
Homework Problems

Econ 722

Spring 2019

Theoretical Problems

1. Let Θ be a discrete set and π be a prior distribution that gives strictly positive probability

to each element of Θ. Show that if θ̂ is a Bayes rule with respect to π, it is admissible.

2. Derive the KL divergence from a N(µ0, σ
2
0) distribution to a N(µ1, σ

2
1) distribution.

3. Suppose we observe a random sample {(xt, yt)}Tt=1 from some population and decide to

predict y from x using the following linear model:

yt = x′
tβ + εt

Let β̂ denote the ordinary least squares estimator of β based on {(xt, yt)}Tt=1. Now sup-

pose that we observe a second random sample {(x̃t, ỹt)}Tt=1 from the sample population

that is independent of the first. Show that

E

[
1

T

T∑
t=1

(yt − x′
tβ̂)

2

]
≤ E

[
1

T

T∑
t=1

(ỹt − x̃′
tβ̂)

2

]
In other words, show that the in-sample squared prediction error is an overly optimistic

estimator of the out-of-sample squared prediction error.

4. In this question you’ll derive a computational shortcut for leave-one-out cross-validation

in the special case of least-squares estimation. (The same basic idea holds for any linear

smoother.) Let β̂ be the full-sample least squares estimator, and β̂(t) be the estimator

that leaves out observation t. Similarly, let ŷt = x′
tβ̂ and ŷ(t) = x′

tβ̂(t).

(a) Let X be a T × p design matrix with full column rank, and define

A = X ′X =
T∑
t=1

xtx
′
t = xtx

′
t +

∑
k 6=t

xkx
′
k = A(t) + xtx

′
t

1



Show that

A−1 = A−1
(t) −

A−1
t xtx

′
tA

−1
(t)

1 + x′
tA

−1
(t)xt

where you may assume that A(t) is also of rank p.

(b) Let {h1, . . . , hT} = diag{IT −X(X ′X)−1X ′}. Show that

ht = 1− x′
tA

−1xt =
1

1 + x′
tA

−1
(t)xt

(c) Let w =
∑

k 6=t xkyk. Now, note that we can write β̂ = (A(t)+xtx
′
t)

−1(w+xtyt) and

x′
tβ̂(t) = x′

tA
−1
(t)w. Use these facts along with the results you proved in the preceding

parts to show that (yt − ŷ(t)) = (yt − ŷt)/ht.

(d) Suppose that we wanted to carry out leave-one-out cross-validation under squared

error loss:

CV1 =
1

T

T∑
t=1

(yt − ŷ(t))
2

In light of the preceding parts, explain how we could carry out this calculation

without explicitly calculating β̂(t) for each observation t.

5. This question asks you to derive some simple results for concerning influence functions.

(a) A functional that takes the form T(G) =
∫∞
−∞ u(z) dG(z) for some function u is

called a linear functional. Derive the influence function of a linear functional.

(b) The mean µ of a distribution G can be expressed as a linear functional. Using part

(a), show that the influence function of the mean equals y − µ.

(c) Let T be a R-valued functional that depends on two other R-valued functionals T1

and T2 according to T(G) = h (T1(G),T2(G)) where h is a continuously differen-

tiable function from R2 to R. Derive an expression for the influence function ψ(G, y)

of T in terms of h and the influence functions ψ1(G, y), ψ2(G, y) of T1,T2. Hint:

the influence function is defined as a limit but is equivalent to a partial derivative.

(d) Use parts (a)–(c) to show that the influence function of the variance σ2 of a distri-

bution equals (y − µ)2 − σ2.

6. This question asks you to fill in some of the missing details from the example comparing

AIC and BIC in Lecture #4. Suppose that Y1, . . . , YT ∼ iid N(µ, 1). Let `T (µ) denote

the sample log-likelihood function evaluated at µ, where Var(Yi) = 1 is assumed known.
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(a) Show that
∑T

t=1(Yt − µ)2 = T (Ȳ − µ)2 + T σ̂2 and use this result to establish that

`T (µ) = Constant− T

2
(Ȳ − µ)2.

(b) Suppose that g is a N(µ, 1) density while h is a N(0, 1) density. Show that

KL(g;h) = µ2/2. (If you like, you can simply apply the formula from Problem

Set #1, although a direct argument is very simple.)

(c) Let Z ∼ N(0, 1), and X = 1 {A} where A =
{
|
√
Tµ+ Z| ≥

√
dT

}
. Show that

E
{[(√

Tµ+ Z
)
X −

√
Tµ

]2}
= P(A) E

[
Z2|X = 1

]
+ [1− P(A)]Tµ2

(d) Continuing from the preceding part, argue that the conditional density of Z given

X = 1 is 1(A)ϕ(z)/P(A). Using this, along with E[Z2] = 1, show that

P(A)E[Z2|X = 1] = 1−
∫ b

a

z2ϕ(z) dz

(e) Continuing from the preceding part, show that∫ b

a

z2ϕ(z) dz = aϕ(a)− bϕ(b) + Φ(b)− Φ(a)

(f) Combine the three preceding parts and calculate P(A) to show that

R(µ, µ̂) = 1 + [bφ(b)− aφ(a)] + (Tµ2 − 1) [Φ(b)− Φ(a)]

where a = −
√
dT −

√
Tµ and b =

√
dT −

√
Tµ.

7. This question concerns the so-called “GMM-AIC” moment selection criterion from An-

drews (1999) which takes the form

GMM-AIC(c) = JT (c)− 2(|c| − p)

where JT (c) denotes the J-test statistic for the estimator based on the collection of

moment restrictions indexed by c, |c| denotes the number of moment conditions in speci-

fication c and p denotes the number of parameters. Characterize the asymptotic behavior

of this criterion under the assumptions of the consistency theorem we proved in class.

Hint: there are two cases, which parallel our proof from class.
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8. The FMSC of DiTraglia (2016) is a moment selection criterion constructed by deriving

the asymptotic MSE of an estimator of some “target parameter” µ, under local mis-

specification. A very similar idea can also be used for model selection in maximum

likelihood models: this is the so-called “Focused Information Criterion” of Claeskens

& Hjort (2003). In this question you will derive the simplest possible example of the

FIC. This will require you to “get your hands dirty” with local asymptotics, so you may

want to read the beginning of Chapter 4 from the lecture notes before attempting this

problem. Consider a linear regression model with two regressors x and z

yt = θxt + γzt + εt

where {(xt, zt, εt)}Tt=1 ∼ iid with means (0, 0, 0) and variances (σ2
x, σ

2
z , σ

2
ε ). For simplic-

ity, assume the errors are homoskedastic. Our goal is to estimate θ with minimum

MSE, and the model selection decision is whether or not to include z in the regres-

sion. Consider two estimators of θ: the “long” regression estimator θ̂ calculated from

(θ̂, γ̂)′ =
{
[x, z]′ [x, z]

}−1
[x, z]′ y and the “short” regression estimator θ̃ = (x′x)−1 x′y.

Since all random variables are mean zero, you do not have to include a constant.

(a) Suppose that γ is local to zero, in other words γ = δ/
√
T . Under this assumption,

derive the asymptotic distributions of
√
T (θ̃ − θ) and

√
T

[
θ̂ − θ

γ̂ − 0

]
.

Note that the limit distribution of γ̂ is centered around zero since δ/
√
T → 0 as

T → ∞. You should find that θ̃ has an asymptotic bias that depends on δ.

(b) Under what conditions does θ̃ have a lower AMSE than θ̂? Note that your answer

should depend on δ. Explain the intuition for your result.

(c) Propose an asymptotically unbiased estimator of δ constructed from
√
T γ̂.

(d) Combine steps (a) and (c) to propose asymptotically unbiased estimators of the

AMSE of θ̂ and θ̃.

(e) The FIC chooses the estimator with the lower estimated AMSE from step (d). How

does this rule compare to AIC, BIC, Mallow’s Cp, and a t-test of the null hypothesis

H : γ = 0 at the α×100% level? Comment briefly on any relationships you uncover.

Page 4



9. Consider a regression model of the form yt = x′
tβ + εt where xt is (p × 1) and satisfies

T−1
∑T

t=1 xtx
′
t = Ip and εt

iid∼ N(0, σ2) where σ2 is finite. You may treat the regressors

as fixed rather than random in your derivations.

(a) What is the MLE for β in this setting? Derive its finite-sample distribution. Is the

MLE consistent for β?

(b) Derive a closed-form expression for the Ridge Regression estimator of β in this

setting, expressed in terms of the MLE and the shrinkage parameter λ. Use this

result to write out the finite-sample distribution of the Ridge Estimator.

Important Note: It will be helpful to factor a T from λ in your derivation.

When you do this, you can still call the re-scaled shrinkage parameter λ rather

than λ/T . Remember: we are free to choose λ so its precise scaling is irrelevant.

Writing things this way will make your expression for the Ridge estimator match

the (slightly different) example from the lecture notes and should help to avoid

confusion in the parts that follow below.

(c) First, suppose that we choose a fixed positive value for λ. Explain why the corre-

sponding Ridge estimator will not be consistent for β as T → ∞ in this case. Next

suppose that, instead of fixing λ we decide to allow it to change with sample size.

State sufficient conditions on the sequence λT to ensure that the Ridge estimator

is consistent.

(d) Derive a closed-form expression for the LASSO estimator in this example, expressed

in terms of the MLE and the shrinkage parameter λ.

Important Note: As in the Ridge example above, and for the same reason, if you

encounter the term Tλ you can forget about the T and just call this λ.

(e) For sufficiently large λ, LASSO shrinks some coefficients all the way to zero and

hence can be used to carry out variable selection. Derive an exact finite sample

expression for the probability that LASSO decides to “exclude” regressor j, that is

P (β̂Lasso
j = 0). Explain the intuition with the help of one or more plots.

(f) Now suppose we allow the LASSO shrinkage parameter to depend on sample size.

Prove that limT→∞ λT = 0 implies that the probability of LASSO excluding a

relevant regressor, i.e. one with a non-zero coefficient, converges to zero.

(g) Now consider the case of an irrelevant regressor, i.e. βj = 0. What is the probability

that LASSO excludes such a regressor? If we allow λT to depend on sample size,

Page 5



what condition on the rate at which λT → 0 is required to ensure that LASSO

excludes irrelevant regressors with probability approaching one in the limit? What

happens if λT → 0 at a slower rate?

(h) Combining the two preceding parts gives a consistency result for LASSO: provided

that λT converges to zero at a sufficiently fast rate, all relevent regressors are se-

lected and all irrelevant regressors excluded with probability approaching one in the

limit. Crucially, however, this result depended on βj being fixed. Suppose instead

that we consider a sequence of local parameter values βj,T = δ/
√
T where δ is a

constant. When δ 6= 0, this captures in asymptotic form the idea of “small but

nonzero” coefficients. How do the results of the preceding parts change under these

asymptotics? Discuss your findings.

Computational Problems

10. Let X ∼ N(θ, 1) where θ ∈ Θ = [−m,m] m > 0. Further define:

π(θ) =


1/2, θ = −m
0, −m < θ < m

1/2, θ = m

(a) Show that θ̂(X) = m tanh(mX) is the Bayes rule with respect to π under squared

error loss. Recall that tanh(z) = (ez − e−z)/(ez + e−z).

(b) Write code to calculate the risk function R(θ, θ̂) and Bayes risk r(π, θ̂) numerically.

I suggest numerical integration rather than a simulation-based approximation.

(c) For each value of m ∈ {0.5, 0.75, 1, 1.25} plot the following:

(i) X vs. θ̂(X) for X ∈ [−3, 3], with the 45-degree line indicated in red.

(ii) θ vs. R(θ, θ̂) for θ ∈ [−m,m] with r(π, θ̂) indicated as a red horizontal line.

(d) Explain your findings from part (c) above. How does θ̂ compare to the MLE? For

which, if any, of the values of m ∈ {0.5, 0.75, 1, 1.25} is θ̂ minimax?

11. Let X ∼ N(θ, I) where θ is a p-vector for p ≥ 3 and I is the (p× p) identity matrix. For

this problem, we showed in class that the maximum likelihood estimator for θ, θ̂ = X is
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inadmissible, as it is dominated by the James-Stein estimator:

θ̂JS = θ̂

(
1− p− 2

θ̂′θ̂

)
I also argued, without proof, that the James-Stein estimator is itself inadmissible, as it

is dominated by the so-called “positive-part” James-Stein estimator, namely

θ̃JS = θ̂

[
max

{
1− p− 2

θ̂′θ̂
, 0

}]
This estimator takes its name from the fact that, unlike the plain-vanilla James-Stein

estimator, it can never shrink “past” zero and hence cannot have a different sign than

the MLE. Design and carry out a simulation experiment comparing the risk of θ̂, θ̂JS,

and θ̃JS under squared error loss. Your results should be based on 10,000 simulation

replications over a range of values for p ≥ 3 and different configurations of the true mean

vector θ. Write a brief summary of your results, accompanied by tables and or figures,

as needed.

12. Consider a collection of AR(p) models for p = 1, 2, . . . , 6. In this question you will

choose the lag order p using AIC, BIC, and cross-validation under two different true

data generating processes:

DGP1: yt = 0.7yt−1 + εt

DGP2: zt = εt + 0.6εt−1

where εt ∼ iid N(0, 1) for t = 1, . . . , T and T = 100. Note that DGP1 is among the

candidate AR(p) specifications under consideration while DGP2 is not. To answer this

question, you will need to consult some papers from the shared Dropbox folder for

the course: Burman, Chow & Nolan (1994); Racine (2000), Ng & Perron (2005); and

Bergmeir, Hyndman & Koo (2015). In all of calculations below, carry out estimation

via least-squares (the conditional maximum likelihood estimator). Note that when you

estimate an AR model in this fashion, you will need to drop the first p observations in

your sample, meaning that the different AR models will be use different sample sizes.

(a) Carry out a simulation study to calculate the one-step-ahead predictive MSE of

each of the six AR specifications under both data generating processes. Briefly

discuss your findings. In particular, you will need to carry out the following steps:

(i) Generate ε0, ε1, . . . , ε100, ε101 ∼ iid N(0, 1).
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(ii) Set y0 = 0 and yt = 0.7yt−1 + εt for t = 1, 2, . . . , 100, 101.

(iii) Set zt = εt + 0.6εt−1 for t = 1, 2, . . . , 100, 101. (For z1 you will need to use ε0.)

(iv) Fit AR(p) models for p = 1, 2, . . . , 6 via conditional maximum likelihood to

{y1, . . . , y100}. For each lag-length p construct an out-of-sample forecast ŷ101(p)

of y101 based on your fitted model.

(v) Do the same as in the preceding step for z: fit AR(p) models for p = 1, . . . , 6

using {z1, . . . , z100} and construct an out-of-sample forecast ẑ101(p) of z101.

(vi) For each AR(p) model and each DGP, calculate the squared forecast error:

[y101 − ŷ101(p)]
2 and [z101 − ẑ101(p)]

2.

(vii) Repeat the above steps 10,000 times, storing the squared forecast errors for

each DGP and AR lag length in each replication. Use the sample mean of

the squared forecast errors across replications to approximate one-step-ahead

sample predictive MSE.

(b) Based on the discussion in Ng and Perron (2005), what are the complications in

defining AIC and BIC for AR(p) models? On the basis of their simulation results,

what formulas do you suggest using for AIC and BIC in this setting?

(c) Based on Burman, Chow & Nolan (1994); Racine (2000); and Bergmeir, Hyndman

& Koo (2015) what are the complications in applying cross-validation to AR(p)

models? How do you suggest using cross-validation to select the AR lag order?

(d) Given your choices in parts (b) and (c), carry out a simulation study with 10,000

replications comparing AIC, BIC and cross-validation under each of the two DGPs.

For each DGP, calculate the fraction of replications in which a particular criterion

(AIC, BIC, or Cross-Validation) selects each lag order. Briefly discuss your findings.

13. This question and the one that follows it are based on Stock and Watson (JBES, 2012)

“Generalized Shrinkage Methods for Forecasting Using Many Predictors.” You can

download the paper, a supplemental appendix, data and replication files from Mark

Watson’s webpage at https://www.princeton.edu/~mwatson/publi.html

(a) Read the Stock and Watson (2012) paper. Provide a brief (one or two paragraph)

summary of the main findings in the paper.

(b) Familiarize yourself with the data set. The transformed series which Stock and

Watson use in their estimation are posted at http://ditraglia.com/econ722/

Page 8

https://www.princeton.edu/~mwatson/publi.html
http://ditraglia.com/econ722/SW2012data.csv


SW2012data.csv. Take a look at Section B of the Supplemental Appendix to un-

derstand how the raw data (you can find them in the replication zip file on Mark’s

webpage) are transformed into the data that I have posted. Compare the GDP

growth series in the Stock and Watson data set to a GDP growth series that you

construct from FRED data.

(c) Compute the first 20 principal components from 108 lower-level disaggregates.1 How

much variation in each of the 108 series is explained by the first or by the first two

principal components? Think carefully about how to present this information in an

efficient manner.

14. In this question you will construct diffusion index forecasts of real GDP (GDP 251),

consumption (GDP252), and real government consumption expenditures (GDP265) fol-

lowing Stock & Watson (2012). The data you will need for this exercise are posted at

http://ditraglia.com/econ722/SW2012data.csv. For each series and each part of

this question you will construct one-step-ahead, pseudo-out-of-sample forecasts based

on a rolling window of the most recent 100 observations and use RMSE to compare the

different forecasting methods. (The procedure is detailed in section 3.1 of the paper.)

Note that you will not use cross-validation in this question.

(a) First try to replicate Stock and Watson’s (2012) one-step-ahead RMSE results for

the AR(4) model and the OLS model, both relative to the DFM5. These appear in

Table S-8 in the online supplemental appendix and are described in section 4.1 of

the paper.

(b) An AR(4) model may be somewhat too complicated to serve as a reasonable bench-

mark for the DFM5. Augment your results from the preceding part by adding an

AR(1) model as well as two model-selection based AR forecasting procedures: one

using AIC and another using BIC. How do the results compare? Do they differ

across the three series?

(c) Although Stock & Watson (2012) explore a number of shrinkage estimators in their

paper, Ridge and Lasso are not among them. Try using Ridge and Lasso rather

than OLS for the forecasting regression based on the first 50 PCs. Remember: since

the design is orthogonal, there is a simple closed form for both Lasso and Ridge.

1Although the paper gives the total number of disaggregates as 109, there in fact only 108 in the replication

dataset. This agrees with the count based on table B.1 of the Supplementary Appendix.
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Experiment with a variety of values for the shrinkage parameters. Try to find values

that give similar performance to the DFM5. Is there a level of shrinkage that beats

the best AR benchmark forecast? How do your results compare across the series?
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