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Beyond the Textbook IV Model

Heterogenous Treatment Effects
» Y =a+ D+ U implies that everyone has the same treatment effect: 3.

> In reality, treatment effects differ across people.

Local Average Treatment Effects (LATE) Model

» What does IV tell us when treatment effects are heterogeneous?
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Binary Treatment and Instrument

Cov(Y,
Cov(Z,Y) B  ElY|Z=1-E[Y|Z=0]

Cov(Z,D) ~ SAD2) ~ E[D|Z = 1] ~E[D|Z = 0]

Biv = = Wald Estimand

Intent-to-treat Effect: E[Y|Z = 1] — E[Y|Z =0] (ITT)
» E.g. randomized experiment with treatment offer Z and treatment take-up D
» Non-compliance / randomized encouragement design: D may not equal Z

» In this setting the ITT is the ATE of offering treatment.

The Wald Estimand
» ITT is “diluted” by people who are offered (Z = 1) but do not take up (D = 0)

» Divide ATE of offer on outcome Z — Y by that of offer on take-up Z — D.

» Under what assumptions does this give us a meaningful causal quantity?
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Decomposing the ITT Effect
» Example: moving to opportunity (MTO) experiment randomly offered housing
vouchers to encourage families to move to a more affluent neighborhood.

» 50% of offered families (Z = 1) moved; 20% of non-offered families (Z = 0) moved

Y=(1-D)Yo+DY1, p,=P(D=1|Z=2)
» E[Y|Z = 1] is a mixture of Yy and Y; for different types of families:
ElY|Z=1=1-p)E[Y|Z=1,D=0]+ p1 E[Y1|Z=1,D=1]
— ~~
~0.5 ~0.5
» E[Y|Z = 0] is a mixture of Yy and Y; for different types of families:

E[Y|Z=0]=(1—-po)E[Yo|Z=0,D=0]+ po E[V1]Z=0,D =1]
s <2
~0.8 ~0.
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Compliance “Types” in the LATE Model

» Catalogue all possible treatment take-up “decision rules”

Never-taker:
Always-taker:
Complier:
Defier:

In the MTO Example

-~~~
I
Q0 v 3

1ruy

)=0
)=1
)=Z
) =(1-2).

» Never-takers: families that refuse to move with or without a voucher

> Always-takers: families that will move with or without a voucher

» Compliers are families that will only move if given a voucher

» Defiers are families that will only move if not given a voucher
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Assumption 1 - Unconfounded Type
For all compliance types t € {a,c,n,d}

P(T=t)=P(T = t|Z=0)=P(T = t|Z=1).
Assumption 2 - No Defiers: P(T = d) =0

Assumption 3 - Mean Exclusion Restriction
For all compliance types t € {a,c,n,d}

E[Yo|Z=0,T=t]=E[YolZ=1,T =t] =E[Yo|T = ¢]
E[Vi|Z=0,T=t]=E[Vi|Z=1,T = t] =E[V4| T = ¢]

Assumption 4 - Existence of Compliers: P(T =c¢) >0
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Lemma 1: Assumptions 1-2 —

P(D=1Z=1)=P(T =a) +P(T = c)
P(D=0|Z=1)=P(T = n)
P(D=1|Z=0)=P(T = a)
P(D=0[Z=0)=P(T =c)+P(T =n)

Lemma 2: Assumptions 1-3 —

P(T =a)E[Y1|T =a]+P(T = c)E[Y1| T = (]

E[Y[D=1,Z=1]= P(T =a)+P(T =c)

E[Y|D=0,Z=1]=E[Y|T = n]
E[Y|ID=1,Z=01=E[%|T = 4

P(T = n)E [Yo|T = n] + P(T = )E[Yo| T = (]

E[Y|D=0,Z=0] = P(T=n)+P(T =c)



The LATE Theorem: Wald = ATE for Compliers

Theorem: Assumptions 1-4 —

E(Y|Z =1) - E(Y|Z = 0)
E(D|Z = 1) — E(D|Z = 0)

:E[Ylf Y0|T:C]

MTO Example
» ITT is the average treatment effect of offering a housing voucher.

> Wald = LATE is the average treatment effect of moving to opportunity for families
who can be induced to move by the voucher from the experiment.
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LATE Derivation - Part 1

By iterated expectations and Lemma 2

E(Y|Z=1)=E(Y|D=0,Z=1)P(D=01Z=1)+E(Y|D=1,Z=1)P(D=1|Z =1)
=P(T = n)E(Yo|T = n)+ [P(T = a)E(V4|T = a) + P(T = )E(V4|T = )]

Analogously for Z =0,

E(Y|Z =0) = E(Y|D =0,Z = 0)P(D = 0|Z = 0) + E(Y|D = 1,Z = 0)P(D = 1|Z = 0)
— [P(T = n)E(Yo| T = n) + B(T = ¢)E(Yo| T = c)] + B(T = a)E(V1|T = a).

Subtracting these gives an expression for the ITT:

E(Y|Z=1) - E(Y|Z =0) = P(T = ¢)E(Y; — Yo|T = ¢).
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LATE Derivation - Part 2

ITT = Numerator of Wald Estimand:
E(Y|Z=1)-E(Y|Z=0)=P(T =c)E(Y1 — Yo|T =c¢).
For the denominator, Lemma 1 gives

E(D|Z =1)—E(D|Z =0)=P(D =1|Z =1) — P(D = 1|Z = 0)
=[P(T=a)+P(T=c)]—P(T = a)
=P(T =¢)

since D is binary. Dividing, the Wald Estimand equals E(Y; — Yp| T = ¢).
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Better LATE than nothing?!

If treatment effects are heterogeneous, 1V identifies the LATE

Local Average Treatment Effect: average treatment effect for compliers.
But the definition of “complier” depends on the instrument.

E.g. a $1,000,000 voucher to “move to opportunity” versus a $100 voucher
We have an ATE for some people, but we don't know who they are.

Can't point to anyone in the sample and say “that’s a complier!”

My view: LATE is not always a very interesting parameter.

More interesting if most people are compliers or “the instrument is the policy”

vV VvV VYV V. V VY VY

Beyond LATE: Marginal Treatment Effects: slides 1, slides 2

For a more positive view, see Imbens (2010).
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https://www.treatment-effects.com/slides-MTE1.pdf
https://www.treatment-effects.com/slides-MTE2.pdf
https://www.aeaweb.org/articles?id=10.1257/jel.48.2.399

We can learn the average characteristics of compliers.

E.g. let F =1 if female, zero otherwise. By Bayes' Theorem:

. B(T=cF=1)P(F=1) P(T=cF=1)PF=1)
P(F=1T=¢)= P(T = o) - E(D|Z=1)-E(D|Z=0)

If ZAl F an argument very similar to that for the Wald denominator gives
P(T=clF=1)=ED|Z=1,F=1)-E(D|Z=0,F =1)
Combining these:

E(D|Z=1,F=1)—E(D|Z=0,F =1)
E(D|Z =1) — E(D|Z = 0)

P(F=1T=c)=P(F=1)
so we can learn the fraction of compliers who are female.
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One-sided Non-compliance
No Always-takers: Z =0 — D=0

> E.g. randomized encouragement design; no access to treatment outside experiment.
» Since there are no always-takers, anyone with D = 1 is a complier:

E(Y|Z = 1) - E(Y|Z = 0)
E(D|Z=1)-0

= E(Yl — Y0|T = C) = ]E(Yl — Y0|D = 1) = TOT

No Never-takers: Z =1 — D=1
» E.g. Butler Act increased minimum UK school-leaving age from 14 to 15 in 1947.2

» Since there are no never-takers, anyone with D = 0 is a complier:

E(Y|Z =1) — E(Y|Z = 0)
1-E(D|Z =0)

=E(Y:1— Yo|T =c) =E(Y1 — Yo|D =0) = TUT

2See Oreopoulos (2005) for more details.
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https://www.aeaweb.org/articles?id=10.1257/000282806776157641

Which assumptions are testable in the textbook IV model?

Instrument Relevance
» Since D and Z are observed, directly estimate Cov(D, Z).

» Beware of weak instruments!

Instrument Exogeneity
» Since U is unobserved, can't directly estimate Cov(Z, U).

» Could we use the IV residuals?
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Simulation with a Bad Instrument

It has a direct effect on Y separate from its effect on D!

library(mvtnorm); library(tidyverse); library(broom); library(AER)
set.seed(587103)
n <- 1eb
sims <- rmvnorm(n, sigma = matrix(c(l, 0.5,

0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size
D <- -0.5 + 0.3 * Z
beta <- 0
Y <- 1+ beta * D -Z + U # Instrument isn't excluded!

1, prob = 0.3)

-+
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Bad Instrument Is Uncorrelated with IV Residuals!

iv_results <- ivreg(Y ~ D | Z)
tidy(iv_results) |> knitr::kable(digits = 2)

term estimate std.error statistic p.value
(Intercept) -0.72 0.04 -17.31 0
D -3.45 0.10 -35.90 0

cov(residuals(iv_results), Z)

## [1] -1.534378e-16
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Z Is Uncorrelated with the IV Residuals By Construction

» Let U be the structural error and V be the IV residual: V =Y — oy, — G,y D.

~ Cov(Z,Y) Cov(Z,U)

v = Couz,0) = Pt Cov(z, D)

ajy = E( Y) — B/\/E(D).
> V =U <= Z is exogenous: the only way to obtain 5y = 3 and oy = a.

COV(Z, \/) = COV(Z, Y — aly — ﬁ/vD) = COV(Z, Y) - ﬁ,vCov(Z, D)
Cov(Z,Y)

= COV(Z7 Y) — m

Cov(Z,D) =0.

» Cov(Z,V) =0 by construction even when Cov(Z, U) # 0
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Multiple Instruments and Over-identification

Assumptions W Cov(Z1,Y) Cov(Z1, U)
> Y=a+sD+U v = oz, D) =P Cov(z1, D)
> COV(Zl7 D) 75 0, COV(Z2, D) 7& 0
> Cov(Z;, U) = Cov(Zp, U) =0 52 = Cov(Z,Y) _ 8+ Cov(2, U)

V'~ Cov(Zs, D) Cov(Z, D)

Implications

» Both IVs identify same effect: Cov(Zi,U)  Cov(Zs, U)

» If not, at least one is endogenous - Cov(Zi,D)  Cov(Z», D)

Over-identifying Restrictions Test
P> Test of null that all MCs identify same parameters.

» Fails in a LATE model: different instruments identify different LATEs!
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Are the LATE Assumptions Testable?

LATE Assumptions
1. Unconfounded Type

2. No Defiers
3. Mean Exclusion Restriction
4

. Existence of Compliers

At Least One is Testable!
» Assumptions 1-3 = P(T = c¢) =E[D|Z = 1] — E[D|Z = Q]

» Thus, Assumption 4 is just instrument relevance, hence testable.

» What about the others?
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Even Nobel Laureates Make Mistakes

Angrist & Imbens (1994)
Part (i) is similar to an exclusion restriction in a regression model. It is not
testable and has to be considered on a case by case basis.

Pearl (1995)

exogeneity ... can be given an empirical test. The test is not guaranteed to
detect all violations of exogeneity, but it can, in certain circumstances, screen
out very bad would-be instruments.

Testable Implications of LATE assumptions
» Huber & Mellace (2015)
> Kitagawa (2015)
» Mourifié & Wan (2017)
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https://www.treatment-effects.com/Huber-Mellace-2015.pdf
https://www.treatment-effects.com/Kitagawa-2015.pdf
https://www.treatment-effects.com/Mourifie-Wan-2017.pdf

Example: Card (1995)3

» Y = log(Wage), D = College, Z = Live Nearby

library(tidyverse); library(wooldridge); library(estimatr)
card1995 <- as_tibble(card) |>
mutate(Y = lwage, # log(wage)
Z = nearc4, # Live near 4 year college?
D =1 % (educ >= 16)) |> # Attend college? (>=16 years educ)
select(Y, Z, D)

iv <- iv_robust(Y ~ D | Z, card1995)
ols <- 1lm_robust(Y ~ D, card1995)

3Using geographic variation in college proximity to estimate the return to schooling
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https://www.nber.org/system/files/working_papers/w4483/w4483.pdf

IV Estimate is Implausibly Large

library (modelsummary)

modelsummary (1ist (OLS = ols, IV = iv), output = 'latex', fmt = 2,
gof_omit = 'Num.Obs.|R2|R2 Adj.|AIC|BIC|RMSE',
coef_omit = '(Intercept)')

OoLS v

D 023 227
(0.02) (0.55)

Remember: this is on the log scale!
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Example of the Huber & Mellace (2015) Approach

» Suppose that all of the LATE assumptions hold and define:

_ ]P’(T:n) _]P)(D:0|Z:]_)
r= P(T=c)+P(T=n) P(D=0/Z=0) (by Lemma 1)

» Distribution of Y|(D =0,Z = 0) is a mixture of Yy for compliers and never-takers.

» The mixture contains r x 100% never-takers and (1 — r) x 100% compliers.
» Let's calculate r in the Card (1995) example:

r <- card1995 |>
summarize(p01l = sum(D == 0 & Z == 1) / sum(Z == 1),
p00 = sum(D == 0 & Z == 0) / sum(Z == 0),
r = p01 / p00) |> pull(r)
r

## [1] 0.9115626
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Density of Y|(D = 0,Z = 0) from Card (1995)

y00_density <- card1995 |> filter(D == 0, Z == 0) |>
ggplot(aes(x = Y)) +
geom_density() +
geom_vline(aes(xintercept = quantile(Y, 1 - r)),
color = 'red', linetype = 'dashed', size = 1) +
xlab('') + ylab('') +
theme_bw ()
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Density of Y|(D = 0,Z = 0) from Card (1995)

0.75- |
|
0.50 -
0.25- I
|
O.Oo-l T II T T T
45 5.0 55 6.0 6.5 7.0

» This is the density of Yy for a mix of never-takers and compliers.
» The mix contains 91% never-takers. But we don't know where they are.
» Dashed red line: 9th %-tile of the density.

P If all never-takers are at the top of the distribution, they're above this line.
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Density of Y; for a mixture containing 91% never-takers, 9% compliers

0.75- |
|
0.50 -
0.25- I
|
O.Oo-l T II T T T
45 5.0 55 6.0 6.5 7.0

> If all never-takers are at the top of the distribution, they're above the red line.
» Mean of all observations above red line bounds E[Yy| T = n] from above
» But Lemma 2 shows that E(Yy|T = n) =E(Y|D=0,Z =1).

P If this contradicts the upper bound something must be wrong.
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Contradiction = LATE Assumptions Fail

Previous Slide: E(Yy|T =n) <E(Y|D=0,Z=0,Y > y;_,)

card1995 |> filter(D == 0, Z == 0) |>
summarize(ninth_percentile = quantile(Y, 1 - r),
upper_bound = mean(Y[Y >= ninth_percentile])) |[>
pull (upper_bound)

## [1] 6.154926

Lemma 2: E(Yo|T =n)=E(Y|D=0,Z=1)
card1995 [> filter(D == 0, Z == 1) |> summarize(mean(Y)) |> pull()

## [1] 6.254177

This contradicts the upper bound! Something must be wrong!
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