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Remainder of the Course: Causal Inference

▶ So far: causality in linear models with homogeneous effects.
1. Linear Regression
2. Instrumental variables
3. Fixed effects

▶ Now: heterogenous effects and weaker modeling assumptions.
1. Selection on Observables (Today, chapter 4)
2. Directed Acyclic Graphs and Bad Controls (Tomorrow)
3. Regression Discontinuity (chapter 7)
4. Local Average Treatment Effects (chapter 5)
5. Difference-in-differences (chapter 8)
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Potential Outcomes Framework1

▶ Binary Treatment D ∈ {0, 1}
▶ Observed Outcome Y depends on Potential Outcomes (Y0, Y1) via

Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0)

▶ Only one of (Y0, Y1) is observed for any given person at any given time.
▶ The unobserved potential outcome is a counterfactual, i.e. a what if?
▶ Average Treatment Effect: ATE ≡ E(Y1 − Y0).
▶ Treatment on the Treated: TOT ≡ E(Y1 − Y0|D = 1).

1Videos: https://expl.ai/QHUAVRV and https://expl.ai/DWVNRZU.
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Example: Y is Wage, D is Attend University

Counterfactuals
▶ D = 1 =⇒ Y0 is the wage you would have earned if you hadn’t attended.
▶ D = 0 =⇒ Y1 is the wage you would have earned if you had attended.

Treatment Effects
▶ ATE = E(Y1 − Y0) is the average effect of forcing a randomly-chosen person to

attend university.
▶ TOT = E(Y1 − Y0|D = 1) is the average effect of attending university for the sort

of people who choose to attend voluntarily.

Problem: Selection Bias
▶ We don’t force randomly-chosen people to attend university!
▶ People who choose to attend are likely different in many ways
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Why do we study average treatment effects?

Fundamental Problem of Causal Inference
▶ Never observe both Y0 and Y1 at the same time for the same person.
▶ This means we cannot learn the joint distribution of the potential outcomes.2

▶ Treatment effect depends on both potential outcomes: (Y1 − Y0). What to do?

Linearity of Expectation
▶ E[X − Z ] = E[X ] − E[Z ] regardless of the joint distribution of (X , Z ).
▶ Very special property. It doesn’t hold, e.g., for variance, quantiles, etc.
▶ Replace infeasible within-person comparison with between-person comparison:

E[Y1 − Y0] = E[Y1] − E[Y0]

2The joint distribution is not point identified, but it can be bounded. See chapter 3 of the notes.
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Selection Bias
Naïve Comparison of Means

E(Y |D = 1) − E(Y |D = 0) = E(Y1|D = 1) − E(Y0|D = 0)

= E(Y1|D = 1) − E(Y0|D = 0) + E(Y0|D = 1) − E(Y0|D = 1)

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

How does selection matter?
1. TOT is probably different from ATE: selection on gains.

2. Average value of Y0 (“outside option”) probably varies with D.
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Randomization eliminates selection bias.
Independence3

▶ X |= Z is shorthand for “X is statistically independent of Z .”
▶ X |= Z ⇐⇒ f (x , z) = f (x)f (z) for all x and z .
▶ Statistical independence implies conditional mean independence

E[X |Z = z ] ≡
∫ ∞

−∞
x · f (x |z) dx =

∫ ∞

−∞
x · f (x)f (z)

f (z) dx =
∫ ∞

−∞
x · f (x) dx ≡ E[X ]

Random Assignment: D |= (Y0, Y1)

TOT = E(Y1|D = 1) − E(Y0|D = 1) = E(Y1) − E(Y0) ≡ ATE
Selection Bias ≡ E[Y0|D = 1] − E[Y0|D = 0] = E[Y0] − E[Y0] = 0

3See chapter 2 of the notes, https://expl.ai/LXPVDDN and my blog post for more on independence.
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But randomization may be impossible, impractical, or unethical.

Returns to Education
Tempting though it may be during admissions season, I would face some serious
consequences if I randomly admitted students to Oxford!

Women’s Labor Supply
We wouldn’t randomly assign different numbers of children to different women to test
the causal effect on their labor supply.

Fox News and Voting Behavior
We can’t force some people to watch Fox news and others to watch CNN and then keep
track of who they voted for.

Causal inference from observational data is challenging, but it’s often the best we can do.
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Does education cause political participation?4

▶ College graduates are more likely to vote, volunteer for campaigns, contact elected
representatives, participate in demonstrations.

▶ Y = index of political participation: ↑ Y means ↑ participation.
▶ D = 0 is no college; D = 1 is college
▶ It seems implausible that D |= (Y0, Y1) in this example.
▶ E.g. family background may cause both education and political participation.

An Idea
If we condition on family background, income, sex, race, and other observed variables,
perhaps we can break the dependence between D and (Y0, Y1).

4Kam and Palmer (2008)
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Assumptions
Propensity Score p(X)
Treatment probability given observed covariates: p(X) ≡ P(D = 1|X) = E(D|X)

Selection on Observables Assumption5

E(Y0|X , D) = E(Y0|X), and E(Y1|X , D) = E(Y1|X).
▶ Conditional on X , Y0 and Y1 are mean independent of D.
▶ People with the same observed characteristics have the same potential outcomes,

on average, regardless of whether they were actually treated or not.

Overlap Assumption
▶ 0 < p(x) < 1 for all x in the support of X .
▶ Among people with given characteristics, some but not all are treated.

5See my blog post for a discussion of what this assumption does not mean.
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How can we evaluate these assumptions?

Overlap
▶ Since D and X are observed, we can check this directly.
▶ The more characteristics we put into X , the harder it becomes to satisfy overlap.

Selection on Observables
▶ Without auxiliary data or extra assumptions, there’s no way to check this.
▶ Else equal, the more characteristics we put into X , the more plausible this becomes.

Bad Controls
▶ More is not always better. Some characteristics definitely shouldn’t go into X .
▶ This deserves a lecture of its own. We’ll discuss in more detail next time.
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Simulation Example

set.seed(5672349)

n <- 5000
x1 <- rbinom(n, 1, 0.25)
x2 <- rnorm(n, 4)

p <- plogis(-3 + 0.4 * x1 + 0.5 * x2 + 0.3 * x1 * x2)
d <- rbinom(n, 1, p)

y0 <- 0.05 * x1 + 0.15 * x2 + 0.25 * x1 * x2 + rnorm(n, 0.1)
y1 <- 0.1 * x1 + 0.1 * x2 + 0.35 * x1 * x2 + rnorm(n, 0.1)
y <- (1 - d) * y0 + d * y1
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ATE, TOT, and Selection Bias in Simulation Example

c(ATE = mean(y1 - y0),
TOT = mean(y1[d == 1]) - mean(y0[d == 1]),
selection_bias = mean(y0[d == 1]) - mean(y0[d == 0]),
naive = mean(y[d == 1]) - mean(y[d == 0])) |>
round(2)

## ATE TOT selection_bias naive
## -0.11 0.01 0.38 0.39
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First Approach: Regression Adjustment

Intuition
▶ Form strata based on common value x of covariates.
▶ Within each stratum, compute the average outcome among treated and untreated.
▶ Subtract these to estimate ATE(x), the stratum-specific ATE.
▶ Average the stratum-specific ATEs, weighting by the number of people in each.

Theorem
Under the selection on observables and overlap assumptions:

ATE(X) ≡ E(Y1 − Y0|X) = E(Y |X , D = 1) − E(Y |X , D = 0).

By iterated expectations, ATE = E[ATE(X)] so the ATE is identified.
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Regression Adjustment Derivation6

Since Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0), taking expectations of both sides:

E(Y |X , D) = E(Y0|X , D) + D [E(Y1|X , D) − E(Y0|X , D)]
= E(Y0|X) + D [E(Y1|X) − E(Y0|X)]

by the selection on observables assumption. Substituting D = 0 and D = 1 in turn,

E(Y |X , D = 0) = E(Y0|X), E(Y |X , D = 1) = E(Y1|X).

Therefore,

ATE(X) = E(Y1|X) − E(Y0|X) = E(Y |X , D = 1) − E(Y |X , D = 0).

The overlap assumption ensures that ATE(X) is well-defined for all X .

6Video: https://expl.ai/BJWTFKG
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Regression Adjustment: Simulation Example

reg0 <- lm(y ~ x1 * x2, subset = (d == 0))
reg1 <- lm(y ~ x1 * x2, subset = (d == 1))

y0_pred <- predict(reg0, data.frame(x1 = x1, x2 = x2))
y1_pred <- predict(reg1, data.frame(x1 = x1, x2 = x2))

c(ATE = mean(y1 - y0),
reg_adj = mean(y1_pred - y0_pred),
naive = mean(y[d == 1]) - mean(y[d == 0])) |>
round(2)

## ATE reg_adj naive
## -0.11 -0.08 0.39
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Another way to carry out regression adjustment. . .

Unlike the previous approach, this one provides a standard error automatically.7

library(tidyverse); library(broom)
x1_tilde <- x1 - mean(x1)
x2_tilde <- x2 - mean(x2)
reg_combined <- lm(y ~ d + (x1 * x2) + d:(x1_tilde * x2_tilde))

reg_combined |> tidy() |> filter(term == 'd') |>
select(estimate, std.error) |> round(2)

## # A tibble: 1 x 2
## estimate std.error
## <dbl> <dbl>
## 1 -0.08 0.03

7Technically we should account for estimation uncertainty in X̄ .
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Second Approach: Propensity Score Weighting

Intuition
▶ Suppose that biological sex causes D and that potential outcomes vary with sex.
▶ Women more likely to be treated than men ⇒ too few men among the treated and

too few women among the untreated.
▶ To compensate: upweight treated men and untreated women when computing the

average outcomes for treated and untreated groups.

Theorem
Under the selection on observables and overlap assumptions:

ATE = E
[ DY

p(X)

]
− E

[(1 − D)Y
1 − p(X)

]
= E

[ {D − p(X)} Y
p(X) {1 − p(X)}

]
.
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Propensity Score Weighting Derivation8

Since D is binary, D2 = D, (1 − D)2 = (1 − D), and D(1 − D) = 0. Hence,

DY = D [(1 − D)Y0 + DY1]
= D2Y1 + D(1 − D)Y0

= DY1

(1 − D)Y = (1 − D) [(1 − D)Y0 + DY1]
= (1 − D)DY1 + (1 − D)2Y0

= (1 − D)Y0.

8Video: https://expl.ai/BASRRGX
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Propensity Score Weighting Derivation Continued

Since DY = DY1,

E[DY |X ] = E[DY1|X ] = ED|X [D E(Y1|D, X)] (Iterated Expectations)
= ED|X [D E(Y1|X)] (Selection on Observables)
= E(D|X)E(Y1|X) (Take out what is known)
= p(X)E(Y1|X). (Defn. of Propensity Score)

Since (1 − D)Y = (1 − D)Y0, an effectively identical argument gives:

E[(1 − D)Y |X ] = E[(1 − D)Y0|X ] = [1 − p(X)]E(Y0|X).
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Propensity Score Weighting Derivation Continued Again
Previous slide:

E[DY |X ] = p(X)E(Y1|X), E[(1 − D)Y |X ] = [1 − p(X)]E(Y0|X)

Dividing through by p(X) and [1 − p(X)], respectively, gives

E
[ DY

p(X)

∣∣∣∣ X
]

= E(Y1|X), E
[ (1 − D)Y

1 − p(X)

∣∣∣∣ X
]

= E(Y0|X)

since we can bring any function of X inside the conditional expectations.9 Finally, by
iterated expectations:

E
[ DY

p(X)

]
= E(Y1), E

[(1 − D)Y
1 − p(X)

]
= E(Y0)

and the difference of these is the ATE.
9This is simply “taking out what is known” in reverse.
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Propensity Score Weighting: Simulation Example
lreg <- glm(d ~ x1 * x2, family = binomial())

p_scores <- predict(lreg, data.frame(x1 = x1, x2 = x2),
type = 'response') # CRUCIAL!

psw <- mean(d * y / p_scores) - mean((1 - d) * y / (1 - p_scores))

c(psw = psw,
reg_adj = mean(y1_pred - y0_pred),
ATE = mean(y1 - y0),
naive = mean(y[d == 1]) - mean(y[d == 0])) |>
round(2)

## psw reg_adj ATE naive
## -0.09 -0.08 -0.11 0.39
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ATE or TOT?

Maybe we don’t want the ATE
▶ ATE is the average effect of forcing a randomly chosen person to be treated.
▶ But in real life we can’t usually force anyone to be treated; only offer treatment.
▶ TOT is the average benefit of treatment for people who will voluntarily take it.10

Maybe we can’t get the ATE
▶ Models of rational choice assume that agents compare costs and benefits of choices.
▶ Benefit of treatment is equal (or at least related to) to Y1 − Y0.
▶ Selection on observables implies E(Y1 − Y0|D, X) = E(Y1 − Y0|X).
▶ I.e. agents lack (or don’t act on) private information about gains from treatment.

10Another angle: TOT is the forgone benefit per person of discontinuing a program.
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Identifying the TOT with Weaker Assumptions
Assumptions

1. E(Y0|D, X) = E(Y0|X)

2. p(x) < 1 for all x in the support of X .

Why are these assumptions weaker?
▶ Places no restrictions on relationship between (Y1 − Y0) and D.
▶ It’s fine if people select into treatment based on private info about (Y1 − Y0).
▶ Overlap condition is also weaker: it’s fine if there are no treated people for some x

Theorem
TOT = E[Y |D = 1] − EX|D=1 [E(Y |D = 0, X)].

There’s also a version for propensity score weighting...
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TOT Derivation
Since Y = Y1 when D = 1,

TOT ≡ E(Y1|D = 1) − E(Y0|D = 1) = E(Y |D = 1) − E(Y0|D = 1).

Now, by iterated expectations

E(Y0|D = 1) = EX|D=1 [E(Y0|D = 1, X )] = EX|D=1 [E(Y0|D = 0, X)]

since E(Y0|D, X) = E(Y0|X) by assumption. But since Y = Y0 given D = 0,

E(Y0|D = 0, X) = E(Y |D = 0, X).

Therefore,

E(Y0|D = 1) = EX|D=1 [E(Y |D = 0, X)] =
∫

X
E(Y |D = 0, X = x)f (x|D = 1) dx.
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Regression Adjustment for the TOT

x_treated <- tibble(x1, x2, d) |>
filter(d == 1)

y0_pred_treated <- predict(reg0, x_treated)

c(TOT = mean(y1[d == 1]) - mean(y0[d == 1]),
reg_adj = mean(y[d == 1]) - mean(y0_pred_treated)) |>
round(2)

## TOT reg_adj
## 0.01 -0.03
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Next year I’ll add some slides about matching!

▶ An alternative to propensity score weighting and regression adjustment.
▶ Relies on effectively identical assumptions, but computed differently.
▶ Simplest version: use X to find “most similar” control for each treated unit, then

subtract outcomes for the resulting matched pairs and average.
▶ For more, see Stuart (2010) and Dehejia & Wahba (2002).
▶ The Kam and Palmer (2008) paper mentioned above also uses matching.
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