
Selection on Observables

Francis J. DiTraglia

University of Oxford

Core Empirical Research Methods

1 / 31



Potential Outcomes Framework1

▶ Binary Treatment D ∈ {0, 1}
▶ Observed Outcome Y depends on Potential Outcomes (Y0, Y1) via

Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0)

▶ Only one of (Y0, Y1) is observed for any given person at any given time.
▶ The unobserved potential outcome is a counterfactual, i.e. a what if?
▶ Average Treatment Effect: ATE ≡ E(Y1 − Y0).
▶ Treatment on the Treated: TOT ≡ E(Y1 − Y0|D = 1).

1Videos: https://expl.ai/QHUAVRV and https://expl.ai/DWVNRZU.
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Example: Y is Wage, D is Attend University

Counterfactuals
▶ D = 1 =⇒ Y0 is the wage you would have earned if you hadn’t attended.
▶ D = 0 =⇒ Y1 is the wage you would have earned if you had attended.

Treatment Effects
▶ ATE = E(Y1 − Y0) is the average effect of forcing a randomly-chosen person to

attend university.
▶ TOT = E(Y1 − Y0|D = 1) is the average effect of attending university for the sort

of people who choose to attend voluntarily.

Problem: Selection Bias
▶ We don’t force randomly-chosen people to attend university!
▶ People who choose to attend are likely different in many ways
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Why do we study average treatment effects?

Fundamental Problem of Causal Inference
▶ Never observe both Y0 and Y1 at the same time for the same person.
▶ This means we cannot learn the joint distribution of the potential outcomes.2

▶ Treatment effect depends on both potential outcomes: (Y1 − Y0). What to do?

Linearity of Expectation
▶ E[X − Z ] = E[X ] − E[Z ] regardless of the joint distribution of (X , Z ).
▶ Very special property. It doesn’t hold, e.g., for variance, quantiles, etc.
▶ Replace infeasible within-person comparison with between-person comparison:

E[Y1 − Y0] = E[Y1] − E[Y0]

2The joint distribution is not point identified, but it can be bounded. See chapter 3 of the notes.
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Selection Bias
Naïve Comparison of Means

E(Y |D = 1) − E(Y |D = 0) = E(Y1|D = 1) − E(Y0|D = 0)

= E(Y1|D = 1) − E(Y0|D = 0) + E(Y0|D = 1) − E(Y0|D = 1)

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

How does selection matter?
1. TOT is probably different from ATE: selection on gains.

2. Average value of Y0 (“outside option”) probably varies with D.
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Randomization eliminates selection bias.
Independence3

▶ X |= Z is shorthand for “X is statistically independent of Z .”
▶ X |= Z ⇐⇒ f (x , z) = f (x)f (z) for all x and z .
▶ Statistical independence implies conditional mean independence

E[X |Z = z ] ≡
∫ ∞

−∞
x · f (x |z) dx =

∫ ∞

−∞
x · f (x)f (z)

f (z) dx =
∫ ∞

−∞
x · f (x) dx ≡ E[X ]

Random Assignment: D |= (Y0, Y1)

TOT = E(Y1|D = 1) − E(Y0|D = 1) = E(Y1) − E(Y0) ≡ ATE
Selection Bias ≡ E[Y0|D = 1] − E[Y0|D = 0] = E[Y0] − E[Y0] = 0

3See chapter 2 of the notes, https://expl.ai/LXPVDDN and my blog post for more on independence.
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But randomization may be impossible, impractical, or unethical.

Returns to Education
Tempting though it may be during admissions season, I would face some serious
consequences if I randomly admitted students to Oxford!

Women’s Labor Supply
We wouldn’t randomly assign different numbers of children to different women to test
the causal effect on their labor supply.

Fox News and Voting Behavior
We can’t force some people to watch Fox news and others to watch CNN and then keep
track of who they voted for.

Causal inference from observational data is challenging, but it’s often the best we can do.
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Disease Example: Y = 1 means survive, Y = 0 means perish

D Y Y0 Y1 X
Aiden 0 1 1 1 Young
Bella 0 1 1 1 Young
Caden 0 1 1 1 Young
Dakota 1 1 1 1 Young
Ethel 0 0 0 1 Old
Floyd 0 0 0 0 Old
Gladys 0 0 0 0 Old
Herbert 1 1 0 1 Old
Irma 1 0 0 0 Old
Julius 1 0 0 0 Old

Exercise – Calculate the Following
1. ATE

2. E(Y |D = 1) − E(Y |D = 0)

3. TOT

4. Selection Bias
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library(tidyverse)

people <- c("Aiden", "Bella", "Carter", "Dakota", "Ethel", "Floyd",
"Gladys", "Herbert", "Irma", "Julius")

x <- c("young", "young", "young", "young", "old", "old",
"old", "old", "old", "old")

y0 <- c(1, 1, 1, 1, 0, 0, 0, 0, 0, 0)
y1 <- c(1, 1, 1, 1, 1, 0, 0, 1, 0, 0)
d <- c(0, 0, 0, 1, 0, 0, 0, 1, 1, 1)
y <- (1 - d) * y0 + d * y1

tbl <- tibble(name = people, d, y, y0, y1, x)
rm(y0, y1, d, y, x, people)
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ATE <- tbl |>
summarize(mean(y1 - y0)) |>
pull()

TOT <- tbl |>
filter(d == 1) |>
summarize(mean(y1 - y0)) |>
pull()

SB <- tbl |>
group_by(d) |>
summarize(y0_mean = mean(y0)) |>
pull(y0_mean) |>
diff()
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# E(Y|D=1) and E(Y|D=0)
means <- tbl |>

group_by(d) |>
summarize(y_mean = mean(y))

means

## # A tibble: 2 x 2
## d y_mean
## <dbl> <dbl>
## 1 0 0.5
## 2 1 0.5
# Naive difference of means
naive <- means |>

pull(y_mean) |>
diff()
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Solution

# Everything we've calculated
c(ATE = ATE, naive = naive, TOT = TOT, SB = SB)

## ATE naive TOT SB
## 0.20 0.00 0.25 -0.25

▶ Sanity Check: results satisfy the “Fundamental Decomposition”

E(Y |D = 1) − E(Y |D = 0)︸ ︷︷ ︸
Observed Difference of Means

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

▶ Selection into treatment: the treated are older on average.
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Conditional Average Treatment Effects (CATEs)

D Y Y0 Y1 X
Aiden 0 1 1 1 Young
Bella 0 1 1 1 Young
Caden 0 1 1 1 Young
Dakota 1 1 1 1 Young
Ethel 0 0 0 1 Old
Floyd 0 0 0 0 Old
Gladys 0 0 0 0 Old
Herbert 1 1 0 1 Old
Irma 1 0 0 0 Old
Julius 1 0 0 0 Old

Intuition
How do treatment effects vary with
observed characteristics X?

Definition
CATE(x) ≡ E(Y1 − Y0|X = x)

Exercise
1. Compute CATE(Young)

2. Compute CATE(Old)

3. Relate these to the overall ATE.
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Solution: No treatment effect for Young; positive effect for Old.

# Conditional ATEs
tbl |>

group_by(x) |>
summarize(CATE = mean(y1 - y0))

## # A tibble: 2 x 2
## x CATE
## <chr> <dbl>
## 1 old 0.333
## 2 young 0
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Solution: No treatment effect for Young; positive effect for Old.

group_stats <- tbl |>
group_by(x) |>
summarize(CATE_x = mean(y1 - y0), count = n()) |>
mutate(p_x = count / sum(count))

group_stats

## # A tibble: 2 x 4
## x CATE_x count p_x
## <chr> <dbl> <int> <dbl>
## 1 old 0.333 6 0.6
## 2 young 0 4 0.4
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Solution: ATE = E[CATE(X)] by the Law of Iterated Expectations

# E[E(Y1 - Y0 | X)]
group_stats |>

summarize(sum(CATE_x * p_x)) |>
pull()

## [1] 0.2
# E(Y1 - Y0)
tbl |>

summarize(mean(y1 - y0)) |>
pull()

## [1] 0.2
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Wait, what is this lecture supposed to be about again?

D Y Y0 Y1 X
Aiden 0 1 1 1 Young
Bella 0 1 1 1 Young
Caden 0 1 1 1 Young
Dakota 1 1 1 1 Young
Ethel 0 0 0 1 Old
Floyd 0 0 0 0 Old
Gladys 0 0 0 0 Old
Herbert 1 1 0 1 Old
Irma 1 0 0 0 Old
Julius 1 0 0 0 Old

Disease Example
Selection into treatment: naive
comparison of means doesn’t give ATE.

Iterated Expectations
If we learn the CATEs, we can average
them to get the ATE.

Idea
Maybe if we adjust for age, we can
address the selection problem.

Selection-on-observables
A pair of assumptions that shows us when this idea will work out.
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Propensity Score: Who is more likely to be treated?
D Y Y0 Y1 X

Aiden 0 1 1 1 Young
Bella 0 1 1 1 Young
Caden 0 1 1 1 Young
Dakota 1 1 1 1 Young
Ethel 0 0 0 1 Old
Floyd 0 0 0 0 Old
Gladys 0 0 0 0 Old
Herbert 1 1 0 1 Old
Irma 1 0 0 0 Old
Julius 1 0 0 0 Old

Propensity Score p(x)
▶ p(x) ≡ P(D = 1|X = x)
▶ Share treated by age group.

Exercise
Calculate p(Young) and p(Old)

Solution
p(Young) = 1/4, p(Old) = 1/2

Old people are more likely to take treatment and more likely to die with or without it!
Age confounds the relationship between D and Y .
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Wishful Thinking

Wouldn’t it be great if CATE(x) = E(Y |D = 1, X = x) − E(Y |D = 0, X = x)?

D Y Y0 Y1 X
Aiden 0 1 1 1 Young
Bella 0 1 1 1 Young
Caden 0 1 1 1 Young
Dakota 1 1 1 1 Young
Ethel 0 0 0 1 Old
Floyd 0 0 0 0 Old
Gladys 0 0 0 0 Old
Herbert 1 1 0 1 Old
Irma 1 0 0 0 Old
Julius 1 0 0 0 Old

Stratify by Age
▶ Perhaps within age groups there is no

selection problem.
▶ If so, learn the CATE for each group.

Exercise
Check if this claim holds in our example.
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Stratifying by age works in this example
CATE(x) = E(Y |D = 1, X = x) − E(Y |D = 0, X = x)

tbl |>
group_by(x) |>
summarize(CATE = mean(y1-y0)) |>
knitr::kable(digits = 2)

x CATE

old 0.33
young 0.00

tbl |>
group_by(x, d) |>
summarize(y_mean = mean(y)) |>
knitr::kable(digits = 2)

x d y_mean

old 0 0.00
old 1 0.33
young 0 1.00
young 1 1.00

Final Step: Iterated Expectations to Get ATE
ATE = CATE(Young)P(Young) + CATE(Old)P(Old) = 0 × 2/5 + 1/3 × 3/5 = 0.2
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This worked because our example satisfies two key assumptions.
Definition: Conditional Independence
▶ W |= Z |R ⇐⇒ P(W , Z |R) = P(W |R) · P(Z |R).
▶ See chapter 2 of the lecture notes and this video for more details.

Assumption 1 – Selection on Observables:4 D |= (Y0, Y1)|X
▶ Implies that people with the same observed characteristics have the same potential

outcomes, on average, regardless of whether they were actually treated or not.
▶ See my blog post for more discussion of this assumption.

Assumption 2 – Overlap: 0 < p(x) < 1 for all values of x.
▶ Recall that p(x) ≡ P(D = 1|X = x).
▶ Among people with given characteristics x, some but not all are treated.

4This can be weakened to E(Yd |D, X) = E(Yd |X) for d = 0, 1, i.e. mean independence.
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The approach we used above is called “Regression Adjustment”

Intuition
▶ Form strata based on common value x of covariates.
▶ Within each stratum, compute the average outcome among treated and untreated.
▶ Subtract these to estimate CATE(x), the stratum-specific ATE.
▶ Average the stratum-specific ATEs, weighting by the fraction of people in each.

Main Result5

Under the selection on observables and overlap assumptions:

CATE(x) ≡ E(Y1 − Y0|X = x) = E(Y |D = 1, X = x) − E(Y |D = 0, X = x).

By iterated expectations, ATE = E[CATE(X)] so we can learn the ATE.

5See my video for the proof: https://expl.ai/BJWTFKG
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How to implement with a regression? (Assumes all covariates binary)
1. Center all covariates X around their means: X̃ ≡ X − X̄

2. Regress Y on D, X̃ and all interactions.

3. The coefficient on D is the ATE and its standard error is correct.6

library(broom)
tbl |>

mutate(old = (x == 'old'), xtilde = old - mean(old)) |>
lm(y ~ d * xtilde, data = _) |>
tidy() |> filter(term == 'd')

## # A tibble: 1 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 d 0.2 0.224 0.891 0.407

6Technically this ignores estimation error in the mean of X .
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Alternative Approach: Propensity Score Weighting
Intuition
▶ Disease example: older people are more likely to be treated and more likely die

regardless of whether they are treated.
▶ Too few young people among the treated and too few old people among the

untreated relative to what we’d have in a randomized experiment.
▶ To compensate: upweight treated young people untreated old people when

computing average outcomes for the treated and untreated groups.

Main Result7

Under the selection on observables and overlap assumptions:

ATE = E [w1(X) · Y ] − E [w0(X) · Y ] , w1(X) = D
p(X) , w0(X) = 1 − D

1 − p(X)

7See my video for the proof: https://expl.ai/BASRRGX.
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Propensity Score Weighting in Our Example

psw <- tbl |>
group_by(x) |>
mutate(pscore = mean(d)) |>
ungroup() |>
mutate(weight1 = d / pscore,

weight0 = (1 - d) / (1 - pscore))
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Propensity Score Weighting in Our Example
psw |> select(-y0, -y1)

## # A tibble: 10 x 7
## name d y x pscore weight1 weight0
## <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 Aiden 0 1 young 0.25 0 1.33
## 2 Bella 0 1 young 0.25 0 1.33
## 3 Carter 0 1 young 0.25 0 1.33
## 4 Dakota 1 1 young 0.25 4 0
## 5 Ethel 0 0 old 0.5 0 2
## 6 Floyd 0 0 old 0.5 0 2
## 7 Gladys 0 0 old 0.5 0 2
## 8 Herbert 1 1 old 0.5 2 0
## 9 Irma 1 0 old 0.5 2 0
## 10 Julius 1 0 old 0.5 2 0
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Propensity Score Weighting in Our Example

psw |> summarize(sum(weight1), sum(weight0))

## # A tibble: 1 x 2
## `sum(weight1)` `sum(weight0)`
## <dbl> <dbl>
## 1 10 10
psw |>

summarize(mean(weight1 * y) - mean(weight0 * y)) |>
pull()

## [1] 0.2
ATE

## [1] 0.2
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How can we evaluate the assumptions?

Overlap
▶ Since D and X are observed, we can check this directly.
▶ The more characteristics we put into X , the harder it becomes to satisfy overlap.

Selection on Observables
▶ Without outside data or extra assumptions, there’s no way to check this.
▶ Else equal, the more characteristics we put into X , the more plausible this becomes.

Bad Controls
▶ More is not always better. Some characteristics definitely shouldn’t go into X .
▶ This is the topic of our next lecture!
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ATE or TOT?

Maybe we don’t want the ATE
▶ ATE is the average effect of forcing a randomly chosen person to be treated.
▶ But in real life we can’t usually force anyone to be treated; only offer treatment.
▶ TOT is the average benefit of treatment for people who will voluntarily take it.8

Maybe we can’t get the ATE
▶ Models of rational choice assume that agents compare costs and benefits of choices.
▶ Benefit of treatment is equal (or at least related to) to Y1 − Y0.
▶ Selection on observables implies E(Y1 − Y0|D, X) = E(Y1 − Y0|X).
▶ I.e. agents lack (or don’t act on) private information about gains from treatment.

8Another angle: TOT is the forgone benefit per person of discontinuing a program.
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Identifying the TOT with Weaker Assumptions
Assumptions

1. E(Y0|D, X) = E(Y0|X)

2. p(x) < 1 for all x in the support of X .

Why are these assumptions weaker?
▶ Places no restrictions on relationship between (Y1 − Y0) and D.
▶ It’s fine if people select into treatment based on private info about (Y1 − Y0).
▶ Overlap condition is also weaker: it’s fine if there are no treated people for some x

Theorem
TOT = E[Y |D = 1] − EX|D=1 [E(Y |D = 0, X)].

There’s also a version for propensity score weighting...
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Appendix
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Regression Adjustment Derivation9

Since Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0), taking expectations of both sides:

E(Y |X , D) = E(Y0|X , D) + D [E(Y1|X , D) − E(Y0|X , D)]
= E(Y0|X) + D [E(Y1|X) − E(Y0|X)]

by the selection on observables assumption. Substituting D = 0 and D = 1 in turn,

E(Y |X , D = 0) = E(Y0|X), E(Y |X , D = 1) = E(Y1|X).

Therefore,

ATE(X) = E(Y1|X) − E(Y0|X) = E(Y |X , D = 1) − E(Y |X , D = 0).

The overlap assumption ensures that ATE(X) is well-defined for all X .

9Video: https://expl.ai/BJWTFKG
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Propensity Score Weighting Derivation10

Since D is binary, D2 = D, (1 − D)2 = (1 − D), and D(1 − D) = 0. Hence,

DY = D [(1 − D)Y0 + DY1]
= D2Y1 + D(1 − D)Y0

= DY1

(1 − D)Y = (1 − D) [(1 − D)Y0 + DY1]
= (1 − D)DY1 + (1 − D)2Y0

= (1 − D)Y0.

10Video: https://expl.ai/BASRRGX
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Propensity Score Weighting Derivation Continued

Since DY = DY1,

E[DY |X ] = E[DY1|X ] = ED|X [D E(Y1|D, X)] (Iterated Expectations)
= ED|X [D E(Y1|X)] (Selection on Observables)
= E(D|X)E(Y1|X) (Take out what is known)
= p(X)E(Y1|X). (Defn. of Propensity Score)

Since (1 − D)Y = (1 − D)Y0, an effectively identical argument gives:

E[(1 − D)Y |X ] = E[(1 − D)Y0|X ] = [1 − p(X)]E(Y0|X).
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Propensity Score Weighting Derivation Continued Again
Previous slide:

E[DY |X ] = p(X)E(Y1|X), E[(1 − D)Y |X ] = [1 − p(X)]E(Y0|X)

Dividing through by p(X) and [1 − p(X)], respectively, gives

E
[ DY

p(X)

∣∣∣∣ X
]

= E(Y1|X), E
[ (1 − D)Y

1 − p(X)

∣∣∣∣ X
]

= E(Y0|X)

since we can bring any function of X inside the conditional expectations.11 Finally, by
iterated expectations:

E
[ DY

p(X)

]
= E(Y1), E

[(1 − D)Y
1 − p(X)

]
= E(Y0)

and the difference of these is the ATE.
11This is simply “taking out what is known” in reverse.
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TOT via Regression Adjustment Derivation
Since Y = Y1 when D = 1,

TOT ≡ E(Y1|D = 1) − E(Y0|D = 1) = E(Y |D = 1) − E(Y0|D = 1).

Now, by iterated expectations

E(Y0|D = 1) = EX|D=1 [E(Y0|D = 1, X )] = EX|D=1 [E(Y0|D = 0, X)]

since E(Y0|D, X) = E(Y0|X) by assumption. But since Y = Y0 given D = 0,

E(Y0|D = 0, X) = E(Y |D = 0, X).

Therefore,

E(Y0|D = 1) = EX|D=1 [E(Y |D = 0, X)] =
∫

X
E(Y |D = 0, X = x)f (x|D = 1) dx.
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