfter(1) − YAfter(0)|D = 1] = E[∆|D = 1]

▶ Natural to study the causal effect after treatment: ∆ ≡ YAfter(1) − YAfter(0)
▶ Want the causal effect on the future not on the past (anticipation)
▶ Focus on the treated: the people for whom we can make a before-and-after

treatment comparison.
▶ I will write TOT for short, but remember: this is the second period effect.
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Before-and-after Design
What is this?
▶ Comparison of observed outcomes for treated: after minus before (“within person”)
▶ E.g. average TTD claim duration among high-income before and after 1980-07-15.
▶ Stepping stone to Difference-in-differences design.
▶ Two assumptions, one of which we’ll relax later.

Assumption: No Anticipation
E[YBefore(1) − YBefore(0)|D = 1] = 0

Assumption: No Trend
E[YAfter(0) − YBefore(0)|D = 1] = 0

Theorem
TOT ≡ E[YAfter(1) − YAfter(0)|D = 1] = E[YAfter − YBefore|D = 1].
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Derivation: Before-and-after Design

Let BA be the average difference of observed outcomes for the treated:

BA ≡ E[YAfter − YBefore|D = 1] = E[YAfter(1)|D = 1] − E[YBefore(1)|D = 1].

But since

E[YBefore(1)|D = 1] = E[YBefore(0)|D = 1] = E[YAfter(0)|D = 1]

by No Anticipation and No Trend, we see that

BA = E[YAfter(1)|D = 1] − E[YAfter(0)|D = 1] = TOT.
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Diagram: Before-and-after Design3

Yt(d)

t
Before AfterTreatment Date

YBefore(0) YAfter(0)
YBefore(1)

YAfter(1)

∆

▶ No Anticipation: YBefore = YBefore(1) = YAfter(0)
▶ No Trend: YAfter(0) = YBefore(0) =⇒ YBefore = YAfter(0)

3In the derivation, potential outcomes merely need to be equal on average for the treated.
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Difference-in-Differences Design

What’s wrong with Before-and-after?
▶ No Trend assumption may be implausible: “nothing else changes”

Overview
▶ Rather than assuming no trend, estimate trend from untreated “control” group.
▶ Combine “between person” and “within person” comparisons.
▶ Parallel Trends assumption replaces No Trend assumption
▶ Retain No Anticipation assumption exactly as above.

Assumption: Parallel Trends
E [YAfter(0) − YBefore(0)| D = 1] = E [YAfter(0) − YBefore(0)| D = 0]
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Parallel Trends Assumption

E [YAfter(0) − YBefore(0)| D = 1] = E [YAfter(0) − YBefore(0)| D = 0]

▶ Trend in untreated potential outcomes same on average for treated and untreated.
▶ Allows time invariant unobservables to drive selection into treatment.
▶ Rules out selection based on time-varying unobservables (“transitory shocks”).
▶ Fundamentally untestable: never observe YAfter(0) for the treated

Theorem
No Anticipation & Parallel Trends =⇒

TOT = E[YAfter − YBefore|D = 1] − E[YAfter − YBefore|D = 0]
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Derivation: Difference-in-Differences Design
Let DiD be the difference of differences: treated minus control and after minus before

DiD ≡ E[YAfter − YBefore|D = 1] − E[YAfter − YBefore|D = 0]

By the equations linking observe and potential outcomes:

E[YAfter − YBefore|D = 0] = E[YAfter(0) − YBefore(0)|D = 0]
E[YAfter − YBefore|D = 1] = E[YAfter(1) − YBefore(1)|D = 1].

By No Anticipation E[YBefore(1)|D = 1] = E[YBefore(0)|D = 1] and hence

E[YAfter − YBefore|D = 1] = E[YAfter(1) − YBefore(0)|D = 1].

Thus,

DiD = E[YAfter(1) − YBefore(0)|D = 1] − E[YAfter(0) − YBefore(0)|D = 0]

14 / 25



Derivation Continued

Continuing from the previous slide:

DiD = E[YAfter(1) − YBefore(0)|D = 1] − E[YAfter(0) − YBefore(0)|D = 0].

Now, by Parallel Trends:

E [YAfter(0) − YBefore(0)| D = 1] = E [YAfter(0) − YBefore(0)| D = 0]

Substituting this to replace the second term in the expression for DiD:

DiD = E[YAfter(1) − YBefore(0)|D = 1] − E[YAfter(0) − YBefore(0)|D = 1]
= TOT − 0.
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Diagram: Difference-in-Differences Design4

Yt(d)

t
Before AfterTreatment Date

∆0

∆1

YBefore(0)

YAfter(0)

YAfter(1)

YBefore(1)

∆

▶ No Anticipation: YBefore(1) = YBefore(0) =⇒ ∆ = ∆1 − ∆0

▶ Parallel Trends: ∆0 same on average for treated and untreated
4For the Theorem
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Two-period DiD Implementation

Comparison of Means
▶ Replace population expectations with sample means and take differences:

D̂iD =
(
ȲAfter, Treated − ȲBefore, Treated

)
−

(
ȲAfter, Untreated − ȲBefore, Untreated

)
.

DiD Regression
▶ Equivalently: regress outcome on Di , Postt = 1(t = After) and interaction:

Yit = α + βDi + γPostt + δ (Di × Postt) + Uit , t ∈ {Before, After}.

▶ DiD estimand is the coefficient on the interaction: δ
▶ Makes it easier to compute SEs, add controls, etc.
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Panel versus Repeated Cross-Section Data
Panel
Random sample of people observed in multiple time periods.

Repeated Cross-Section
Multiple random samples taken at different points in time.

Do we need panel data for DiD?
▶ Causal effects are within person, but use between person info to identify them.
▶ This works because expectation expectation is a linear operator.
▶ For the same reason, DiD works just fine with repeated cross-sections:

D̂iD =
(
ȲAfter, Treated − ȲBefore, Treated

)
−

(
ȲAfter, Untreated − ȲBefore, Untreated

)
.

▶ Also works with the regression approach. . .
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Example

library(broom); library(estimatr); library(tidyverse)
library(modelsummary)
library(wooldridge) # injury dataset

KY <- injury |>
filter(ky == 1) |> # dataset contains Kentucky and Michigan
rename(treated = highearn, post = afchnge, duration = durat)

naive <- lm_robust(log(duration) ~ treated, KY, subset = (post == 1))
ba <- lm_robust(log(duration) ~ post, KY, subset = (treated == 1))
dd <- lm_robust(log(duration) ~ treated * post, KY)

results <- list(Naive = naive, BA = ba, DiD = dd)
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modelsummary(results, fmt = 2, gof_omit = 'R2 Adj.|AIC|BIC|RMSE',
output = 'latex')

Naive BA DiD
(Intercept) 1.13 1.38 1.13

(0.03) (0.04) (0.03)
treated 0.45 0.26

(0.05) (0.05)
post 0.20 0.01

(0.05) (0.04)
treated × post 0.19

(0.07)
Num.Obs. 2688 2394 5626
R2 0.029 0.006 0.021
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Parallel Trends and Transformed Outcomes

▶ Following Meyer, Viscusi & Durbin (1995), we worked with log(Duration).
▶ This requires the assumption of parallel trends in logs.
▶ If parallel trends holds in logs, it likely fails in levels and vice-versa.
▶ See Athey & Imbens (2006), Kahn-Lang & Lang (2020), Roth & Sant’Anna (2023).
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https://www.fsb.miamioh.edu/lij14/411_paper_did_injury.pdf
https://doi.org/10.1111/j.1468-0262.2006.00668.x
https://doi.org/10.1080/07350015.2018.1546591
https://doi.org/10.3982/ECTA19402


What about Anticipation?

▶ Assume Parallel Trends but do not assume No Anticipation
▶ Anticipation Effect for Treated: AET ≡ E[YBefore(1) − YBefore(0)|D = 1]
▶ Slight modification of argument from above (lecture notes)

DiD = TOT − AET

▶ See Malani & Reif (2016) for a discussion of anticipation versus endogeneity.
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https://www.treatment-effects.com/treatment-effects.pdf
https://doi.org/10.1016/j.jpubeco.2015.01.001


Inference in DiD

▶ This is genuinely difficult; I chose an empirical example to avoid complications.
▶ Repeated cross-sections: multiple random samples before and after policy change.
▶ iid sampling in each cross-section so no need for clustering.
▶ In true “panel” settings, typical to cluster over i whether e.g. US States
▶ Inference based on the CLT requires many clusters but this is not the case in

many DiD examples.
▶ Active area of research. See Roth et al (2023) Section 5.
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https://doi.org/10.1016/j.jeconom.2023.03.008


Staggered Treatment Timing

▶ Above: two periods, treatment between the periods.
▶ Generally: T > 2; treatment in any period 1 < t < T ; once treated remain so.
▶ Potential outcomes for every possible treatment start date, including never
▶ E.g. Y2016(2014) is a US State’s potential outcome in 2016 if it experienced a

Medicaid expansion beginning in 2014.
▶ Homogeneous treatment effects over t and i =⇒ extend regression from above:

Yit = (Fixed Effect)i + (Fixed Effect)t + δDit + Uit

▶ Heterogeneous treatment effects =⇒ this regression approach can fail badly.
▶ See Roth et al (2023) Section 3 for a good summary of recent literature.

24 / 25

https://doi.org/10.1016/j.jeconom.2023.03.008


Relaxing / Evaluating Parallel Trends
Evaluating
▶ With more than two periods, researchers often compare pre-trends in treated

versus untreated over periods before treatment occured.
▶ Additionally / Alternatively: placebo tests, i.e. DiD with “fake” treatment date.
▶ Strictly speaking, neither provides any direct evidence for or against the parallel

trends assumption.

Relaxing
▶ Perhaps parallel trends only holds conditional on covariates
▶ If so, can combine DiD with selection-on-observables approaches.
▶ E.g. regression adjustment and propensity score weighting.
▶ Unsurprisingly, requires an overlap assumption.
▶ See Roth et al (2023) Section 4.2 for an overview.
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