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Regression Discontinuity (RD) Overview - Cutoff Determines Treatment

Selection Bias
▶ Problem: people can choose their own treatment.
▶ Sometimes legal/administrative cutoffs completely/partially remove choice.

Sharp RD
▶ Cutoff completely determines treatment: treatment “jumps” from 0 to 1
▶ Everyone below is untreated; everyone above is treated
▶ Estimation: compare mean outcomes on either side of cutoff

Fuzzy RD
▶ Cutoff partially determines treatment: probability of treatment jumps at cutoff
▶ Estimation: Wald estimator on either side of cutoff
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Sharp RD Example
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Sharp RD Example: Sekhri (2020; AEJ Applied)

Research Question
▶ What is the causal effect of attending an elite college on later-life outcomes?

Background
▶ The most prestigious colleges in India are public.
▶ Admissions to public college determined by threshold rule.
▶ Senior secondary exam score above threshold =⇒ admitted.

Causal Identification
▶ Students with scores just below the cutoff effectively identical to those just above
▶ Elite college “as if” randomly assigned for students with scores near the cutoff.
▶ Do later-life outcomes “jump” at the admissions cutoff?
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Sharp RD Design

Notation
1(A) is the indicator of the event A:
equals one if A occurs, zero otherwise.

Assumption: Sharp RD Design
▶ Binary treatment D = 1(X ≥ c)
▶ X is observed: running variable
▶ c is a known threshold.

D

Xc

1

0

Figure 1: Everyone with X ≥ c is treated:
D = 1. No one with X < c is treated: D = 0.
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Sharp RD Versus Selection on Observables

Selection on Observables Holds
Since D = 1(X ≥ c), a function of X

E[Y1|D, X ] = E[Y1|1(X ≥ c), X ] = E[Y1|X ]

E[Y0|D, X ] = E[Y0|1(X ≥ c), X ] = E[Y0|X ]

Overlap Fails
▶ For a given value of X either everyone is treated or nobody is treated!
▶ Can’t compare people with the same X but different D as in propensity score

weighting / regression adjustment
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What do we need for causal identification?

Intuition
Students whose test scores fall in a sufficiently small neighborhood of the admissions
cutoff must be “effectively identical.”

Identical how?
▶ Need treatment to be the only thing that jumps at the cutoff.
▶ Potential wages Y0, Y1 probably do depend on secondary school test scores!
▶ D jumps at the cutoff so Y jumps from Y0 to Y1.
▶ Rule out a jump in the potential outcomes Y0 and Y1

Formal Assumption: Continuity of Conditional Means
E[Y0|X = x ] and E[Y1|X = x ] are both continuous functions of x at the point x = c.
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How could continuity fail?

Continuity of Conditional Means
E[Y0|X = x ] and E[Y1|X = x ] are both continuous functions of x at the point x = c.

Sekhri Example
▶ Assumption fails if students can “precisely manipulate” secondary test scores, e.g.

▶ Students can predict whether they will score just below c
▶ Very diligent students in this situation put in extra effort.
▶ This causes diligence to “jump” discontinuously at c.
▶ Diligence is related to later-life wage (Y0, Y1).

▶ Only a problem if this generates another discontinuity (besides D).
▶ Unlikely to affect Sekhri (2020): cutoff changes year-to-year/subject-to-subject
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Sharp RD Identifies Conditional ATE at X = c
Y

Xc

E[Y |X ]

E[Y0|X ]

E[Y |X ]

E[Y1|X ]
τS

Figure 2: For X < c we observe E[Y |X ] = E[Y0|X ]; for X ≥ c we observe E[Y |X ] = E[Y1|X ].
The “jump” in E[Y |X ] at c is the conditional ATE when X = c , namely τS ≡ E[Y1 − Y0|X = c].
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Proof of Sharp RD Result - It’s all in the picture!
Since D = 1(X ≥ c):

Y = (1 − D)Y0 + DY1 = 1(X < c)Y0 + 1(X ≥ c)Y1.

Take conditional expectations:

E[Y |X = x ] = 1(x < c)E[Y0|X = x ] + 1(x ≥ c)E[Y1|X = x ]

Take limits as x ↓ c and x ↑ c :

lim
x↓c

E[Y |X = x ] = lim
x↓c

{1(x < c)E[Y0|X = x ] + 1(x ≥ c)E[Y1|X = x ]} = lim
x↓c

E[Y1|X = x ]

lim
x↑c

E[Y |X = x ] = lim
x↑c

{1(x < c)E[Y0|X = x ] + 1(x ≥ c)E[Y1|X = x ]} = lim
x↑c

E[Y0|X = x ]
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Proof of Sharp RD Result - Continued

From Previous Slide:

lim
x↓c

E[Y |X = x ] = lim
x↓c

E[Y1|X = x ], lim
x↑c

E[Y |X = x ] = lim
x↑c

E[Y0|X = x ]

Apply Continuity Assumption:

lim
x↓c

E[Y1|X = x ] = E[Y1|X = c], lim
x↑c

E[Y0|X = x ] = E[Y0|X = c]

Therefore:

lim
x↓c

E[Y |X = x ] − lim
x↑c

E[Y |X = x ] = E[Y1 − Y0|X = c]
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Sekhri (2020) - CATE for Students Near the Cutoff

Salary Exit Test Scores
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Estimation and Inference in a Sharp RD Design
Basic Idea
▶ Only use data from close to the cutoff.
▶ Fit one regression model for E[Y |X = x ] when x < c and another when x ≥ c
▶ Implement using treatment dummy D = 1(X ≥ c) interacted with X .

Some Subtleties
▶ Bias variance tradeoff: how close is close?

▶ Ideally use only observations really close to cutoff =⇒ low bias
▶ But there are very few such observations =⇒ high variance

▶ Allow E[Y |X = x ] to be nonlinear to avoid confusing a “jump” with a “bend”
▶ Don’t use high-order polynomials: Imbens & Gelman (2019; JBES)
▶ Implementation Details, Non-parametrics: Cattaneo, Idrobo & Titiunik (2019)
▶ Classic review article on RD: Lee & Lemieux (2010; JEL)
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Simple Sharp RD Example
Separate Regressions

Yi =
{

α0 + α1Xi + ϵi , for Xi < c
β0 + β1Xi + ϵi , for Xi ≥ c

=⇒ E[Y1 − Y0|X = c] = (β0 − α0) + (β1 − α1)c

Single Regression with Interaction

Yi = γ0 + γ1Di + γ2Xi + γ3DiXi + ϵi

Di = 1(Xi ≥ c)
γ0 = α0, γ1 = (β0 − α0)
γ2 = α1, γ3 = (β1 − α1)

=⇒ E[Y1 − Y0|X = c] = γ1 + γ3c.
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A Simpler Approach: Re-define the Running Variable

Let X̃ ≡ (Xi − c)

Yi = δ0 + δ1Di + δ2X̃i + δ3Di X̃i + ϵi =⇒ E[Y1 − Y0|X = c] = δ1

Why does this work?
▶ Modified running variable X̃i has a cutoff c̃ = 0 regardless of the value of c
▶ Di = 1(Xi ≥ c) = 1(Xi − c ≥ 0) = 1(X̃i ≥ 0)
▶ Read off result from previous slide, setting c = 0.
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Sharp RD Example in R - Parameters

# Parameters of the "separate" regressions
a0 <- 0.3
a1 <- 0.2
b0 <- 0.8
b1 <- -0.3

# Implied parameters of the "joint" regression
g0 <- a0
g1 <- b0 - a0
g2 <- a1
g3 <- b1 - a1
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Sharp RD Example in R - Simulation Draws

# Simulation draws
set.seed(1234)
n <- 500
x <- runif(n)
cutoff <- 0.5
D <- 1 * (x > cutoff)
epsilon <- rnorm(n, sd = 0.1)
y <- g0 + g1 * D + g2 * x + g3 * D * x + epsilon
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Sharp RD Example in R - Estimation and Inference

# Fit linear regression model, centering X around the cutoff
xtilde <- x - cutoff
rd <- lm(y ~ D * xtilde)
library(broom)
tidy(rd)

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.406 0.0129 31.5 1.33e-120
## 2 D 0.269 0.0174 15.5 2.35e- 44
## 3 xtilde 0.247 0.0458 5.39 1.12e- 7
## 4 D:xtilde -0.660 0.0615 -10.7 2.61e- 24
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Sharp RD Example in R - Plotting the Results
library(tidyverse)
ggplot(data.frame(x = x, y = y), aes(x, y, color = factor(D))) +

geom_point() +
geom_smooth(method = 'lm', formula = y ~ x) +
theme(legend.position = 'none') # Get rid of the legend!

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00
x

y

19 / 26



Confusing a “Bend” with a “Jump” - Simulation Design

# Nonlinear simulation design: no discontinuity!
set.seed(1234)
n <- 100
x <- runif(n)
y <- pnorm(x, 0.5, 0.1) + rnorm(n, sd = 0.1)
D <- 1 * (x >= 0.5)

20 / 26



Confusing a “Bend” with a “Jump” - Linear RD Estimates

# Linear RD results
xtilde <- x - 0.5
rd1 <- lm(y ~ D + xtilde + xtilde:D)
tidy(rd1)

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.162 0.0455 3.57 5.63e- 4
## 2 D 0.498 0.0575 8.66 1.11e-13
## 3 xtilde 0.412 0.148 2.78 6.48e- 3
## 4 D:xtilde 0.644 0.203 3.17 2.02e- 3
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Confusing a “Bend” with a “Jump” - Plot of Linear RD
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Confusing a “Bend” with a “Jump” - Quadratic RD Isn’t Fooled!

# Quadratic RD results
rd2 <- lm(y ~ (xtilde + I(xtildeˆ2)) * D)
tidy(rd2)

## # A tibble: 6 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.423 0.0525 8.06 2.37e-12
## 2 xtilde 2.89 0.405 7.15 1.87e-10
## 3 I(xtilde^2) 4.60 0.725 6.35 7.45e- 9
## 4 D 0.0984 0.0614 1.60 1.12e- 1
## 5 xtilde:D 0.658 0.543 1.21 2.29e- 1
## 6 I(xtilde^2):D -10.4 1.09 -9.57 1.48e-15
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Fuzzy RD Example: Jacob & Lefgren (2004; ReStat)1

Research Question
Causal effect of remedial education: summer school and repeating a grade.

Background
▶ Chicago Public Schools (CPS) used to practice social promotion: students advance

to next school grade regardless of academic performance.
▶ Policy change in 1996–1997: achievement thresholds in 3rd, 6th & 8th grades.
▶ End to social promotion: have to pass math and reading tests to advance.
▶ Pass in June =⇒ automatically advance.
▶ Fail in June =⇒ attend summer school and re-test in August.
▶ Fail in August =⇒ repeat a grade.

1Remedial education and student achievement: A regression-discontinuity analysis
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https://doi.org/10.1162/003465304323023778


Fuzzy RD Example: Remedial Education
Why is this an RD design?
Administrative threshold determines treatment: summer school / repeating a grade.

Why isn’t is a sharp RD?
Administrative threshold only imperfectly determined treatment:
▶ 3% of students who failed in June were exempted from Summer School.
▶ 14% of students who failed August re-test were exempted from repeating a grade
▶ Some students were required to repeat a grade despite passing in June.

Fuzzy RD Design
Probability of treatment “jumps” at the cutoff c, but not from zero to one:

lim
x↓c
P(D = 1|X = x) ̸= lim

x↑c
P(D = 1|X = x)
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Fuzzy RD Estimand

τF ≡ limx↓c E[Y |X = x ] − limx↑c E[Y |X = x ]
limx↓c E[D|X = x ] − limx↑c E[D|X = x ]

Fuzzy RD Design
Since D is binary, re-write as: limx↓c E[D|X = x ] ̸= limx↑c E[D|X = x ]

Intuition
▶ Numerator of τF is the sharp RD estimand.
▶ Fuzzy RD: some people below threshold are untreated; some above are treated.2

▶ limx↓c E[Y |X = x ] and limx↑c E[Y |X = x ] both contain a “mix” of Y1 and Y0.
▶ Similar to “reduced form” regression in IV, so divide by “first stage.”

2In Jacob & Lefgren everything is reversed: just flip the running variable.
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