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Beyond the Textbook IV Model

Heterogenous Treatment Effects
▶ Y = α + βD + U implies that everyone has the same treatment effect: β.
▶ In reality, treatment effects differ across people.

Local Average Treatment Effects (LATE) Model
▶ What does IV tell us when treatment effects are heterogeneous?
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Binary Treatment and Instrument

βIV ≡ Cov(Z , Y )
Cov(Z , D) =

Cov(Y ,Z)
Var(Z)

Cov(D,Z)
Var(Z)

= E[Y |Z = 1] − E[Y |Z = 0]
E[D|Z = 1] − E[D|Z = 0] ≡ Wald Estimand

Intent-to-treat Effect: E[Y |Z = 1] − E[Y |Z = 0] (ITT)
▶ E.g. randomized experiment with treatment offer Z and treatment take-up D
▶ Non-compliance / randomized encouragement design: D may not equal Z
▶ In this setting the ITT is the ATE of offering treatment.

The Wald Estimand
▶ ITT is “diluted” by people who are offered (Z = 1) but do not take up (D = 0)
▶ Divide ATE of offer on outcome Z → Y by that of offer on take-up Z → D.
▶ Under what assumptions does this give us a meaningful causal quantity?
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Decomposing the ITT Effect
▶ Example: moving to opportunity (MTO) experiment randomly offered housing

vouchers to encourage families to move to a more affluent neighborhood.
▶ 50% of offered families (Z = 1) moved; 20% of non-offered families (Z = 0) moved

Y = (1 − D)Y0 + DY1, pz ≡ P(D = 1|Z = z)

▶ E[Y |Z = 1] is a mixture of Y0 and Y1 for different types of families:

E[Y |Z = 1] = (1 − p1)︸ ︷︷ ︸
≈0.5

E [Y0|Z = 1, D = 0] + p1︸︷︷︸
≈0.5

E [Y1|Z = 1, D = 1]

▶ E[Y |Z = 0] is a mixture of Y0 and Y1 for different types of families:

E[Y |Z = 0] = (1 − p0)︸ ︷︷ ︸
≈0.8

E [Y0|Z = 0, D = 0] + p0︸︷︷︸
≈0.2

E [Y1|Z = 0, D = 1]
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Compliance “Types” in the LATE Model

▶ Catalogue all possible treatment take-up “decision rules”

Never-taker: T = n ⇐⇒ D(Z ) = 0
Always-taker: T = a ⇐⇒ D(Z ) = 1

Complier: T = c ⇐⇒ D(Z ) = Z
Defier: T = d ⇐⇒ D(Z ) = (1 − Z ).

In the MTO Example
▶ Never-takers: families that refuse to move with or without a voucher
▶ Always-takers: families that will move with or without a voucher
▶ Compliers are families that will only move if given a voucher
▶ Defiers are families that will only move if not given a voucher
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Assumption 1 - Unconfounded Type
For all compliance types t ∈ {a, c, n, d}

P(T = t) = P(T = t|Z = 0) = P(T = t|Z = 1).

Assumption 2 - No Defiers: P(T = d) = 0

Assumption 3 - Mean Exclusion Restriction
For all compliance types t ∈ {a, c, n, d}

E [Y0|Z = 0, T = t] = E [Y0|Z = 1, T = t] = E [Y0|T = t]
E [Y1|Z = 0, T = t] = E [Y1|Z = 1, T = t] = E [Y1|T = t]

Assumption 4 - Existence of Compliers: P(T = c) > 0
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Lemma 1: Assumptions 1–2 =⇒

P(D = 1|Z = 1) = P(T = a) + P(T = c)
P(D = 0|Z = 1) = P(T = n)
P(D = 1|Z = 0) = P(T = a)
P(D = 0|Z = 0) = P(T = c) + P(T = n)

Lemma 2: Assumptions 1–3 =⇒

E [Y |D = 1, Z = 1] = P(T = a)E [Y1|T = a] + P(T = c)E [Y1|T = c]
P(T = a) + P(T = c)

E [Y |D = 0, Z = 1] = E [Y0|T = n]
E [Y |D = 1, Z = 0] = E [Y1|T = a]

E [Y |D = 0, Z = 0] = P(T = n)E [Y0|T = n] + P(T = c)E [Y0|T = c]
P(T = n) + P(T = c)
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The LATE Theorem: Wald = ATE for Compliers

Theorem: Assumptions 1–4 =⇒

E(Y |Z = 1) − E(Y |Z = 0)
E(D|Z = 1) − E(D|Z = 0) = E [Y1 − Y0|T = c]

MTO Example
▶ ITT is the average treatment effect of offering a housing voucher.
▶ Wald = LATE is the average treatment effect of moving to opportunity for families

who can be induced to move by the voucher from the experiment.
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LATE Derivation - Part 1

By iterated expectations and Lemma 2

E(Y |Z = 1) = E(Y |D = 0, Z = 1)P(D = 0|Z = 1) + E(Y |D = 1, Z = 1)P(D = 1|Z = 1)
= P(T = n)E(Y0|T = n) + [P(T = a)E(Y1|T = a) + P(T = c)E(Y1|T = c)]

Analogously for Z = 0,

E(Y |Z = 0) = E(Y |D = 0, Z = 0)P(D = 0|Z = 0) + E(Y |D = 1, Z = 0)P(D = 1|Z = 0)
= [P(T = n)E(Y0|T = n) + P(T = c)E(Y0|T = c)] + P(T = a)E(Y1|T = a).

Subtracting these gives an expression for the ITT:

E(Y |Z = 1) − E(Y |Z = 0) = P(T = c)E(Y1 − Y0|T = c).
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LATE Derivation - Part 2

ITT = Numerator of Wald Estimand:

E(Y |Z = 1) − E(Y |Z = 0) = P(T = c)E(Y1 − Y0|T = c).

For the denominator, Lemma 1 gives

E(D|Z = 1) − E(D|Z = 0) = P(D = 1|Z = 1) − P(D = 1|Z = 0)
= [P(T = a) + P(T = c)] − P(T = a)
= P(T = c)

since D is binary. Dividing, the Wald Estimand equals E(Y1 − Y0|T = c).
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Better LATE than nothing?1

▶ If treatment effects are heterogeneous, IV identifies the LATE
▶ Local Average Treatment Effect: average treatment effect for compliers.
▶ But the definition of “complier” depends on the instrument.
▶ E.g. a $1,000,000 voucher to “move to opportunity” versus a $100 voucher
▶ We have an ATE for some people, but we don’t know who they are.
▶ Can’t point to anyone in the sample and say “that’s a complier!”
▶ My view: LATE is not always a very interesting parameter.
▶ More interesting if most people are compliers or “the instrument is the policy”
▶ Beyond LATE: Marginal Treatment Effects: slides 1, slides 2

1For a more positive view, see Imbens (2010).
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We can learn the average characteristics of compliers.

E.g. let F = 1 if female, zero otherwise. By Bayes’ Theorem:

P(F = 1|T = c) = P(T = c|F = 1)P(F = 1)
P(T = c) = P(T = c|F = 1)P(F = 1)

E(D|Z = 1) − E(D|Z = 0) .

If Z |= F an argument very similar to that for the Wald denominator gives

P(T = c|F = 1) = E(D|Z = 1, F = 1) − E(D|Z = 0, F = 1)

Combining these:

P(F = 1|T = c) = P(F = 1)
[E(D|Z = 1, F = 1) − E(D|Z = 0, F = 1)

E(D|Z = 1) − E(D|Z = 0)

]
so we can learn the fraction of compliers who are female.
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One-sided Non-compliance
No Always-takers: Z = 0 =⇒ D = 0
▶ E.g. randomized encouragement design; no access to treatment outside experiment.
▶ Since there are no always-takers, anyone with D = 1 is a complier:

E(Y |Z = 1) − E(Y |Z = 0)
E(D|Z = 1) − 0 = E(Y1 − Y0|T = c) = E(Y1 − Y0|D = 1) = TOT

No Never-takers: Z = 1 =⇒ D = 1
▶ E.g. Butler Act increased minimum UK school-leaving age from 14 to 15 in 1947.2

▶ Since there are no never-takers, anyone with D = 0 is a complier:

E(Y |Z = 1) − E(Y |Z = 0)
1 − E(D|Z = 0) = E(Y1 − Y0|T = c) = E(Y1 − Y0|D = 0) = TUT

2See Oreopoulos (2005) for more details.
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Which assumptions are testable in the textbook IV model?

Instrument Relevance
▶ Since D and Z are observed, directly estimate Cov(D, Z ).
▶ Beware of weak instruments!

Instrument Exogeneity
▶ Since U is unobserved, can’t directly estimate Cov(Z , U).
▶ Could we use the IV residuals?
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Simulation with a Bad Instrument

It has a direct effect on Y separate from its effect on D!
library(mvtnorm); library(tidyverse); library(broom); library(AER)
set.seed(587103)
n <- 1e5
sims <- rmvnorm(n, sigma = matrix(c(1, 0.5,

0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size = 1, prob = 0.3)
D <- -0.5 + 0.3 * Z + V
beta <- 0
Y <- 1 + beta * D - Z + U # Instrument isn't excluded!
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Bad Instrument Is Uncorrelated with IV Residuals!

iv_results <- ivreg(Y ~ D | Z)
tidy(iv_results) |> knitr::kable(digits = 2)

term estimate std.error statistic p.value

(Intercept) -0.72 0.04 -17.31 0
D -3.45 0.10 -35.90 0

cov(residuals(iv_results), Z)

## [1] -1.534378e-16
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Z Is Uncorrelated with the IV Residuals By Construction

▶ Let U be the structural error and V be the IV residual: V ≡ Y − αIV − βIV D.

βIV = Cov(Z , Y )
Cov(Z , D) = β + Cov(Z , U)

Cov(Z , D) , αIV = E(Y ) − βIVE(D).

▶ V = U ⇐⇒ Z is exogenous: the only way to obtain βIV = β and αIV = α.

Cov(Z , V ) = Cov(Z , Y − αIV − βIV D) = Cov(Z , Y ) − βIV Cov(Z , D)

= Cov(Z , Y ) − Cov(Z , Y )
Cov(Z , D) Cov(Z , D) = 0.

▶ Cov(Z , V ) = 0 by construction even when Cov(Z , U) ̸= 0
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Multiple Instruments and Over-identification

Assumptions
▶ Y = α + βD + U
▶ Cov(Z1, D) ̸= 0, Cov(Z2, D) ̸= 0
▶ Cov(Z1, U) = Cov(Z2, U) = 0

Implications
▶ Both IVs identify same effect: β

▶ If not, at least one is endogenous

β
(1)
IV ≡ Cov(Z1, Y )

Cov(Z1, D) = β + Cov(Z1, U)
Cov(Z1, D)

β
(2)
IV ≡ Cov(Z2, Y )

Cov(Z2, D) = β + Cov(Z2, U)
Cov(Z2, D)

β
(1)
IV − β

(2)
IV = Cov(Z1, U)

Cov(Z1, D) − Cov(Z2, U)
Cov(Z2, D)

Over-identifying Restrictions Test
▶ Test of null that all MCs identify same parameters.
▶ Fails in a LATE model: different instruments identify different LATEs!
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Are the LATE Assumptions Testable?

LATE Assumptions
1. Unconfounded Type

2. No Defiers

3. Mean Exclusion Restriction

4. Existence of Compliers

At Least One is Testable!
▶ Assumptions 1–3 =⇒ P(T = c) = E[D|Z = 1] − E[D|Z = 0]
▶ Thus, Assumption 4 is just instrument relevance, hence testable.
▶ What about the others?
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Even Nobel Laureates Make Mistakes

Angrist & Imbens (1994)
Part (i) is similar to an exclusion restriction in a regression model. It is not
testable and has to be considered on a case by case basis.

Pearl (1995)
exogeneity . . . can be given an empirical test. The test is not guaranteed to
detect all violations of exogeneity, but it can, in certain circumstances, screen
out very bad would-be instruments.

Testable Implications of LATE assumptions
▶ Huber & Mellace (2015)
▶ Kitagawa (2015)
▶ Mourifié & Wan (2017)

20 / 27

https://www.treatment-effects.com/Huber-Mellace-2015.pdf
https://www.treatment-effects.com/Kitagawa-2015.pdf
https://www.treatment-effects.com/Mourifie-Wan-2017.pdf


Example: Card (1995)3

▶ Y = log(Wage), D = College, Z = Live Nearby

library(tidyverse); library(wooldridge); library(estimatr)
card1995 <- as_tibble(card) |>

mutate(Y = lwage, # log(wage)
Z = nearc4, # Live near 4 year college?
D = 1 * (educ >= 16)) |> # Attend college? (>=16 years educ)

select(Y, Z, D)

iv <- iv_robust(Y ~ D | Z, card1995)
ols <- lm_robust(Y ~ D, card1995)

3Using geographic variation in college proximity to estimate the return to schooling
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https://www.nber.org/system/files/working_papers/w4483/w4483.pdf


IV Estimate is Implausibly Large

library(modelsummary)
modelsummary(list(OLS = ols, IV = iv), output = 'latex', fmt = 2,

gof_omit = 'Num.Obs.|R2|R2 Adj.|AIC|BIC|RMSE',
coef_omit = '(Intercept)')

OLS IV

D 0.23 2.27
(0.02) (0.55)

Remember: this is on the log scale!
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Example of the Huber & Mellace (2015) Approach
▶ Suppose that all of the LATE assumptions hold and define:

r ≡ P(T = n)
P(T = c) + P(T = n) = P(D = 0|Z = 1)

P(D = 0|Z = 0) (by Lemma 1)

▶ Distribution of Y |(D = 0, Z = 0) is a mixture of Y0 for compliers and never-takers.
▶ The mixture contains r × 100% never-takers and (1 − r) × 100% compliers.
▶ Let’s calculate r in the Card (1995) example:

r <- card1995 |>
summarize(p01 = sum(D == 0 & Z == 1) / sum(Z == 1),

p00 = sum(D == 0 & Z == 0) / sum(Z == 0),
r = p01 / p00) |> pull(r)

r

## [1] 0.9115626
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Density of Y |(D = 0, Z = 0) from Card (1995)

y00_density <- card1995 |> filter(D == 0, Z == 0) |>
ggplot(aes(x = Y)) +
geom_density() +
geom_vline(aes(xintercept = quantile(Y, 1 - r)),

color = 'red', linetype = 'dashed', size = 1) +
xlab('') + ylab('') +
theme_bw()
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Density of Y |(D = 0, Z = 0) from Card (1995)

0.00
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0.75

4.5 5.0 5.5 6.0 6.5 7.0

▶ This is the density of Y0 for a mix of never-takers and compliers.
▶ The mix contains 91% never-takers. But we don’t know where they are.
▶ Dashed red line: 9th %-tile of the density.
▶ If all never-takers are at the top of the distribution, they’re above this line.
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Density of Y0 for a mixture containing 91% never-takers, 9% compliers
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▶ If all never-takers are at the top of the distribution, they’re above the red line.
▶ Mean of all observations above red line bounds E[Y0|T = n] from above
▶ But Lemma 2 shows that E(Y0|T = n) = E(Y |D = 0, Z = 1).
▶ If this contradicts the upper bound something must be wrong.
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Contradiction =⇒ LATE Assumptions Fail

Previous Slide: E(Y0|T = n) ≤ E(Y |D = 0, Z = 0, Y ≥ y1−r)

card1995 |> filter(D == 0, Z == 0) |>
summarize(ninth_percentile = quantile(Y, 1 - r),

upper_bound = mean(Y[Y >= ninth_percentile])) |>
pull(upper_bound)

## [1] 6.154926

Lemma 2: E(Y0|T = n) = E(Y |D = 0, Z = 1)

card1995 |> filter(D == 0, Z == 1) |> summarize(mean(Y)) |> pull()

## [1] 6.254177

This contradicts the upper bound! Something must be wrong!

27 / 27


