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Chapter 1

AIC-type Information Criteria

You have probably know that Akaike’s Information Criterion (AIC) summarizes the qual-
ity of a model by trading fit, measured by the maximized log likelihood, against complex-
ity, measured by the number of estimated parameters. But where does this complexity
penalty come from? In this chapter we’ll take a closer look at the AIC and two closely cri-
teria: Takeuichi’s Information Criterion (TIC) and the “corrected” AIC (AICc) of Hurvich
and Tsai (1989). All three attempt to approximate the Kullback-Leibler Divergence, a
fundamental quantity from information theory. We’ll set the stage by reviewing the main
properties of the KL divergence and its connection to maximum likelihood estimation.

1.1 The Kullback-Leibler Divergence

1.1.1 Basic Properties

Suppose that y is a random vector drawn from a probability distribution G with density
g(y). This is the true DGP and is unknown to us. Since we don’t know g, we attempt
to approximate it using a parametric model f(y|θ), where θ is a p-vector of parameters
that we estimate via maximum likelihood.1 Since f is not the true data density, a natural
question is how well does f approximate g? It turns out that for maximum likelihood esti-
mation there is a particularly convenient way to answer this question using the Kullback
Leibler Divergence.

Definition 1.1.1 (KL Divergence). Let EG denote expectation with respect to the true,

1I’ve written the model without covariates to keep the notation from getting out of control, but you
could just as well write f(y|X, θ). Similarly, I will sometimes write f(y) for f(y|θ) to simplify the
notation below.

7



8 CHAPTER 1. AIC-TYPE INFORMATION CRITERIA

unknown data density g. Then the Kullback-Leibler divergence from g to f is given by

KL(g; f) = EG

[
log

{
g(y)
f(y)

}]
= EG [log g(y)]− EG [log f(y)]

The quantity EG [log f(y)] is called the Expected Log-likelihood.

Key Features of the KL Divergence There are several important features to note
about the KL divergence:

1. It is not symmetric: KL(g; f) 6= KL(f ; g). Hence, the KL divergence is not a
distance function (metric).

2. KL(g; f) ≥ 0 with equality iff f = g. To see why, recall that, since log is a concave
function, − log is convex. Thus

KL(g; f) = EG

[
log

{
g(y)

f(y)

}]
= EG

[
− log

{
f(y)

g(y)

}]

≥ − log

{
EG

[
f(y)

g(y)

]}
= − log

(∫
g(y)

f(y)

g(y)
dy

)

= − log

(∫
f(y) dy

)
= − log (1) = 0

by Jensen’s Inequality. The inequality is strict only for a non-degenerate random
variable and a strictly convex function. Since − log is strictly convex, the only way
to make the inequality strict is for f(y)/g(y) to be degenerate. This occurs precisely
when f = g almost everywhere.

3. Minimizing the KL divergence KL(g; f) is equivalent to maximizing the Expected
Log-Likelihood EG[log f(y)]. This is because the first term in the KL divergence is
a constant: it in no way depends on the model f(y). The expected Log-likelihood
enters negatively:

KL(g; f) = EG [log g(y)]− EG [log f(y)]

Thus, if we can find a way to estimate the Expected Log-likelihood, we can use
the KL divergence for model selection: the larger the Expected Log-likelihood, the
smaller the KL divergence, and the better the model.

4. The KL divergence equals the negative of Boltzmann’s Entropy from Statistical
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Mechanics. Accordingly, it represents the information lost when g(y) is encoded by
f(y).

1.1.2 Relationship of MLE to KL

It turns out that the KL divergence is inextricably linked to maximum likelihood estima-
tion. To make the points a little clearer, I’ll assume from now on that y consists of iid
observations Yt for t = 1, . . . , T . This is not in fact necessary for any of the derivations
that follow, but it simplifies the notation. Since the expected log likelihood is unknown,
we might try to approximate it using the sample analogue

EĜ [log f(y, θ)] = 1

T

T∑
t=1

log f(Yt, θ) =
1

T
`(θ)

where we have replaced G with the empirical distribution Ĝ. Now, by the Weak Law of
Large Numbers for iid observations

1

T
`(θ)

p→ EG [log f(y, θ)]

Under the standard regularity conditions (see Newey and McFadden, 1994) we can strengthen
this result to show that

θ̂ = argmax
θ∈Θ

1

T
`(θ)

p→ argmax
θ∈Θ

EG [log f(y, θ)]

Since minimizing the KL divergence is the same as maximizing the expected log-likelihood
we have the following result:

Proposition 1.1.1. The ML estimator θ̂ converges in probability to the value of θ that
minimizes the KL divergence from unknown true density g(y) to the parametric family
f(y|θ). When g(y) = f(y|θ) for some value of θ ∈ Θ, the divergence is minimized at
zero.
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1.1.3 A Naïve Information Criterion

If g(y) were known, we could choose between two parametric models f(y|θ) and h(y|γ)
by comparing maximized Log-likelihoods. Define

θ0 = argmax
θ∈Θ

EG [log f(y, θ)]

γ0 = argmax
γ∈Γ

EG [log h(y, γ)]

If EG [log f(y, θ0)] > EG [log h(y, γ0)], then the KL divergence from g(y) to the parametric
family fθ is smaller than that from g(y) to hγ. Now, we know from above that θ̂ p→ θ0.
Further, 1

T
`(θ)

p→ EG [log f(y, θ)]. Of course, T will be constant across models, so why
not use the maximized sample likelihood `(θ̂) for model comparison? Unfortunately, `(θ̂)
is a biased estimator of the expected log likelihood because is uses the data twice: first
to estimate θ̂ and then directly in the sum

∑T
t=1 log f(Yt, θ̂). Because θ̂ was chosen to

conform to the idiosyncrasies of the data at hand, `(θ̂) is overly optimistic.
We can see this as follows. Since θ0 is the population minimizer of the KL divergence

from g to fθ, we have

KL [g(y); f(y, θ)] ≥ KL [g(y); f(y, θ0)]

EG [log g(y)]− EG [log f(y, θ)] ≥ EG [log g(y)]− EG [log f(y, θ0)]

EG [log f(y, θ)] ≤ EG [log f(y, θ0)]

for all θ ∈ Θ. Recall that 1
T
`(θ) = EĜ [log f(y, θ)]. By the definition of the maximum

likelihood estimate, `(θ̂) ≥ `(θ0). Thus,

EĜ

[
log f(y, θ̂)

]
≥ EĜ [log f (y, θ0)]

In sample, the estimate θ̂ will show a higher maximized log-likelihood than the value
of θ that maximizes the population log-likelihood. Thus, the sample analogue is overly
optimistic.

1.2 The AIC and TIC

In the previous section we saw that using the KL divergence to do model selection is
equivalent to maximizing the expected log-likelihood across models. Unfortunately, using
the maximized log-likelihood, based on the estimated parameters, is a biased estimator
of this quantity: it is systematically too high. Both the AIC and the TIC address this
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problem by using asymptotic theory to get an approximate expression for the bias so that
we can correct it.

To keep notation simple, throughout this section we’ll assume that we have an iid
sample of scalar random variables Y1, . . . , YT drawn from a true but unknown distribution
with density g(y). As above we’ll consider maximum likelihood estimation based on an
approximating parametric density f(y|θ).

1.2.1 Fundamental Expansion for MLE

Under standard regularity conditions, see for example Newey and McFadden (1994), the
maximum likelihood estimator θ̂ can be expanded as

θ̂ = θ0 + J−1ŪT + op(T
−1/2)

where θ0 is value of θ that minimizes KL divergence from g to the parametric family of
distributions f(y|θ) and

J = −EG

[
∂2 log f(Y |θ0)

∂θ∂θ′

]
ŪT =

1

T

T∑
t=1

∂ log f(Yt|θ0)
∂θ

Now, by the CLT,
√
T ŪT

d→ U where U ∼ Np(0, K) and

K = V arG

[
∂ log f(Y |θ0)

∂θ

]
= EG

[
∂ log f(Y |θ0)

∂θ

∂ log f(Y |θ0)
∂θ′

]
Hence,

√
T
(
θ̂ − θ0

)
=

√
T J−1ŪT + op(1)

d→ J−1U

∼ Np(0, J
−1KJ−1)

Note that when g = fθ for some θ, we have K = J by the information matrix equality so
the variance simplifies to J−1.
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1.2.2 Estimating the Expected Log Likelihood

To carry out model selection based on the KL divergence, we need to estimate the expected
log likelihood. Under the iid assumption,

EG[log f(y|θ0)] = EG

[
T∑
t=1

f(Y |θ0)

]
= T EG[log f(Y |θ0)]

so it is sufficient to work with the expected log likelihood of a single representative obser-
vation Y . Written as an integral,

EG[log f(Y |θ0)] =
∫
g(y) log f(y|θ0) dy

There are two problems. First, we don’t know θ0. Of course we do have an estimator θ̂,
so we might consider simply plugging it in to yield∫

g(y) log f(y|θ0) dy ≈
∫
g(y) log f(y|θ̂) dy

Even with this approximation, however, we still don’t know g, the true data density. As
discussed above, trying to replace this integral with the sample analogue `T (θ̂)/T , the
maximized log-likelihood, introduces a bias. So what can we do? The idea behind the
AIC and TIC is to estimate this bias, which we’ll write relative to the infeasible plug-in
estimator. In other words:

Bias =
`T (θ̂)

T
−
∫
g(y) log f(y|θ̂)dy

Now, as it turns out, we can expand the bias expression as follow:

Bias = Z̄T + (θ̂ − θ0)
′J(θ̂ − θ0) + op(T

−1)

where

Z̄T =
1

T

T∑
t=1

{log f(Yt|θ0)− EG[log f(Y |θ0)]}

For a proof of this assertion, see Section 1.2.4.

Now, recall that the bias expression depends on θ̂ which is a random variable since
it depends on the sample data. To address this, we will attempt to approximate the
expectation of the bias term, where, again, the expectation is taken over the sampling
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distribution of θ̂. Using our asymptotic expansion:

E[Bias] ≈ E[Z̄T ] + E[(θ̂ − θ0)
′J(θ̂ − θ0)]

Since E[Z̄T ] = 0, this becomes

E[Bias] ≈ E[(θ̂ − θ0)
′J(θ̂ − θ0)]

Now, using the fundamental expansion for MLE from above

√
T
(
θ̂ − θ0

)
d→ J−1U

hence
T
(
θ̂ − θ0

)′
J
(
θ̂ − θ0

)
d→ U ′J−1U

which suggests the approximation

E[Bias] ≈ T−1E[U ′J−1U ]

Finally, using the almost magical properties of the trace operator, we have

E[U ′J−1U ] = E
[
trace

{
U ′J−1U

}]
= E

[
trace

{
J−1UU ′}]

= trace
{
E[J−1UU ′]

}
= trace

{
J−1E[UU ′]

}
= trace

{
J−1K

}
Thus, we approximate the expected bias by T−1trace {J−1K}. Finally, we correct the
bias of the maximized log-likelihood and approximate the expected log likelihood by

EG[log f(Y |θ0)] ≈
`(θ̂)

T
− trace {J−1K}

T

multiplying through by 2T and substituting consistent estimators of the matrices J and
K yields Takeuchi’s Information Criterion (TIC)

TIC = 2
[
`(θ̂)− trace

{
Ĵ−1K̂

}]
The scaling is, of course, arbitrary but this particular choice is traditional. If there is a
θ ∈ Θ such that g(y) = f(y|θ) then the information matrix equality holds and J−1 = K.
In this case trace {J−1K} = trace{Ip} = p. Using this quantity as the bias correction
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yields Akaike’s Information Criterion

AIC = 2
[
`(θ̂)− p

]
Although the TIC and AIC are similar, there are several subtleties:

1. The bias correction for the AIC is derived under the assumption that the approxi-
mating model is correctly specified, while the TIC is not. In this sense the AIC is a
special case of the TIC.

2. It has been argued that for models where the Information Matrix Equality is not
satisfied, the AIC will still be close to the TIC. (The log-likelihood term should
dominate the bias correction in such situations.)

3. Typically, the matrices K and J are large, meaning that the estimates will have high
variance (we need to estimate p2 + p elements). In contrast, the AIC a has much
smaller variance because the bias correction does not depend on the data. Thus,
even if the model is mis-specified, it may be preferable to use AIC rather than TIC
unless the sample size is large.

1.2.3 A Caveat

To derive the TIC and AIC, we used the following expansion for the bias term

Bias = Z̄T + (θ̂ − θ0)
′J(θ̂ − θ0) + op(T

−1)

This holds under standard regularity conditions. (For details on its derivation, see the
next subsection.) However, we employed a bit of sleight of hand when we proceeded to
approximate the expected bias using the mean of the limiting random variable U ′J−1U .
For example, the expectation of “truth” relative to which the bias is calculated, namely

EG

[∫
g(y) log f(y|θ̂) dy

]
does not exist in all cases. The bias correction remains reasonable in this case, as we see
from the asymptotic expansion, but strictly speaking it doesn’t make sense to talk about
equating means.
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1.2.4 Appendix: Deriving the Bias Expansion

Consider a second order Taylor expansion around for log f(Yt; θ̂) around θ0:

log f(Yt; θ̂) = log f(Yt; θ0) +
∂ log f(Yt; θ)

∂θ

∣∣∣∣′
θ=θ0

(θ̂ − θ0)+

+
1

2
(θ̂ − θ0)

′ ∂
2 log f(Yt; θ)

∂θ∂θ′

∣∣∣∣
θ=θ0

(θ̂ − θ0) +R(Yt; θ̂ − θ0)

where R(Yt; θ̂ − θ0), the remainder, is such that:∣∣∣R(Yt; θ̂ − θ0)
∣∣∣ ≤ M(Yt)

(2 + 1)!
‖θ̂ − θ0‖2+1

provided that all the derivatives of log f(Yt; θ) employed in the approximation are bounded
above by M(Yt). The remainder has then the following property:

lim
θ̂→θ0

R(Yt; θ̂ − θ0)

‖θ̂ − θ0‖2
= 0 ⇒ R(Yt; θ̂ − θ0) = o(‖θ̂ − θ0‖2) = o(1)‖θ̂ − θ0‖2

Further implying that:

R(Yt; θ̂ − θ0) = op(1)‖θ̂ − θ0‖2 = op(1)(θ̂ − θ0)
′(θ̂ − θ0)

Finally note that the op(1) term may be a function of Yt. Let’s hence denote that term
with h(Yt; θ̂ − θ0) to take into account such possibility. Hence we can write:

`T (θ̂)

T
=

1

T

T∑
t=1

{
log f(Yt; θ0) +

∂ log f(Yt; θ)

∂θ

∣∣∣∣′
θ=θ0

(θ̂ − θ0)+

+
1

2
(θ̂ − θ0)

′ ∂
2 log f(Yt; θ)

∂θ∂θ′

∣∣∣∣
θ=θ0

(θ̂ − θ0) + h(Yt; θ̂ − θ0)(θ̂ − θ0)
′(θ̂ − θ0)

}
= Eg [log f(Yt; θ0)] + Z̄T + Ū ′

T (θ̂ − θ0)−
1

2
(θ̂ − θ0)

′JT (θ̂ − θ0)

+ h̄(Yt; θ̂ − θ0)(θ̂ − θ0)
′(θ̂ − θ0)

with

ŪT =
1

T

T∑
t=1

∂ log f(Yt; θ)

∂θ

∣∣∣∣
θ=θ0
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JT = − 1

T

T∑
t=1

∂2 log f(Yt; θ)

∂θθ′

∣∣∣∣
θ=θ0

h̄(Yt; θ̂ − θ0) =
1

T

T∑
t=1

h(Yt; θ̂ − θ0)

Similarly we can write:

∫
g(y) log f(y; θ̂)dy =

∫
g(y)

{
log f(y; θ0) +

∂ log f(y; θ)

∂θ

∣∣∣∣′
θ=θ0

(θ̂ − θ0)+

+
1

2
(θ̂ − θ0)

′ ∂
2 log f(y; θ)

∂θ∂θ′

∣∣∣∣
θ=θ0

(θ̂ − θ0)+

+h(Yt; θ̂ − θ0)(θ̂ − θ0)
′(θ̂ − θ0)

}
dy

= Eg [log f(Yt; θ0)]−
1

2
(θ̂ − θ0)

′J(θ̂ − θ0)+

+ Eg

[
h(Yt; θ̂ − θ0)

]
(θ̂ − θ0)

′(θ̂ − θ0)

where the first order term drops since, by construction:

Eg

[
∂ log f(Yt; θ)

∂θ

∣∣∣∣
θ=θ0

]
= 0

Now note that, fixing θ̂ − θ0, we have:

h̄(Yt; θ̂ − θ0) −→p Eg

[
h(Yt; θ̂ − θ0)

]
and therefore:

h̄(Yt; θ̂ − θ0) = Eg

[
h(Yt; θ̂ − θ0)

]
+ op(1)

which gives us:

h̄(Yt; θ̂ − θ0)(θ̂ − θ0)
′(θ̂ − θ0) = Eg

[
h(Yt; θ̂ − θ0)

]
(θ̂ − θ0)

′(θ̂ − θ0)+

+ op (1)T
−1
√
T (θ̂ − θ0)

′(θ̂ − θ0)
√
T

= Eg

[
h(Yt; θ̂ − θ0)

]
(θ̂ − θ0)

′(θ̂ − θ0)+

+ op (1)T
−1Op (1)

2

= Eg

[
h(Yt; θ̂ − θ0)

]
(θ̂ − θ0)

′(θ̂ − θ0)+

+ op
(
T−1

)
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Further noting that:
p lim

T→∞
JT = J ⇔ JT = J + op(1)

which implies:

(θ̂ − θ0)
′JT (θ̂ − θ0) = (θ̂ − θ0)

′J(θ̂ − θ0) + op (1)T
−1
√
T (θ̂ − θ0)

′(θ̂ − θ0)
√
T

= (θ̂ − θ0)
′J(θ̂ − θ0) + op (1)T

−1Op (1)
2

= (θ̂ − θ0)
′J(θ̂ − θ0) + op

(
T−1

)
and recalling that:

ŪT = J(θ̂ − θ0) + op
(
T−1/2

)
which similarly gives:

Ū ′
T (θ̂ − θ0) = (θ̂ − θ0)

′J(θ̂ − θ0) + op
(
T−1/2

)
T−1/2

√
T (θ̂ − θ0)

= (θ̂ − θ0)
′J(θ̂ − θ0) + op

(
T−1/2

)
T−1/2Op (1)

= (θ̂ − θ0)
′J(θ̂ − θ0) + op

(
T−1

)
we can finally write:

`T (θ̂)

T
−
∫
g(y) log f(y; θ̂)dy = Z̄T +

(
θ̂ − θ0

)′
J
(
θ̂ − θ0

)
+ op

(
T−1

)

1.3 The Corrected AIC

To derive the TIC and AIC we used asymptotic theory to construct an analytical bias
correction. Such approximations tend to work as long as T is fairly large relative to p

but when this is not the case, they can break down. We’ll now consider an alternative
that makes stronger assumptions and relies on exact small-sample theory rather than
asymptotics: the “Corrected” AIC, or AICc, of Hurvich and Tsai (1989). Suppose that
the true DGP is a linear regression model:

y = Xβ0 + ε

where ε ∼ N(0, σ2
0IT ). Then y|X ∼ N(Xβ0, σ

2
0IT ) so the likelihood is

g(y|X; β0, σ
2
0) =

(
2πσ2

0

)−T/2
exp

{
− 1

2σ2
(y −Xβ0)

′(y −Xβ0)

}
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and the log-likelihood is

log
[
g(y|X; β0, σ

2
0)
]
= −T

2
log(2π)− T

2
log(σ2

0)−
1

2σ2
0

(y −Xβ0)
′ (y −Xβ0)

Now suppose we evaluated the log-likelihood at some other parameter values β1 and σ2
1.

The vector β1 might, for example, correspond to dropping some regressors from the model
by setting their coefficients to zero, or perhaps adding in some additional regressors. We
have

log[f(y|X; β1, σ
2
1)] = −T

2
log(2π)− T

2
log(σ2

1)−
1

2σ2
1

(y −Xβ1)
′ (y −Xβ1)

Since we’ve specified the density from which the data were generated as well as the density
of the approximating model, we can directly calculate the KL divergence rather than trying
to find a reasonable large sample approximation. It turns out that for this example

KL(g; f) =
T

2

[
σ2
0

σ2
1

− log

(
σ2
0

σ2
1

)
− 1

]
+

(
1

2σ2
1

)
(β0 − β1)

′X ′X (β0 − β1)

as shown in Section 1.3.1. We need to estimate this quantity for it to be of any use in
model selection. If let β̂ and σ̂2 be the maximum likelihood estimators of β1 and σ2

1 and
substitute them into the expression for the KL divergence, we have

K̂L(g; f) =
T

2

[
σ2
0

σ̂2
− log

(
σ2
0

σ̂2

)
− 1

]
+

(
1

2σ̂2

)(
β0 − β̂

)
X ′X

(
β0 − β̂

)
We still have two problems. First, we haven’t been entirely clear about what β1 and σ1

are. At the moment, they seem to be something like “pseudo-true” values. Second, and
more importantly, we don’t know β0 and σ2

0 so we can’t use the preceding expression to
compare models.

Hurvich and Tsai (1989) address both of these problems with the assumption that
all models under consideration are at least correctly specified. That is, while they may
include a regressor whose coefficient is in fact zero, they do not exclude any regressors
with a non-zero coefficient. This is the same assumption that we used above to reduce
TIC to AIC. Under this assumption, β1 and σ2

1 are precisely the same as β0 and σ2
0. More

importantly, we can use all of the standard results for the exact finite sample distribution
of regression estimators to help us. The idea is to construct an unbiased estimator of the
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KL divergence. Taking expecations and rearranging slightly, we have

E
[
K̂L(g; f)

]
=

T

2

{
E

[
σ2
0

σ̂2

]
− log(σ2

0) + E
[
log(σ̂2)

]
− 1

}
+

1

2
E

[(
1

σ̂2

)(
β̂ − β0

)
X ′X

(
β̂ − β0

)]
Now, under our assumptions T σ̂2/σ2

0 ∼ χ2
T−k where k is the number of estimated coeffi-

cients in β̂. Further, if Z ∼ χ2
ν then E[1/Z] = 1/(ν − 2). It follows that

E

[
σ2
0

σ̂2

]
= E

[
T

T σ̂2/σ2
0

]
=

T

T − k − 2

We can rewrite the final term similarly:

E

[(
1

σ̂2

)(
β̂ − β0

)
X ′X

(
β̂ − β0

)]
= E

( T

T σ̂2/σ2
0

) (β̂ − β0

)
X ′X

(
β̂ − β0

)
σ2
0


Under our assumptions the two terms in the product are independent, so we can break
apart the expectation. First, we have

E

[
T

T σ̂2/σ2
0

]
=

T

T − k − 2

as above. For the second part,(
β̂ − β0

)
X ′X

(
β̂ − β0

)
σ2
0

∼ χ2
k

and hence

E


(
β̂ − β0

)
X ′X

(
β̂ − β0

)
σ2
0

 = k
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Putting all the pieces together,

E
[
K̂L(g; f)

]
=

T

2

{
E

[
σ2
0

σ̂2

]
+ log(σ2

0)− E
[
log(σ̂2)

]
− 1

}
+

1

2
E

[(
1

σ̂2

)(
β̂ − β0

)
X ′X

(
β̂ − β0

)]
=

T

2

(
T

T − k − 2
− log(σ2

0) + E
[
log(σ̂2)

]
− 1

)
+
T

2

(
k

T − k − 2

)
=

T

2

(
T + k

T − k − 2
− log(σ2

0) + E
[
log(σ̂2)

]
− 1

)
Since log(σ̂2) is an unbiased estimator of E[log(σ̂2)], substituting this give us an unbiased
estimator of E

[
K̂L(g; f)

]
as desired. The only terms that vary across candidate models

are the first and the third. Moreover, the multiplicative factor of T/2 does not affect
model selection. Hence, the criterion is

AICc = log(σ̂2) +
T + k

T − k − 2

In its broad strokes, this makes perfect sense. The residual error variance σ̂2 measures
in-sample fit. But since in-sample fit is a mis-leading guide to out-of-sample fit, we add a
complexity penalty. Note that the way this expression is written, smaller values indicate
a better model.

So how does this compare to the plain-vanilla AIC for normal linear regression? The
maximum likelihood estimators for this problem are

β̂ = (X ′X)−1X ′y

σ̂2 =
(y −Xβ̂)′(y −Xβ̂)

T

It follows that the maximized log-likehood is

log
[
f(y|X; β̂)

]
= −T

2
log(σ̂2)− 1

2σ̂2
(y −Xβ̂)′(y −Xβ̂)

= −T
2
log(σ̂2)− T

2

by substituting T σ̂2 for the numerator of the second term. Hence, the AIC for this problem
is

AIC = 2
(
`(β̂)− k

)
= −T log(σ̂2)− T − 2k
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But this way of writing things uses the opposite sign convention from AICc. It’s important
to keep track of this, since different authors use different sign conventions for information
criteria. To make the AIC comparable with our scaling of the AICc, we multiply through
by −1/T yielding

AIC = log(σ̂2) +
T + 2k

T

where smaller values now indicate a better model.

1.3.1 Appendix: Deriving the KL Divergence

KL(g; f) =

∫
log[g(y)]g(y) dy −

∫
log[f(y)]g(y) dy = A−B

where

A =

∫ [
−T
2
log(2π)− T

2
log(σ2

0)−
1

2σ2
0

(y −Xβ0)
′ (y −Xβ0)

]
g(y) dy

= −T
2

[
log(2π) + log(σ2

0)
]
− 1

2σ2
0

Ey|X
[
(y −Xβ0)

′ (y −Xβ0)
]

= −T
2

[
log(2π) + log(σ2

0)
]
− 1

2σ2
0

trace
{
Ey|X

[
(y −Xβ0) (y −Xβ0)

′]}
= −T

2

[
log(2π) + log(σ2

0)
]
− 1

2σ2
0

trace {V ar(y|X)}

= −T
2

[
log(2π) + log(σ2

0)
]
− 1

2σ2
0

(
Tσ2

0

)
= −T

2

[
log(2π) + log(σ2

0) + 1
]

and

B =

∫ [
−T
2
log(2π)− T

2
log(σ2

1)−
1

2σ2
1

(y −Xβ1)
′ (y −Xβ1)

]
g(y) dy

= −T
2

[
log(2π) + log(σ2

1)
]
− 1

2σ2
1

Ey|X
[
(y −Xβ1)

′ (y −Xβ1)
]

= −T
2

[
log(2π) + log(σ2

1)
]
−
(

1

2σ2
1

)
C
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where we define C as

C = Ey|X
[
(y −Xβ1)

′ (y −Xβ1)
]

= Ey|X
[
{(y −Xβ0) +X (β0 − β1)}′ {(y −Xβ0) +X (β0 − β1)}

]
= Ey|X

[
(y −Xβ0)

′ (y −Xβ0)
]
+ Ey|X

[
(y −Xβ0)

′X (β0 − β1)
]

+ Ey|X
{
[X (β0 − β1)]

′ (y −Xβ0)
}
+ Ey|X

[
{X (β0 − β1)}′ {X (β0 − β1)}

]
= V ar(y|X) + Ey|X [y −Xβ0]

′X(β0 − β1)

+ (β0 − β1)
′X ′Ey|X [y −Xβ0] + (β0 − β1)X

′X(β0 − β1)

= Tσ2
0 + 0 + 0 + (β0 − β1)X

′X(β0 − β1)

Hence,

B = −T
2

[
log(2π) + log(σ2

1)
]
−
(

1

2σ2
1

)[
Tσ2

0 + (β0 − β1)X
′X(β0 − β1)

]
= −T

2

[
log(2π) + log(σ2

1) +
σ2
0

σ2
1

]
−
(

1

2σ2
1

)
(β0 − β1)X

′X(β0 − β1)

and therefore,

KL(g; f) = A−B

=

{
−T
2

[
log(2π) + log(σ2

0) + 1
]}

−
{
−T
2

[
log(2π) + log(σ2

1) +
σ2
0

σ2
1

]
−
(

1

2σ2
1

)
(β0 − β1)X

′X(β0 − β1)

}
= −T

2

[
log(σ2

0) + 1− log(σ2
1)−

σ2
0

σ2
1

]
+

(
1

2σ2
1

)
(β0 − β1)X

′X(β0 − β1)

=
T

2

[
σ2
0

σ2
1

− log

(
σ2
0

σ2
1

)
− 1

]
+

(
1

2σ2
1

)
(β0 − β1)X

′X(β0 − β1)



Chapter 2

More on “Classical” Model Selection

2.1 Mallow’s Cp

Suppose that we want to predict y from x using a linear regression model:

y
(T×1)

= X
(T×K)

β
(K×1)

+ ε

Where E[ε|X] = 0 and V ar(ε|X) = σ2I. We know that the conditional mean is the
minimum mean-squared error predictor. This means that if β were known, we could
never improve upon simply using all the regressors for prediction. But since β must be
estimated from the data, a bias-variance tradeoff arises. In particular, we might be better
off excluding a regressor with small coefficient, since it adds very little predictive power but
introduces additional estimation uncertainty. Mallow’s Cp is a model selection criterion
that trys to capture this idea by approximating the predictive mean squared error of each
model, relative to the infeasible optimum where β is known.

We’ll now consider using subsets of X rather than the full data matrix. Let XM

denote a design matrix that possibly excludes some columns of X. The index M refers
to a particular model. Accordingly, let β̂M be the least-squares estimator based on the
design matrix XM . We’ll adopt the convention that β̂M is padded out with zeros for the
elements of β that are not estimated under model M . This way we can write

Xβ̂M = X(−M)0 +XM(X ′
MXM)−1X ′

My = PMy

Now, suppose we want to compare the predictive power of the competing estimators β̂M
using mean-squared error. A naïve idea would be to use in-sample prediction error to

23
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compare models:
RSS(M) = (y −Xβ̂M)′(y −Xβ̂M)

As is well-known, however, the residual sum of squares can never decrease even as we
add irrelevant predictors to our model. In constrast, out-of-sample predictive ability can
easily decrease when we add more predictors: there’s a bias-variance tradeoff that arises
from estimation uncertainty. Somehow or other we need to develop a criterion to take
this into account.

We’ll start off by calculating the predictive mean-squared error of Xβ̂M relative to the
infeasible optimum, namely Xβ. Let PM = XM(X ′

MXM)−1XM . Then we have∣∣∣∣∣∣Xβ̂M −Xβ
∣∣∣∣∣∣2 = (PMy −Xβ)′(PMy −Xβ)

= {PM(Y −Xβ)− (I− PM)Xβ}′ {PM(Y −Xβ)− (I− PM)Xβ}
= {PMε− (I− PM)Xβ}′ {PMε+ (I− PM)Xβ}
= ε′P ′

MPMε− β′X ′(I− PM)′PMε

− ε′P ′
M(I− PM)Xβ + β′X ′(I− PM)(I− PM)Xβ

= ε′PMε+ β′X ′(I− PM)Xβ

since PM and (I−PM) are both symmetric and idempotent and their product in any order
is zero. Thus, evaluating the predictive mean-squared error conditional on X, we have

MSE(M |X) = E
[
(Xβ̂M −Xβ)′(Xβ̂M −Xβ)|X

]
= E [ε′PMε|X] + E [β′X ′(I− PM)Xβ|X]

= E [trace {ε′PMε} |X] + β′X ′(I− PM)Xβ

= trace {E[εε′|X]PM}+ β′X ′(I− PM)Xβ

= trace
{
σ2PM

}
+ β′X ′(I− PM)Xβ

= σ2kM + β′X ′(I− PM)Xβ

where kM denotes the number of regressors included in XM and we have used the fact
that the trace of a projection matrix equals its dimension.

So far, so good: we have derived an expression of the predictive mean-squared error of
each model M . The problem is that it’s infeasible: it depends on the unknown quantities
σ2 and β. To get around this, Mallow’s Cp constructs an unbiased estimator of MSE. We
proceed as follows. First, let β̂ be the estimator based on the full set of regressors, i.e.
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β̂ = (X ′X)−1X ′y and let PX be the corresponding projection matrix so that we have

Xβ̂ = X(X ′X)−1X ′y = PXy

Using the fact that PMPX = PXPM = PM ,

E
[
β̂′X ′(I− PM)Xβ̂|X

]
= E [y′P ′

X(I− PM)PXy|X]

= E [y′(P ′
XPX − P ′

XPMPX)y|X]

= E [y′(PX − PM)y|X]

which we can expand as

E [y′(PX − PM)y|X] = E [(Xβ + ε)′(PX − PM)(Xβ + ε)y|X]

= E [β′X ′(PX − PM)Xβ|X] + E[ε′(PX − PM)Xβ|X]

+ E[β′X ′(PX − PM)ε|X] + E[ε′(PX − PM)ε|X]

= β′X ′(PX − PM)Xβ + E[ε′(PX − PM)ε|X]

Now, we can re-write the first term as

β′X ′(PX − PM)Xβ = β′X ′PXXβ − β′X ′PMXβ

= β′X ′X(X ′X)−1X ′Xβ − β′X ′PMXβ

= β′X ′Xβ − β′X ′PMXβ

= β′X ′(I − PM)Xβ

and evaluating the second term, we find that

E[ε′(PX − PM)ε|X] = E[trace {ε′(PX − PM)ε} |X]

= trace {E[εε′|X](PX − PM)}
= trace

{
σ2(PX − PM)

}
= σ2 (trace {PX} − trace {PM})
= σ2(K − kM)

Hence, putting all the pieces together,

E
[
β̂′X ′(I− PM)Xβ̂|X

]
= β′X ′(I− PM)Xβ + σ2(K − kM)
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In other words, substituting the estimator β̂ from the full model in order to estimate
β′X(I−PM)Xβ doesn’t work. The estimator β̂′X ′(I−PM)Xβ̂ is biased upwards. However,
we have an explicit expression for the bias, namely σ2(K − kM). This means that if
we can find an unbiased estimator of σ2, we can correct the bias in our estimator of
β′X(I − PM)Xβ. Fortunately there is an obvious unbiased estimator of σ2: we simply
use the residuals from the full model:

σ̂2 =
y′(I− PX)y

(T −K)

Thus,
E[β̂′X ′(I− PM)Xβ̂ − σ̂2(K − kM)|X] = β′X(I− PM)Xβ

Now we’ve managed to construct an unbiased estimator of the second term of the MSE.
The first term is easy since we already have an unbiased estimator of σ̂2 and kM is a
known constant: the number of regressors in model M . Therefore, collecting terms

MCM = σ̂2kM +
[
β̂′X ′(I− PM)Xβ̂ − σ̂2(K − kM)

]
= β̂′X ′(I− PM)Xβ̂ + 2σ̂2(kM −K)

is an unbiased estimator of MSE(M |X). It turns out, however, that we can re-write this
expression in a simpler form. As shown in the appendix to this section,

MCM − 2σ̂2km = RSS(M)− T σ̂2

where RSS(M) = y′(I− PM)y) is the residual sum of squares for model M .

Substituting this into the expression for MCM we see that

MCM = RSS(M) + σ̂2(2kM − T )

which is much easier to interpret than the formula we had before. Finally, dividing through
by σ̂2 gives Mallow’s Cp

Cp(M) =
RSS(M)

σ̂2
+ 2kM − T

This expression tells us how we need to adjust the residual sum of squares to account for
the fact that in-sample fit is a misleading guide to out-of-sample predictive performance.
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2.1.1 Appendix for Mallow’s Cp: Tedious Algebra

MCM − 2σ̂2kM = β̂′X ′(I− PM)Xβ̂ −Kσ̂2

= y′(PX − PM)y −Kσ̂2

= y′(PX − PM)y −
(

K

T −K

)
y′ (I− PX)y

=

(
T −K

T −K

)
(y′PXy − y′PMy)−

(
K

T −K

)
(y′y′ − y′PXy)

=

(
T

T −K

)
y′PXy − y′PMy −

(
K

T −K

)
y′y

=

(
T

T −K

)
y′PXy − y′PMy +

(
T −K − T

T −K

)
y′y

=

(
T

T −K

)
y′PXy − y′PMy +

(
1− T

T −K

)
y′y

=

(
T

T −K

)
y′PXy − y′PMy + y′y −

(
T

T −K

)
y′y

= y′y − y′PMy −
(

T

T −K

)
(y′y − y′Pmy)

= y′(I− PM)y −
(

T

T −K

)
y′ (I− PX)y

= y′(I− PM)y − T σ̂2

= RSS(M)− T σ̂2

2.2 Bayesian Information Criterion
As in our derivation of TIC and AIC, we’ll consider a setting with an iid sample of scalar
random variables Y1, . . . , YT . The results still hold in the more general case, but this
simplifies the notation. Note that the Bayesian Information Criterion (BIC) is sometimes
called the SIC, for “Schwarz’s Information Criterion.”

2.2.1 Overview of the BIC

Despite its name, the BIC is not a Bayesian procedure. It is a large-sample Frequentist
approximation to Bayesian model selection:

1. Begin with a uniform prior on the set of candidate models. Then, choosing the model
with the highest posterior probability is equivalent to maximizing the Marginal
Likelihood.
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2. The BIC is a large sample approximation to the Marginal Likelihood:∫
π(βi)fi(y|βi)dβi

where i indexes models Mi in a set M.

3. As usual when Bayesian procedures are subjected to Frequentist asymptotics, the
priors on parameters vanish in the limit.

4. We proceed by a Laplace Approximation to the Marginal Likelihood

2.2.2 Laplace Approximation

For the moment simplify the notation by suppressing dependence on Mi. We want to
approximate: ∫

π(β)f(y|β)dβ

This is actually a common problem in applications of Bayesian inference:

• Notice that π(β)f(y|β) is the kernel of some probability density, i.e. the density
without its normalizing constant.

• How do we know this? By Bayes’ Rule

π(β|y) = π(β)f(y|β)∫
π(β)f(y|β)dβ

is a proper probability density and the denominator is constant with respect to β.
(The parameter has been “integrated out.”)

• In Bayesian inference, we specify π(β) and f(y|β), so π(β)f(y|β) is known. But to
calculate the posterior we need to integrate to find the normalizing constant.

• Only in special cases (e.g. conjugate families) can we find the exact normalizing
constant. Typically some kind of approximation is needed:

– Importance Sampling

– Markov-Chain Monte Carlo (MCMC)

– Laplace Approximation
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The Laplace Approximation is an analytical approximation based on Taylor Expansion
arguments. In Bayesian applications, the expansion is carried out around the posterior
mode, i.e. the mode of π(β)f(y|β), but we will expand around the Maximum likelihood
estimator.

Proposition 2.2.1 (Laplace Approximation).

∫
π(β)f(y|β)dβ ≈

exp
{
`(β̂)

}
π(β̂)(2π)p/2

np/2

∣∣∣J(β̂)∣∣∣1/2
Where β̂ is the maximum likelihood estimator, p the dimension of β and

J(β̂) = − 1

n

∂2 log f(y|β̂)
∂β∂β′

Proof. A rigorous proof of this result is complicated. The following is a sketch. First
write `(β) for log f(y|β) so that

π(β)f(y|β) = π(β) exp {log f(y|β)} = π(β) exp {log `(β)}

By a second-order Taylor Expansion around the MLE β̂

`(β) = `(β̂) +
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)
+R` (2.1)

since the derivative of `(β) is zero at β̂ by the definition of MLE. A first-order expansion
is sufficient for π(β) because the derivative does not vanish at β̂

π(β) = π(β̂) +
∂π(β̂)

∂β′

(
β − β̂

)
+Rπ (2.2)

Substituting Equations 2.1 and 2.2,

∫
π(β)f(y|β)dβ =

∫
exp

{
`(β̂) +

1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)
+R`

}

×

[
π(β̂) +

(
β − β̂

)′ ∂π(β̂)
∂β

+Rπ

]
dβ

= exp
{
`(β̂)

}
(I1 + I2 + I3)
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where

I1 = π(β̂)

∫
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)
+R`

}
dβ

I2 =
∂π(β̂)

∂β′

∫ (
β − β̂

)
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)
+R`

}
dβ

I3 =

∫
Rπ exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)
+R`

}
dβ

Under certain regularity conditions (not the standard ones!) we can treat R` and Rπ as
approximately equal to zero for large n uniformly in β, so that

I1 ≈ π(β̂)

∫
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)}
dβ

I2 ≈ ∂π(β̂)

∂β′

∫ (
β − β̂

)
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)}
dβ

I3 ≈ 0

Because β̂ is the MLE,
∂2`(β̂)

∂β∂β′

must be negative definite, so

−∂
2`(β̂)

∂β∂β′

is positive definite. It follows that

exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)}
= exp

−1

2

(
β − β̂

)′ (−∂2`(β̂)
∂β∂β′

)−1
−1 (

β − β̂
)

can be viewed as the kernel of a Normal distribution with mean β̂ and variance matrix(
−∂

2`(β̂)

∂β∂β′

)−1
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Thus,

∫
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)}
dβ = (2π)p/2

∣∣∣∣∣∣
(
−∂

2`(β̂)

∂β∂β′

)−1
∣∣∣∣∣∣
1/2

and ∫ (
β − β̂

)
exp

{
1

2

(
β − β̂

)′ ∂2`(β̂)
∂β∂β′

(
β − β̂

)}
dβ = 0

Therefore,

∫
π(β)f(y|β)dβ ≈ exp

{
`(β̂)

}
π(β̂) (2π)p/2

∣∣∣∣∣∣
(
−∂

2`(β̂)

∂β∂β′

)−1
∣∣∣∣∣∣
1/2

= exp
{
`(β̂)

}
π(β̂) (2π)p/2

∣∣∣∣∣n
(
− 1

n

∂2`(β̂)

∂β∂β′

)∣∣∣∣∣
−1/2

=
exp

{
`(β̂)

}
π(β̂) (2π)p/2

np/2

∣∣∣J(β̂)∣∣∣1/2

2.2.3 Finally the BIC

Now we re-introduce the dependence on the model Mi. Taking logs of the Laplace Ap-
proximation and multiplying by two (again, this is traditional but has no effect on model
comparisons)

2 log f(y|Mi) = 2 log

{∫
fi(y|βi)π(βi)dβi

}
≈ 2`(β̂i)− p log(n) + p log(2π) + log[π(β̂i)]− log

∣∣∣J(β̂i)∣∣∣
The first two terms areOp(n) andOp(log n), while the last three areOp(1), hence negligible
as n→ ∞. This gives us Schwarz’s BIC

BIC(Mi) = 2 log fi(y|β̂i)− p log n

We choose the model Mi for which BIC(Mi) is largest. Notice that the prior on the
parameter, π(β), drops out in the limit, and recall that we began by putting a uniform
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prior on the models under consideration.

2.3 Some Time Series Examples

Thus far we’ve looked at a number of model selection criteria. Some of them, namely
AIC, BIC and TIC, are completely portable: they can be applied to any model that is
estimated by maximum likelihood. Each of these can be immediately applied to time
series data: if you have a routine to carry out ML estimation, be it conditional ML or
the Kalman filter, it already produces all the quantities you need. In contrast, some of
the other examples we considered, namely Mallow’s Cp and AICc, were derived for the
special case of linear regression. How can we adapt these examples to time series data?
Fortunately, if we’re willing to use conditional ML estimation, some of the most widely
used time series models are in fact regression models. In this section we’ll take a closer
look at model selection for autoregression and vector autoregression models.

2.3.1 Autoregressive Models

For simplicity assume there is no constant term. Then the AR(p) model is

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

where εt ∼ iid N(0, σ2) and we observe a sample y1, . . . , yN . We’ll use conditional max-
imum likelihood, so we lose the first p observations. Thus the effective sample size is
T = N −p. The conditional ML estimator of φ = (φ1, . . . , φp)

′ is simply the least-squares
estimator

φ̂ = (X ′X)−1X ′y

where y = (yp+1, yp+2, . . . , yN)
′ and the design matrix is

X =


yp yp−1 · · · y1

yp+1 yp · · · y2
... ... ...

yN−1 yN−2 · · · yN−p−1


The maximum likelihood estimator of σ2 is

σ̂2
p =

RSSp

T
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where RSS denotes the residual sum of squares, namely ||y − Xφ̂||2. Since this is a
regression model, it’s trivial to adapt both Mallow’s Cp and the AICC to this case.1 For
Mallow’s Cp we have

Cp =
RSSp

σ̂2
wide

− T + 2p

where σ̂2
wide is the estimate of σ2 from the model with maximum order among those under

consideration. For AICc we have

AICc = log
(
σ̂2
p

)
+

T + p

T − p− 2

For both Cp and AICc we choose the lag length that minimizes the criteiron.
Using an argument essentially identical to the one presented in the notes for Lecture

2, the maximized log-likelihood for the AR(p) model is

−T
2

[
log(2π) + log

(
σ̂2
p

)
+ 1
]

To construct the AIC and BIC, we multiply this quantity by 2 and subtract the appro-
priate penalty term, ignoring terms that are constant across models. The number of
parameters for an AR(p) model is p+1, since we estimate σ2 in addition to the p autore-
gressive parameters. We’ll rescale both AIC and BIC and flip their signs to make them
comparable to the Cp and AICc expressions from above. Putting everything together for
the sake of comparison, we have

AIC = log
(
σ̂2
p

)
+

2(p+ 1)

T

AICc = log
(
σ̂2
p

)
+

T + p

T − p− 2

Cp =
RSSp

σ̂2
wide

+ 2p− T

BIC = log
(
σ̂2
p

)
+

log(T )(p+ 1)

T

In each case, we choose the model that minimizes the criterion.

Ng & Perron (2005) There are some subtle but important points that we glossed over
in the preceding discussion and that are, indeed, rarely mentioned in textbooks or articles
on model selection. First there is the question of whether we should use the maximum

1If you’d like to see all of the details written out, consult McQuarrie & Tsai (1998), Chapter 3.
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likelihood estimator σ̂2 or the unbiased estimator that divides by T − p rather than T . In
time series applications T may be small enough that it makes a difference. More troubling,
however, is the problem of deciding what should count as the sample size, since different
lag lengths use a different number of observations in the conditional maximum likelihood
setting. Indeed, as they are usually written, expressions for AIC and BIC drop terms
that are constant across models in cross-section regression, where changing the number
of regressors doesn’t affect sample size. The situation is of course entirely different for
AR models but practicioners still use the same formulas in this case. There are numerous
different ways to handle these complications. Ng & Perron (2005) review the possibilities
and illustrate how each performs in a number of simulation studies.

2.3.2 Vector Autoregression Models

Again, assume the intercept is zero. Then the VAR(p) model is given by

yt
(q×1)

= Φ1
(q×q)

yt−1 + . . .+ Φpyt−p + εt

εt
iid∼ Nq(0,Σ)

where we observe y1, . . . ,yN . Again, if we’re content to use conditional maximum like-
lihood, dropping the first p observations to estimate a VAR(p) model, this is simply a
multivariate regression problem and we have an effective sample size of T = N − p.
Written as a multivariate regression model, we have

Y
(T×q)

= X
(T×pq)

Φ
(pq×q)

+ U
(T×q)

where

Y
(T×q)

=


y′
p+1

y′
p+2
...

y′
N

 , Φ
(pq×q)

=


Φ′

1

Φ′
2

...
Φ′

p

 , U
(T×q)

=


ε′p+1

ε′p+2
...
ε′N


and the design matrix is

X
(T×pq)

=


y′
p y′

p−1 · · · y′
1

y′
p+1 y′

p · · · y′
2

... ... ...
y′
N−1 y′

N−2 · · · y′
N−p−1


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Thus, the conditional maximum likelihood estimator for Φ is

Φ̂ = (X ′X)−1X ′Y

and the maximum likelihood estimator for Σ is

Σ̂p =

(
Y −XΦ̂

)′ (
Y −XΦ̂

)
T

The VAR(p) model has a very large number of parameters. First, we have the coefficients
of Φ1, . . . ,Φp. Each of these is an unrestricted q × q matrix so Φ contains a total of pq2

parameters. We also need to estimate the variance matrix Σ of the errors ε. Although Σ

contains q2 elements, it is a symmetric matrix so there are only q(q+1)/2 free parameters.
Thus, a VAR(p) model requires us to estimate a total of pq2 + (q+1)q/2 parameters. To
calculate the AIC and BIC we also need the maximized log-likelihood, which is given by

−T
2

[
q log(2π) + log

∣∣∣Σ̂p

∣∣∣+ q
]

Re-scaling as we did for the AR model, we have

AIC = log
∣∣∣Σ̂p

∣∣∣+ 2pq2 + q(q + 1)

T

BIC = log
∣∣∣Σ̂p

∣∣∣+ log(T )(pq2 + q(q + 1)/2)

T

The multivariate generalization of AICc is

AICc = log
∣∣∣Σ̂p

∣∣∣+ (T + qp)q

T − qp− q − 1

as explained in Chapter 5 of McQuarrie and Tsai (1998). For each of the preceding three
expressions, we choose the model that minimizes the given criterion.

2.3.3 Corrected AIC for State Space Models

As the lag length p grows, the number of parameters in a VAR(p) model explodes, and
can easily come close to the effective sample size. In situations like this, AIC is known to
perform poorly. The bias correction 2×length(θ) is based on a large-sample argument and
fails to provide a good approximation when the number of parameters is too close to the
sample size, leading the AIC to choose models that are in general “too large” to acheive
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our target of minimizing the KL divergence. 2 The idea behind the AICc of Hurvich
and Tsai (1989) was to provide a better approximation to the AIC bias correction for AR
models under a certain set of assumptions. In a similar vein, Cavanaugh & Shumway
(1997) propose a refined AIC, the AICb, for general state space models. Rather than
deriving an analytical correction term, they suggest using the bootstrap to approximate
the bias of the maximized log-likelihood as an estimator of the expected log likelihood,
using the state-space bootstrap procedure proposed by Stoffer and Wall (1991).

2Cavanaugh & Shumway (1997) suggest length(θ) ≈ T/2 as a rough approximation of what counts as
“too many parameters relative to sample size” for the AIC to work well.



Chapter 3

Cross-Validation

In our first lecture, we learned that choosing a model by minimizing the KL divergence
is equivalent to choosing a model by maximizing the expected log likelihood. We also
learned that the sample analogue

EĜ

[
log f(y|θ̂)

]
=
`(θ̂)

T
=

1

T

T∑
t=1

log f(yt|θ̂)

provides a biased estimator of this quantity. Intuitively, the problem is that it uses the
data twice: first to estimate θ̂ and then to approximate the integral∫

g(y) log f(y|θ̂) dy = EG

[
log f(Ynew|θ̂)

]
using the empirical CDF constructed from the sample observations. This problem is not
limited to estimating the KL-divergence: it is generic to any measure of goodness of fit.
Since the problem is that we’ve used the data twice, an obvious idea is to find some way
to use two independent datasets: one for parameter estimation and another for model
selection. This is the idea behind cross-validation. We split the data into two parts, use
one for estimation and the other for model evaluation. To avoid “wasting data” we repeat
this process sucessively for different splits, so each observation has a chance to be used for
for estimation and evaluation but never for both at the same time. Although simple and
flexible, notice that this idea of “splitting up our dataset” essentially presupposes that we
are working with iid data. In fact it is possible to adapt the idea behind cross-validation
to handle time series data, as discussed in Section 3.1.1 below. For all other parts of this
discussion, however, we will assume iid data.

37
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3.1 K-fold Cross-Validation

The most general form of the cross-validation algorithm is as follows:

1. Randomly partition the dataset into K “folds” of roughly equal size.

2. For each k = 1, . . . , K estimate your model using all observations except those
contained in the kth fold

3. Each observation belongs to a single fold. Let ŷ−k(t) denote the predicted value of
yt from the model estimated without the fold containing yt.

4. Let L be a loss function. Then the K-fold cross-validation estimate of the out-of-
sample predictive loss is given by

CV (K) =
1

T

T∑
t=1

L
(
yt, ŷ

−k(t)
)

5. Repeat the above steps for each model under consideration and choose the model
that minimizes CV (K).

To use cross-validation in practice we need to make two choices. First, what loss
function should we use and second what value should we choose for K? The first choice
is problem specific: in a regression problem we may choose squared error loss; in a clas-
sification problem we may choose zero-one loss. As we’ll see below, we can even use the
log-likelihood as a “loss function” in a slight abuse of notation. The idea, however, re-
mains the same: evaluate some measure of fit at an observation not used to estimate the
model. So how to choose K? One possibility is to set K = T leading to what is called
leave-one-out cross-validation or LOO-CV for short. In this case there are as many
folds as observations: we predict yt using a model fitted with all observations except t. As
we will see below, this choice combined with the log-likelihood as a measure of fit yields
some very interesting results. In general, however, there is no clear answer to what value
of K is best. Nevertheless, several points are worth considering.

The first is computational complexity. Leave-one-out CV requires us to re-fit each
model T times. In contrast 5-fold cross-validation only requires us to re-fit 5 times. For
linear models and quadratic loss there is a computational shortcut that makes LOO-CV
essentially costless, as you will show on the problem set. A similar results holds for and
model that can be expressed as a linear smoother. Many interesting models, however,
cannot be expressed as linear smoothers so this consideration can be important. A second
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consideration in the choice of K is the tradeoff between bias and variance in estimating
the out of sample predictive loss, a point emphasized by Hastie, Tibshirani & Friedman
(2008). When K = T , we have as many folds as observations. This is simply leave-one-
out CV and it turns out to give an approximately unbiased estimator of the expected
out-of-sample prediction error. Using a larger value of K, they argue, introduces a bias
but tends to produce a lower variance estimator of the prediction estimator because the
partial-sample estimators are less similar to each other when they have fewer observations
in common. While this advice is reasonable in certain situations, such as classification
and density estimation, it is far from universally applicable as Arlot & Celisse (2010)
point out in their comprehensive review article. For example, setting K = T actually
minimizes the variance of the prediction error estimator in certain settings, such as linear
regression. A third consideration is asymptotic properties. We have yet to discuss the
ideas of consistency and efficiency in model selection but, as we will see below, we can
say something very interesting about LOO-CV in large samples.

3.1.1 Cross-Validation for Dependent Data

If our data are dependent, the intuition behind cross-validation breaks down. It seems
strange, for example, to think about randomly partitioning a time series when the whole
point is that order matters. Moreover, if the data are correlated then sequentially leaving
out folds in estimation does not necessarily break the dependence between yt and ŷ−k(t).

To adapt LOO-CV to the case of dependent data, Burman, Chow & Nolan (1994) pro-
posed an idea called “h-block cross-validation.” Roughly speaking, the idea is to assume
that dependence dies sufficiently quickly over time that we can treat observations that
are “far enough apart” as approximately independent. Specifically, we choose an integer
value h and assume that yt and ys can be treated as independent as long as |s − t| > h.
As in the iid version of leave-one-out cross-validation, we still evaluate a loss function by
predicting one witheld observation at a time using a model estimated without it. The
difference is that we also omit the h neighboring observations on each side when fitting
the model. For example, if we choose to evaluate squared-error loss, the criterion is

CVh(1) =
1

T − p

T∑
t=p+1

(
yt − ŷh(t)

)2
where

ŷh(t) = φ̂h
1(t)yt−1 + . . .+ φ̂h

1(t)yt−p

and φ̂h
j(t) denotes the jth parameter estimate from the conditional maximum likeluhood
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(i.e. least-squares) estimator with observations yt−h, . . . , yt+h removed. We still have the
question of what h to choose. Here there is a trade-off between making the assumption
of independence more plausible and leaving enough observations to get precise model
estimates. Intriguingly, the simulation evidence presented in McQuarrie and Tsai (1998)
suggests that setting h = 0, which yields plain-vanilla leave-one-out CV, works well even
in settings with dependence. The idea of h-block cross-validation can also be adapted to
versions of cross-validation other than leave-one-out. For details, see Racine (2000).

3.1.2 The Equivalence Between LOO-CV and TIC

Suppose we set K = 1 and use the log-likelihood as our measure of model fit. Let
Y1, . . . , YT be a collection of iid observations and let θ̂(t) denote the ML estimator for
θ using all observations except Yt. The leave-one-out cross-validation estimator of the
expected log likelihood is

CV (1) =
1

T

T∑
t=1

log f(yt|θ̂(t))

The idea is that, since the data are iid, θ̂(t) is independent of Yt. Accordingly, the
cross-validation estimate of the expected log-likelihood should not be subject to the over-
optimism problem that plagues the maximized log-likelihood. To use cross-validation for
model selection, we simply calculate CV (1) for the various models under consideration,
and choose the one with the highest value.

As it turns out, leave-one-out cross-validation is intimately connected with the TIC.
In fact the two are asymptotically equivalent as we’ll now show. To begin note that, by a
first-order Taylor Expansion of the leave-one-out estimator around the full-sample MLE
we have

CV (1) =
1

T

T∑
t=1

log f(yt|θ̂(t))

=
1

T

T∑
t=1

[
log f(yt|θ̂) +

∂ log f(yt|θ̂)
∂θ′

(
θ̂(t) − θ̂

)]
+ op(1)

=
`(θ̂)

T
+

1

T

T∑
t=1

∂ log f(yt|θ̂)
∂θ′

(
θ̂(t) − θ̂

)
+ op(1)
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so we simply need to show that

1

T

T∑
t=1

∂ log f(yt|θ̂)
∂θ′

(
θ̂(t) − θ̂

)
= − 1

T
trace

(
Ĵ−1K̂

)
+ op(1)

In the following section we will see why this assertion holds.

3.1.3 Influence Functions and LOO-CV

To understand the preceding assertion, we’ll need to take a slight detour and talk about
influence functions, an idea from the robust estimation literature.1 Let T = T(G) be a
functional and G be some probability distribution. Then the influence function of T at a
point y is defined as

infl(G, y) = lim
ε→0

T ((1− ε)G+ εδy)− T(G)
ε

where δy is a point mass at y, that is

δy(a)

{
0, a < y

1, a ≥ y

All kinds of quantities that we know and love can be viewed as functionals of a distribution,
for example the mean and variance.2 Here we’re going to be concerned with a particular
functional that should look familiar from our lecture on AIC and friends:

θ0 = T(G) = argmin
θ∈Θ

EG

[
log

{
g(Y )

f(Y |θ)

}]
What this says is that we can view θ0 as the result of applying an operator T to the
distribution G. In this case θ0 is simply the pseudo-true value: the probability limit of
the maximum likelihood estimator of θ based on f(y|θ). Clearly the pseudo-true value
depends on the DGP, namely G. Different distributions G would yield different pseudo-
true values for the same likelihood f . If we evaulate T at the empirical distribution Ĝ we
get the maximum likelihood estimator θ̂ rather than the pseudo-true value θ0.

The influence function is in fact a functional derivative. It allows us to evaulate, for
example, how the pseudo-true value θ0 would change if we slightly changed the distribu-

1For a detailed overview, see “Robust Statistics” by Huber & Ronchetti (2009).
2“Information Criteria and Statistical Modeling” by Konishi and Kitagawa (2008) provides a good

overview.
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tion G that generated the data by “polluting” it with a tiny mass point located at y.
We could also consider how the maximum likelihood estimator, θ̂, would change if we
slightly changed the dataset, represented by empirical distribution function. Now, since
the empirical distribution is given by

Ĝ(a) =
1

T

T∑
t=1

1 {yt ≤ a} =
1

T

T∑
t=1

δyt(a)

we can re-write it as
Ĝ = (1− 1/T )Ĝ(t) + δyt/T

where Ĝ(t) is the empirical distribution with yt excluded from the dataset. Applying T to
both sides, subtracting T(Ĝ(t)) and multiplying the right-hand-side by T/T , we have

T(Ĝ)− T(Ĝ(t)) =
1

T

T
(
(1− 1/T )Ĝ(t) + δyt/T

)
− T(Ĝ(t))

1/T


If we take ε = 1/T , the term in square brackets is exactly the expression whose limit is
defined as the influence function. Hence, for T large we have the approximation

T(Ĝ)− T(Ĝ(t)) =
1

T
infl
(
Ĝ(t), yt

)
+ op(1)

Now, since T(Ĝ) = θ̂ and T(Ĝ(t)) = θ̂(t), we have the following expression for the leave-
one-out estimator

θ̂(t) = θ̂ − 1

T
infl
(
Ĝ(t), yt

)
+ op(1)

= θ̂ − 1

T
infl
(
Ĝ, yt

)
+ op(1)

The second expression indicates that dropping one observation is asymptotically negligible
in its effect, through the empirical CDF, on the influence function. As it turns out, the
influence function for maximum likelihood estimation is

infl(G, y) = J−1

(
∂ log f(y|θ0)

∂θ

)
where θ0 = T(G) is the pseudo-true value.3 Hence, evaluating this expression at Ĝ and yt

3For details, see the next section.
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and substituting into our expression for θ̂(t)

θ̂(t) = θ̂ − 1

T
Ĵ−1

(
∂ log f(yt|θ̂)

∂θ

)
+ op(1)

since T(Ĝ) = θ̂. This gives us an asymptotic expansion for
(
θ̂(t) − θ̂

)
, namely

(
θ̂(t) − θ̂

)
= − 1

T
Ĵ−1

(
∂ log f(yt|θ̂)

∂θ

)
+ op(1)

which is exactly what we need. Finally, substituting this back into the expression we
initially set out to prove,

1

T

T∑
t=1

∂ log f(yt|θ̂)
∂θ′

(
θ̂(t) − θ̂

)
= − 1

T

T∑
t=1

(
∂ log f(yt|θ̂)

∂θ

)′
Ĵ−1

T

(
∂ log f(yt|θ̂)

∂θ

)
+ op(1)

= − 1

T
trace

{
Ĵ−1

[
1

T

T∑
t=1

(
∂ log f(yt|θ̂)

∂θ

)(
∂ log f(yt|θ̂)

∂θ

)′]}
+ op(1)

= − 1

T
trace

{
Ĵ−1K̂

}

3.1.4 The Influence Function for MLE

In the preceding argument I claimed that the influence function for MLE is

infl(G, y) = J−1

(
∂ log f(y|θ0)

∂θ

)
Here’s a justification for this assertion, following Chapter 5 of Konishi & Kitagawa (2008).
First, note that the functional T for MLE is defined as∫

∂ log f (z|θ)
∂θ

∣∣∣∣
θ=T(G)

dG (z) = 0

where T (G) = θ0. Now, to calculate the influence function, we need to evaulate T not at
G but at (1− ε)G+ εδy. Substituting, we have∫

∂ log f (z|θ)
∂θ

∣∣∣∣
θ=T((1−ε)G+εδy)

d ((1− ε)G (z) + εδy (z)) = 0
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Note that the pseudo-true value has changed to T((1− ε)G+ εδy) 6= θ0 since we’re eval-
uating the functional at a different distribution than G. In fact, the preceding expression
gives θ as an implicit function of ε. The next step is to differentiate both sides of the pre-
ceding equation with respect to ε and evaulate the result at ε = 0. As written, this looks a
little intimidating so let’s simplify the notation a bit and unpack this somewhat strange-
looking integral. First, let s(z|θ) = ∂ log f(z|θ)/∂θ and write θ(ε, y) = T((1− ε)G+ εδy)

and H(z) = (1− ε)G (z) + εδy (z). Using this notation, the integral becomes∫
s(z|θ(ε, y)) dH(z)

Now, the measure H(z) is simply a mixture distribution: Z ∼ H(z) is a random variable
that equals y with probability ε and X with probability 1− ε where X ∼ G(x). Indeed,
the preceding integral is simply the expected value of a function of Z. Hence,∫

s(z|θ(ε, y)) dH(z) = (1− ε)

∫
s(z|θ(ε, y)) dG(z) + εs(y|θ(ε, y))

= (1− ε)A(ε) + εB(ε)

First we’ll differentiate each piece:

∂

∂ε
[(1− ε)A(ε)] = −A(ε) + (1− ε)

∂

∂ε
A(ε)

∂

∂ε
[εB(ε)] = B(ε) + ε

∂

∂ε
B(ε)

Combining and and evaluating at ε = 0,

∂

∂ε

[∫
s(z|θ(ε, y)) dH(z)

]
ε=0

= B(0)− A(0) +
∂

∂ε
A(ε)

Converting back into the notation of the original problem

B(0) = s(y|θ(0, y)) = ∂ log f(y|θ)
∂θ

∣∣∣∣
θ=T(G)

A(0) =

∫
s(z|θ(0, y)) dG(z) =

∫
∂ log f(z|θ)

∂θ

∣∣∣∣
θ=T(G)

dG(z) = 0
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by the definition of θ0 = T(G) as the solution to the population moment condition for
MLE under the data generating process G. Similarly,

∂

∂ε
A(ε) =

∫
∂s(z|θ(0, y))

∂θ

∂θ(0, y)

∂ε
dG(z)

=

∫
∂2 log f(z|θ)

∂θ∂θ′

∣∣∣∣
θ=T(G)

∂

∂ε
[T((1− ε)G+ εδy)]ε=0 dG(z)

Thus, putting everything together,

∂2 log f(y|θ)
∂θ

∣∣∣∣
θ=T(G)

+

∫
∂2 log f(z|θ)

∂θ∂θ′

∣∣∣∣
θ=T(G)

∂

∂ε
[T((1− ε)G+ εδy)]ε=0 dG(z) = 0

Rearranging, and noting that the second factor in the second term is constant with respect
to the variable of integration gives

∂

∂ε
[T ((1− ε)G+ εδy)]ε=0 =

{
−
∫

∂ log f (z|θ)
∂θ∂θ′

∣∣∣∣
θ=T(G)

dG (z)

}−1
∂ log f (y|θ)

∂θ

∣∣∣∣
θ=T(G)

= J−1∂ log f (y|θ0)
∂θ

And now we’re finished since:

∂

∂ε
[T ((1− ε)G+ εδy)]ε=0 = lim

ε→0

T ((1− ε)G+ εδy)

ε
= infl(G, y)
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Chapter 4

“Focused” Model Selection

4.1 Local Mis-specification

4.1.1 Introduction

In this chapter we’ll be using a kind of asymptotic thought experiment that may be
unfamiliar to you, so I’d like to spend a bit of time motivating it before proceeding.
Roughly speaking, the idea is to consider a parameter whose value changes with sample
size. This basic idea is widely used in econometrics and statistics and is known by several
different names. Among them are “local alternatives,” “Pitman Drift,” and “local mis-
specification.” Although it may seem strange at first, “drifting parameters” are actually
the natural asymptotic setting for certain problems, as I hope to convince you with the
following two simple examples.

4.1.2 What’s Wrong with Asymptotic Power?

In this section n denotes sample size and T is a test statistic!

Consider the following simple testing problem. Suppose we observe n observations from
the following DGP

X1, X2, . . . , Xn
iid∼ N(µ, 1)

and want to testH0 : µ = 0 against the one-sided alternativeH1 : µ > 0. In this admittedly
very simple example, the obvious test statistic is

Tn =
√
nX̄n ∼ N

(
µ
√
n, 1
)

where X̄n is the sample mean. We reject when
√
nX̄n > z1−α where z1−α is the 1 − α

47
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quantile of a standard normal distribution. We can calculate the power of this test as
follows:

Power(Tn) = P
(√

nX̄n > z1−α

)
= P

(
Z + µ

√
n > z1−α

)
= P

(
Z > z1−α − µ

√
n
)
= 1− Φ

(
z1−α − µ

√
n
)

where Z is a standard normal random variable and Φ is the corresponding CDF. Now
suppose we decided to do something completely crazy: throw away half our sample. Let
X̄n/2 denote the sample mean based on observations 1, 2, . . . , bN/2c only. We can still
construct a perfectly valid test with size α as follows. Define

Tn/2 =
√

bn/2cX̄n/2 ∼ N
(
µ
√
bn/2c, 1

)
and reject if

√
nX̄n > z1−α. But there’s an obvious problem here: there must be a cost for

throwing away perfectly good data. Indeed, if we calculate the power for this crazy test,
we’ll find that it’s strictly lower than that of the sensible test based on the full sample.
In particular,

Power(Tn/2) = 1− Φ
(
z1−α − µ

√
bn/2c

)
using the same argument as above with bN/2c in place of n.

Now, for an example this simple we’d never resort to asymptotics, but suppose we did.
How do these two tests compare as the sample size goes to infinity? The asymptotic size
in this example is the same as the finite-sample size since we know the exact sampling
distribution of the test statistics under the null and neither depends on sample size. But
what about the power? We have,

lim
n→∞

Power(Tn) = lim
n→∞

[
1− Φ

(
z1−α − µ

√
n
)]

= 1

lim
n→∞

Power(Tn/2) = lim
n→∞

[
1− Φ

(
z1−α − µ

√
bn/2c

)]
= 1

In other words, both of these tests are consistent: as the sample size goes to infinity, the
power goes to one. Think about this for a moment: we know that for any fixed sample
size a test based on the full sample is strictly more powerful but in the limit this difference
disappears. This strongly suggests that something is wrong with our asymptotic thought
experiment in this setting.

You might object that I’ve cooked up a particularly perverse example, but it turns
out that this phenomenon is quite general. It’s easy to find consistent tests, in fact it’s
difficult to find tests that aren’t consistent. But we know from simulation studies that
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not all consistent tests are created equal: some have much better finite sample power
than others. One way around this problem would be to only compare the finite-sample
properties of different tests and never use asymptotics. But we almost never know the
exact sampling distribution of our test statistics.

This is where local alternatives come in. Rather than evaluating our tests against a
fixed alternative µ, suppose we were to evaluate it against a sequence of local alternatives
that drift towards the null at rate n−1/2. In other words, our alternative becomesH1,n : µ =

δ/
√
n where, for this one-sided test, δ > 0. If we substitute δ/

√
n for µ and take the limit

as n→ ∞, we find

lim
n→∞

Power(Tn) = lim
n→∞

[
1− Φ

(
z1−α − δ√

n

√
n

)]
= 1− Φ (z1−α − δ)

and similarly

lim
n→∞

Power(Tn/2) = lim
n→∞

[
1− Φ

(
z1−α − δ√

n

√
bn/2c

)]
= 1− Φ

(
z1−α − δ√

2

)
Wow! Our problem has disappeared! The asymptotic power of the two tests now differs
in essentially the same way as the finite sample power. Also note that the power no longer
converges to one. Intuitively, this is because the drifting sequence of alternatives δ/

√
n

makes it “harder and harder” to reject the null as the sample size grows by shrinking
just fast enough but not so fast that the power goes to zero. This type of calculation is
called a local power analysis. A test that has asymptotic power greater than zero in such
a setting is said to have “power against local alternatives.”

4.1.3 Weak Identification

Drifting parameter sequences of the kind described above are also used in the weak in-
struments and weak identification literature.
Possibly add a simple example later.

4.1.4 A Bias-Variance Tradeoff in the Limit

When we derived Mallow’s Cp, the idea was to compare models on the basis of predic-
tive mean-squared error. Bigger models generally have a lower bias but a higher variance
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because there are more parameters to estimate. In the example we considered in class, ev-
erything was linear and we made enough assumptions about the finite sample distribution
that we could deduce the exact MSE conditional on X. In many settings, however, finite
sample results are unavailable and we are forced to rely on asymptotic approximations.
We know there is a tradeoff between bias and variance in the finite sample and we’d like
to capture this idea in our limit results. The question is how?

Suppose that µ̂ is a potentially biased estimator of µ. Then we have

MSE(µ̂) = E[(µ̂− µ)2] = (E[µ̂− µ])2 + V ar(µ̂)

Now, if we don’t know the finite sample distribution of µ̂, we can’t calculate the preceding
expression. So what can we do instead? If µ̂ is asymptotically normal, then we might
try to use the features of its limit distribution to calculate the asymptotic mean-squared
error and use this as a “stand-in” for the exact, finite-sample quantity. Let µ0 be the
probability limit of µ̂ and µ be the “true” parameter value. Suppose that

√
n (µ̂− µ0)

d→ N (0, σ2)

In maximum likelihood estimation, µ0 would be the pseudo-true value that minimizes the
KL divergence and σ2 would be a diagonal element of J−1KJ−1. Now, an obvious idea is
estimate V ar(µ̂) using the asymptotic variance, namely AVAR(µ̂) = σ2. But what about
the bias term E[µ̂−µ]? The limit distribution of µ̂ is centered around µ0, the pseudo-true
value, but we need to evaluate the bias relative to µ. Let’s try recentering by adding and
subtracting

√
nµ as follows:

√
n (µ̂− µ0) =

√
nµ̂−

√
nµ0

=
√
nµ̂−

√
nµ0 −

√
nµ+

√
nµ

=
√
n (µ̂− µ) +

√
n (µ− µ0)

Rearranging, we can write

√
n (µ̂− µ) =

√
n (µ̂− µ0)−

√
n (µ− µ0)

Now we have an expression for µ̂ centered around µ, so the obvious thing to do is look at
the mean of the limiting distribution of

√
n (µ̂− µ) and call this the “asymptotic bias.”

Unfortunately, we have a problem. By assumption, the first term
√
n (µ̂− µ0) is Op(1) but

the second term diverges! We recentered µ̂ around µ precisely because we thought that µ0
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was potentially different from µ. But if this is the case, then
√
n (µ− µ0) = O(n1/2). So

what’s going on here? The problem is that the asymptotic variance is of a different order
than the asymptotic bias. We need to scale µ̂ up by

√
n to get a result that has non-zero

asymptotic variance, but this same scaling causes the bias to explode. In other words,
there is no way to get a meaningful bias-variance tradeoff in the limit under conventional
asymptotics.

So how can we fix this problem? Above we had
√
n (µ− µ0) = O(n1/2) but what we

want is
√
n (µ− µ0) = O(1), so somehow or other we need to ensure that (µ− µ0) =

O(n−1/2). This is where local mis-specification makes its grand appearance. Suppose that
we have a DGP under which the true parameter value is µn = µ0 + δ/

√
n where δ is a

constant. That is, suppose we assume that the true parameter value changes with sample
size and drifts towards µ0 at rate n−1/2. This may sound like a crazy idea, but there’s no
arguing with the fact that it solves our problem. We have,

√
n (µ̂− µn) =

√
n (µ̂− µ0)−

√
n (µn − µ0)

=
√
n (µ̂− µ0)−

√
n
(
µ0 + δ/

√
n− µ0

)
=

√
n (µ̂− µ0)− δ

d→ N (0, σ2)− δ

hence, the asymptotic mean-squared error of µ̂ is AMSE(µ̂) = δ2 + σ2. But what does
it mean to have a parameter that changes with sample size? It’s important to be clear
that this does not mean that we think real-world datasets follow a DGP that changes
with sample size. This is a thought experiment: we also don’t believe that it’s possible to
have an infinite sample size! When we use asymptotics, the point is to derive tractable
expressions that approximate the effects that actually occur in finite samples. We know
that there is a bias-variance tradeoff in finite samples but we showed above that the
conventional asymptotics can’t capture this. In other words, local mis-specification is
a device to get a limiting theory that provides a better approximation to what’s really
going on in finite samples. For more on the sense in which local mis-specification provides
a much more realistic portrait of the effects of model selection, see Leeb and Pötscher
(2005).

4.1.5 Triangular Array Asymptotics

When parameter values change with sample size, we no longer have iid random variables.
Instead we have what is called a “triangular array DGP” and we need to index random
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variables by sample size in addition to the usual index:

Y11

Y21, Y22
...
Yn1, Yn2, . . . , Ynn

When we want to avoid the double subscript on the random variables, it’s common to add
a subscript to the expectation and variance operators to indicate the distribution with
respect to which the given moment is being evaluated.

To give you a sense of how triangular array DGPs work, I’ll show you some very simple
results. For much more general, and also much more technical, results for triangular array
DGPs, see Andrews (1988) and Andrews (1992).

A Very Simple LLN for Triangular Arrays Suppose Y1, . . . , Yn ∼ iid with mean
µ + δ/

√
n and variance σ2

n. Can we still establish a LLN for the sample mean Ȳn =

n−1
∑n

i=1 Yi? If so how? By Chebyshev’s Inequality, we know that one simple way to
establish a WLLN is via an L2 argument. In this case, it is sufficient to show that
En[Ȳn] → µ and V arn[Ȳn] → 0. Although the triangular array of RVs in this example
is not identically distributed in the strict sense, it is identically distributed for fixed n.
Thus, we have,

En[Ȳn] =
1

n

n∑
i=1

En[Yi] = µ+ δ/
√
n→ µ

Using independence, we have

V arn(Ȳn) =
1

n2

n∑
i=1

V arn(Yi) =
σ2
n

n

Thus, as long as σ2
n is uniformly bounded by some constant M , we have V arn(Ȳn) → 0

and it follows that Ȳn
p→ µ. Although this example is so simple as to be nearly trivial

it illustrates the basic flavor of triangular array asymptotics: they’re very similar to the
usual asymptotics you see in first year, but typically require some kind of uniform bound
on the array.

Lindeberg-Feller CLT The previous example showed a simple LLN for triangular
arrays. What about a CLT? The simplest case assumes independent data and is called
the Lindeberg-Feller CLT. For each n, let Yn,1, Yn,2, . . . , Yn,kn be independent random
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vectors with finite variances such that

kn∑
i=1

E
[
‖Yn,i‖21 {‖Yn,i‖ > ε}

]
→ 0

for every ε > 0 and
kn∑
i=1

V ar(Yn,i) → Σ

Then
∑kn

i=1 (Yn,i − E [Yn,i])
d→ N(0,Σ).

4.2 Focused Evaluation
The idea behind focused model selection is to choose the model that is best for a partic-
ular purpose rather than seeking “one-size-fits all” best model. In general, “best” means
minimum risk relative to some loss function: it is not a matter of searching for the “true”
model. There are two main ideas here. First, even if we knew what the true model was,
up to some unknown parameters that we need to estimate, it’s not clear that we should
use it. In most interesting settings there is a bias-variance trade-off. If the true model
is somewhat complicated, we may be better off fitting a simpler model. Although this
introduces a bias, it could lead to a large reduction in variance, depending on sample
size. Second, different modeling goals may call for different models of the same data.
Estimating a structural parameter and creating a forecast are two very different goals. It
is far from obvious that we should use the same model for both.

The following example comes from Hansen (2005). Consider an AR(k) model

yt = µ+ β1yt−1 + · · ·+ βkyt−k + εt

where {εt} is a martingale difference sequence, that is E[εt|It−1] = 0. We’re interested
in learning about a scalar “focus parameter” θ = g(β). This could be for example, one
of the individual coefficients βj, the long-run variance, or an impulse response at some
specified horizon. The point is that it’s a scalar and a function of the underlying model
parameters β1, . . . , βk. So what constitutes a “good” model for learning about θ? The
natural way to proceed is to specify a loss function and try to find the estimator θ̂ that
minimizes the expectation of the loss. For this example we’ll use mean-squared error and
search for a model that minimizes E[(θ̂ − θ)2]

Hansen (2005) uses a simple simulation experiment to show that different focus param-
eters can lead to very different selected models. The setup is as follows. We consider the



54 CHAPTER 4. “FOCUSED” MODEL SELECTION

family of AR(k) models for k = 0, 1, . . . , kmax but the true DGP is in fact an ARMA(1,1)
model, namely

yt = αyt−1 + εt − γεt−1

εt ∼ iid N(0, 1)

Thus none of the models under consideration is correctly specified since the true DGP can
be expressed as an AR(∞) model. Now suppose we’re interested in the impulse responses.
A little algebra reveals that the true impulse responses for the DGP are

θm = (α− γ)αm−1

where m denotes the horizon. The estimated impulse responses for the class of models
we are considering can be calculated recursively from the estimated AR parameters. By
simulating the DGP with T = 200 for a range of parameter values (α, γ) Hansen (2005)
shows that the optimal AR order for approximating the impulse response of the true DGP
in a minumum mean-squared error sense is highly sensitive to m, the horizon of interest.
To take a particularly stark example, when α = 0.5 and β = 0.9 the optimal AR order
for m = 2 is k = 10 but the optimal AR order for m = 6 is k = 0.

4.3 The Focused Information Criterion (FIC)

The motivation behind the FIC is to create a model selection criterion that is portable
like AIC and BIC, based on risk minimization like FPE and Cp, but focused in the sense
of Hansen (2005). The result turns out to be even more portable than AIC and BIC:
although originally derived in a likelihood framework, the idea behind the FIC can be
easily extended to any situation in which it is possible to derive a limiting distribution.
Indeed extending the idea behing the FIC idea to novel settings has been a topic of my
recent research!

Although it has been extended in a number of ways, here I’ll follow the notation and
framework of the original two papers: Claeskens & Hjort (2003) and Hjort & Claeskens
(2003). These papers appear in the same issue of JASA and the derivations and expla-
nations are split between them. One can look at various loss functions, but the original
papers use MSE so that’s what we’ll discuss here.

Roughly speaking, the idea behind the FIC is to estimate a user-specified target param-
eter µ with minimum mean-square error. Since finite-sample MSE can only be calculated
in very simple examples, the FIC uses an asymptotic MSE to approximate finite-sample
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behavior. As discussed above, this requires an asymptotic framework based on drifting
sequences of parameters.

Local Mis-specification Framework: Suppose Y1, . . . , Yn are independent with den-
sity

ftrue(y) = f(y, θ0, γ0 + δ/
√
n)

This could be a regression model, in which case the likelihood is conditional on x but
we’ll suppress this in the notation. The p-vector θ contains the “protected parameters.”
These are the parameters that we have decided in advance we definitely want to estimate.
In contrast, the q-vector γ contains the parameters over which we will carry out model
selection: we consider the restriction γ = γ0 where γ0 is a known parameter. When we
restrict a component of γ we do not estimate it: we simply substitute the restriction into
the likelihood. In a linear regression problem, for example, we might have something like

yi = x′iθ + z′iγ + εi

and consider setting some or all of the elements of γ equal to zero rather than estimating
them. The true value of γ is changing with sample size according to γn = γ0+δ/

√
n where

δ is a fixed but unknown constant q-vector. Thus, any specification that does not estimate
γ is locally mis-specified but the mis-specification disappears in the limit as n→ ∞.

N.B. There’s something slightly awkward in the notation here: θ0 is the true value of
θ but γ0 is not the true value of γ. It is only in the limit that γ = γ0. Unlike θ0, which is
unknown, γ0 is known since it’s the restriction we’re considering. This is something the
econometrician chooses based on the specifics of the problem at hand.

The Focus Parameter: The FIC is not a specific model selection criterion. Instead
it is a procedure that allows the user to create her own model selection criterion for a
particular problem. Let µ = µ(θ, γ) be the user-specified parameter of interest. Under
local mis-specification, the true value of µ is changing with sample size according to

µtrue = µ
(
θ0, γ0 + δ/

√
n
)

The goal is to estimate µ with minimum mean-squared error. But since we are considering
general ML models, it’s not possible to work out the exact finite-sample distributions of
the various estimators. Instead, we calculate the asymptotic mean-squared error (AMSE)
of our estimators of µ and attempt to select a model to minimize this quantity. The key



56 CHAPTER 4. “FOCUSED” MODEL SELECTION

innovation here is that we are not interested in γ for its own sake: all that matters is how
our modeling decisions about γ affect our estimates of µ.

Candidate Models: Considered in full generality, we could restrict any number of
components of γ. Since this parameter is q-dimensional, we could consider a total of 2q

candidate models if desired. Alternatively, we could decide to consider only particular
groups of restrictions. The simplest case considers only two models: the wide model
estimates all elements of γ and the narrow model estimates none of the elements of
gamma. However we choose to restrict the set of candidates, each model is indexed
by S which is a subset of {1, . . . , q} that indicates which elements of γ we estimate. Its
complement, Sc, indicates which elements of γ we set equal to the corresponding elements
of γ0. Each candidate model S implies a maximum likelihood estimator for the underlying
model parameters θ and γS, where γS denotes the elements of γ that are esetimated under
model S. The corresponding ML estimator µ̂S = µ (µ̂S, γ̂S) for the target parameter µ

µ̂S = µ
(
θ̂S, γ̂S, γ0,Sc

)
where γ0,Sc denotes a vector containing the elements of γ0 whose indices are in Sc. These
are the elements of γ that are not estimated.

The “Full” Model The full, aka wide, model is the specification in which we estimate
all elements of γ. Under the local mis-specificiation assumption, this model is correctly
specified. Any model selection criterion relies on some form of over-identification to eval-
uate the quality of a candidate model relative to alternatives. In the FIC framework this
is achieved by comparing the results of each candidate S to those of the full model. We
denote the score function of the full model by[

U(y)

V (y)

]
=

[
∇θ log f(y, θ0, γ0)

∇γ log f(y, θ0, γ0)

]
(p× 1)

(q × 1)

Note that the score is evaluated at the null point (θ0, γ0). This is not the true parameter
vector for any finite sample size, but it is the true parameter vector in the limit. Similarly,
the information matrix of the full model by

JFull = V ar0

[
U(y)

V (y)

]
=

[
J00 J01

J10 J11

]
(p× p) (p× q)

(q × p) (q × q)
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where the the zero subscript indicates that the expectation is being taken with respect to
the distribution in which γ = γ0. This is the limiting DGP which is different from the
DGP for any finite sample size under local mis-specification. We partition the inverse of
the information matrix for the full model as follows

J−1
Full =

[
J00 J01

J10 J11

]

where
K ≡ J11 = (J11 − J10J

−1
00 J01)

−1

by the partitioned matrix inverse formula. The quantity J11 appears so frequently in the
derivation of the FIC that it is called K to keep the superscripts from getting out of
control.

Selection Matrices In various matrix manipulations in the paper, it turns out to be
helpful to define a matrix that selects the elements of γ that are estimated under model
S. Let πS be the |S| × q matrix that “selects” only those elements of a q-vector that
correspond to the indices in the set S. For example, suppose q = 3 and S = {1, 3}. Then,

πS =

[
1 0 0

0 0 1

]

In this case γ = (γ1, γ2, γ3)
′ and πSγ = (γ1, γ3)

′. For the wide or full model, i.e. the model
that estimates all components of γ, we have S = {1, . . . , q} and hence πS is simply the
identity matrix of order q. An extremely useful fact about πS is that we can use it to
transform the information matrix for the full aka wide model – the model that estimates
all components of γ – into the information matrix for a candidate model S as follows:

JS = V ar0

[
U(y)

VS(y)

]
=

[
J00 J01,S

J10,S J11,S

]
=

[
J00 J01π

′
S

πSJ10 πSJ11π
′
S

]

By the partitioned matrix inverse formula:

KS ≡ J11,S =
(
πSK

−1π′
S

)−1
=
[
πS
(
J11 − J10J

−1
00 J01

)
π′
S

]−1

J01,S = −J−1
00 J01π

′
SKS

J00,S = J−1
00 + J−1

00 J01 (π
′
SKSπS) J10J

−1
00
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Again, the quantity J11,S appears so many times in the derivation of the FIC that it is
called KS for short.

CLT for the Score of the Full Model The first step in deriving the FIC is to calculate
the limiting distribution of the score for the full model evaluated at (θ0, γ0). This appears
as Lemma 3.1 in Hjort & Claeskens (2003). Before stating it, we’ll define the following
notation: [

Ūn

V̄n

]
=

1

n

n∑
i=1

[
U(Yi)

V (Yi)

]

Lemma 4.3.1 (CLT for Score of Full Model). Under local mis-specification,[ √
nŪn√
nV̄n

]
d→

(
J01δ

J11δ

)
+

(
M

N

)

where (
M

N

)
∼ Np+q(0, JFull)

Proof. To prove this result, we apply the Lindeberg-Feller CLT to the triangular array of
random variables [

U(Yi)/
√
n

V (Yi)/
√
n

]
Since the Yi are iid for fixed n, we have

V ar

n∑
i=1

[
U(Yi)/

√
n

V (Yi)/
√
n

]
= V arn

[
U(Yi)

V (Yi)

]
→ V ar0

[
U(Yi)

V (Yi)

]
= Jfull

under appropriate regularity conditions. Thus, assuming the Lindeberg condition is sat-
isfied, we have

1√
n

n∑
i=1

([
U(Yi)

V (Yi)

]
− En

[
U(Yi)

V (Yi)

])
d→

[
M

N

]
where (M ′, N ′)′ ∼ Np+q (0, Jfull). Again, since the Yi are iid for fixed n,

1√
n

n∑
i=1

([
U(Yi)

V (Yi)

]
− En

[
U(Yi)

V (Yi)

])
=

(
1√
n

n∑
i=1

[
U(Yi)

V (Yi)

])
−

√
nEn

[
U(Yi)

V (Yi)

]
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And by a mean-value expansion around γn = γ0 + δ/
√
n,

En

[
U(Yi)

V (Yi)

]
= En

[
∇θ log f(Yi, θ0, γn)

∇γ log f(Yi, θ0, γn)

]
+ En

[
∇θγ′ log f(Yi, θ0, γ

∗)

∇γγ′ log f(Yi, θ0, γ
∗)

]
(γ0 − γn)

where γ∗ is between γ0 and γn. The first term is simply the population moment condi-
tion for ML estimation and hence equals zero: thanks to the mean-value expansion, the
expectation is now evaluated at (θ0, γn) which is the true parameter value for the DGP
based on a sample size of n. Thus, since γ0 − γn = −δ/

√
n, we have

√
nEn

[
U(Yi)

V (Yi)

]
= −En

[
∇θγ′ log f(Yi, θ0, γ

∗)

∇γγ′ log f(Yi, θ0, γ
∗)

]
δ → −E0

[
∇θγ′ log f(Yi, θ0, γ0)

∇γγ′ log f(Yi, θ0, γ0)

]
δ

under appropriate regularity conditions. Recall that, in the limit, (θ0, γ0) are the true
parameter values. Hence,

−E0

[
∇θγ′ log f(Yi, θ0, γ0)

∇γγ′ log f(Yi, θ0, γ0)

]
=

[
J01

J11

]

by the information matrix equality, yielding the desired result.

Asymptotic Normality of the Estimators The next step in the derivation of the
FIC is to work out the limiting distribution of the ML estimators (θ̂S, γ̂S) under model
S. This is Lemma 3.2 in Hjort & Claeskens (2003).

Lemma 4.3.2. Under local mis-specification,[ √
n(θ̂S − θ0)√
n(γ̂S − γ0)

]
d→

[
CS

DS

]

where [
CS

DS

]
= J−1

S

(
J01δ +M

πSJ11δ +NS

)
∼ Np+|S|

(
J−1
S

[
J01

πSJ11

]
δ, J−1

S

)
and NS = πSN .

Proof. The usual Taylor Expansion argument for ML continues to apply under local mis-
specification. Furthermore, the information matrix equality holds in the limit since all
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the models under consideration are asymptotically correctly specified. Thus, we have[
θ̂S

γ̂S

]
=

[
θ0

γ0,S

]
+ J−1

S

[
Ūn

πSV̄n

]
+ op(n

−1/2)

Restricting Lemma 4.3.1 to model S, we have[ √
nŪn√
nπSV̄n

]
d→

(
J01δ

πSJ11δ

)
+

(
M

πSN

)

so the result follows by the Continuous Mapping Theorem.

Important Point Notice that the only place the mis-specification showed up in the
preceding proof was in the CLT for the score. This means that all of the models under
consideration yield consistent estimators.

Some Additional Notation To make the final results a bit more compact, Hjort &
Claeskens (2003) introduce some additional notation:

W = J10M + J11N

The random variable W is simply a linear combination of the random variables M and N
that emerged from applying a CLT to the score of the full model. The reason it’s worth
naming this quantity is because of the following result1

Lemma 4.3.3. Define W ≡ J10M + J11N . Then, W = K(N − J10J
−1
00 M) and M and

W are independent with W ∼ Nq(0, K) and M ∼ Np(0, J00).

Proof. By the formula for the inverse of a partitioned matrix,

J11 =
(
J11 − J10J

−1
00 J01

)−1

J01 = −J−1
00 J01J

11

J10 = −J11J10J
−1
00

J00 = J−1
00 + J−1

00 J01J
11J10J

−1
00

1This doesn’t actually appear as a Lemma in the paper: it’s one of those “it’s not difficult to show”
assertions and appears immediately after Lemma 3.2.
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Thus,

W ≡ J10M + J11N =
(
−J11J10J

−1
00

)
M + J11N

= J11
(
N − J10J

−1
00 M

)
= K

(
N − J10J

−1
00 M

)
Now we need to show the independence of W and M . Because they’re jointly normal, it
is sufficient to show that they are uncorrelated. Write[

M

W

]
=

[
M

J10M + J11N

]
=

[
Ip 0p×q

J10 J11

][
M

N

]
≡ A

[
M

N

]

Since

[
M

N

]
∼ Np+q(0, JFull), we have A

[
M

N

]
∼ Np+q(0, AJFullA

′). Multiplying

through, we find that

AJFullA
′ =

[
J00 J00J

01 + J01J
11

J10J00 + J11J10 J10 (J00J
01 + J01J

11) + J11 (J10J
01 + J11J

11)

]

Now,

J00J
01 + J01J

11 = J00
(
−J−1

00 J01J
11
)
+ J01J

11

= −J01J11 + J01J
11 = 0

and similarly

J10J00 + J11J10 =
(
−J11J10J

−1
00

)
J00 + J11J10

= −J11J10 + J11J10 = 0

Finally,

J10
(
J00J

01 + J01J
11
)
+ J11

(
J10J

01 + J11J
11
)

= J11
(
J10J

01 + J11J
11
)

= J11
(
J10
[
−J−1

00 J01J
11
]
+ J11J

11
)

= J11
(
J11 − J10J

−1
00 J01

)
J11

= J11 (J11)
−1 J11 = J11

where the first equality uses the fact that J00J01 + J01J
11 = 0.
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Estimating δ As we saw in Lemma 4.3.2, the limiting distribution of the ML estima-
tors depends on the local mis-specification parameter, δ. Since this is unknown we will,
ultimately, need to estimate it. To this end, define

δ̂S =
√
n (γ̂S − γ0,S)

DS = KSπSK
−1(δ +W )

where W is the random variable described in Lemma 4.3.3. The key result concerning
these quantities is as follows2

Lemma 4.3.4. Lemma 3.2 and some algebra imply that

δ̂S ≡
√
n(γ̂S − γ0,S)

d→ DS

where DS = KSπsK
−1(δ +W ) = KSπsK

−1D, defining D = δ +W . In particular:

Dn ≡ δ̂Full =
√
n(γ̂Full − γ0)

d→ D = (δ +W ) ∼ Nq(δ,K)

Proof. Lemma 3.2 establishes that[ √
n(θ̂ − θ0)√
n(γ̂ − γ0)

]
d→

[
CS

DS

]
= J−1

S

(
J01δ +M

πSJ11δ +NS

)

so we know immediately that δ̂S ≡
√
n(γ̂S − γ0,S)

d→ DS. We need to show that DS =

KSπSK
−1D where D = δ +W . We have:[

CS

DS

]
= J−1

S

[
J01δ +M

πSJ11δ +NS

]
=

[
J00,S J01,S

J10,S J11,S

][
J01δ +M

πSJ11δ +NS

]

=

[
J−1
00 + J−1

00 J01 (π
′
SKSπS) J10J

−1
00 −J−1

00 J01π
′
SKS

−KSπSJ10J
−1
00 KS

][
J01δ +M

πSJ11δ +NS

]

2This does not appear as a lemma in the paper: “it follows from Lemma 3.2 and a little algebra.”
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where KS = (πSK
−1π′

S)
−1 and K ≡ J11. Thus, we have

DS = −KSπSJ10J
−1
00 (J01δ +M) +KS (πSJ11δ +NS)

= KS

[
(πSJ11δ +NS)− πSJ10J

−1
00 (J01δ +M)

]
= KS

[
πSJ11δ + πSN − πSJ10J

−1
00 (J01δ +M)

]
= KSπS

[(
J11 − J10J

−1
00 J01

)
δ +N − J10J

−1
00 M

]
= KSπS

[
K−1δ +K−1K

(
N − J10J

−1
00 M

)]
= KSπSK

−1
[
δ +K

(
N − J10J

−1
00 M

)]
= KSπSK

−1 (δ +W )

Estimating the Focus Parameter We’re finally ready to work out the limiting dis-
tribution of µ̂S. First two final items of notation. Define

HS = K−1/2π′
SKSπSK

−1/2

ω = J10J
−1
00 ∇θµ(θ0, γ0)−∇γµ(θ0, γ0)

Notice that:

1. ω depends on the choice of focus parameter µ but not on the model S.

2. HS is symmetric and idempotent, thus it is a projection matrix.

3. HS is orthogonal to I −HS

4. Define H∅ as a q × q null matrix.

When S = ∅, i.e. when we consider a submodel that estimates none of the componentes
of γ, we define H∅ as a q × q matrix of zeros. The key result, which appears as Lemma
3.3 in the Paper, is as follows

Lemma 4.3.5. If µ has continuous partial derivatives in a neighborhood of (θ0, γ0),

√
n (µ̂S − µtrue)

d→ ΛS

where µtrue = µ(θ0, γ0 + δ/
√
n) and

ΛS = ∇θµ(θ0, γ0)
′J−1

00 M + ω′ (δ −K1/2HSK
−1/2D

)



64 CHAPTER 4. “FOCUSED” MODEL SELECTION

Thus, the the scalar random variable ΛS follows a normal distribution with

Mean = ω′(I −K1/2HSK
−1/2)δ

Variance = ∇θµ(θ0, γ0)
′J−1

00 ∇θµ(θ0, γ0) + ω′K1/2HSK
1/2ω

Proof. The first thing to notice is that the limiting result distribution given in the Lemma
is centered around µtrue = µ(θ0, γn) where γn = γ0 + δ/

√
n. It is not centered around

µ0 = µ(θ0, γ0). This means that we cannot immediately apply the Delta Method to
Lemma 4.3.2 since the limit distributions given there are centered around (θ0, γ0). By a
mean-value expansion around γ0,

µtrue = µ(θ0, γ0 + δ/
√
n) = µ(θ0, γ0) +∇γµ(θ0, γ̄)

′ δ√
n

where γ̄ is between γ0 and γ0 + δ/
√
n. Thus, we have

√
n (µ̂S − µtrue) =

√
n (µ̂S − µ0)−

√
n (µtrue − µ0)

=
√
n (µ̂S − µ0)−∇γµ(θ0, γ̄)

′δ

Applying the Delta Method to the first term via Lemma 4.3.2 and using the fact that
γ̄ → γ0 for the second term, we have

√
n (µ̂S − µtrue)

d→ ΛS where

ΛS = ∇θµ(θ0, γ0)
′CS + [πS∇γµ(θ0, γ0)]

′DS −∇γµ(θ0, γ0)
′δ

From here, it is immediate that ΛS is MV normal, as it is a linear combination of a normal
random vector. Although we could find its mean and variance directly using this result,
it will be helpful to simplify the expression for ΛS. The point is that M and D = δ +W

are independent normal random vectors, so if we can isolate them, we have a much easier
expression to deal with. We established above that:[

CS

DS

]
= J−1

S

[
J01δ +M

πSJ11δ +NS

]
=

[
J00,S J01,S

J10,S J11,S

][
J01δ +M

πSJ11δ +NS

]

=

[
J−1
00 + J−1

00 J01 (π
′
SKSπS) J10J

−1
00 −J−1

00 J01π
′
SKS

−KSπSJ10J
−1
00 KS

][
J01δ +M

πSJ11δ +NS

]

and, multiplying this out, found DS = KSπSK
−1(δ +W ). Now we will do the same for
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CS. To begin:

CS = J00,S (J01δ +M) + J01,S (πSJ11δ +NS)

=
(
J00,SJ01 + J01,SπSJ11

)
δ +

(
J00,SM + J01,SNS

)
≡ Aδ +B

Now,

A ≡ J00,SJ01 + J01,SπSJ11

=
(
J−1
00 + J−1

00 J01 [π
′
SKSπS] J10J

−1
00

)
J01 +

(
−J−1

00 J01π
′
SKS

)
πSJ11

= J−1
00 J01

(
I + [π′

SKSπS] J10J
−1
00 J01 − [π′

SKSπS] J11
)

= J−1
00 J01

[
I − (π′

SKSπS)
(
J11 − J10J

−1
00 J01

)]
= J−1

00 J01
[
I − (π′

SKSπS)K
−1
]

= J−1
00 J01

[
I −K1/2K−1/2 (π′

SKSπS)K
−1/2K−1/2

]
= J−1

00 J01
[
I −K1/2

(
K−1/2π′

SKSπSK
−1/2

)
K−1/2

]
= J−1

00 J01
[
I −K1/2HSK

−1/2
]

B ≡ J00,SM + J01,SNS

=
(
J−1
00 + J−1

00 J01π
′
SKSπSJ10J

−1
00

)
M +

(
−J−1

00 J01π
′
SKS

)
πSN

= J−1
00 M + J−1

00 J01π
′
SKSπS

(
J10J

−1
00 M −N

)
= J−1

00 M − J−1
00 J01π

′
SKSπS

(
N − J10J

−1
00 M

)
= J−1

00 M − J−1
00 J01

(
K1/2K−1/2

)
π′
SKSπS

(
K−1K

) (
N − J10J

−1
00 M

)
= J−1

00 M − J−1
00 J01

(
K1/2K−1/2

)
π′
SKSπS

(
K−1

) [
K
(
N − J10J

−1
00 M

)]
= J−1

00 M − J−1
00 J01

(
K1/2K−1/2

)
π′
SKSπS

(
K−1/2K−1/2

) [
K
(
N − J10J

−1
00 M

)]
= J−1

00 M − J−1
00 J01K

1/2
(
K−1/2π′

SKSπSK
−1/2

)
K−1/2

[
K
(
N − J10J

−1
00 M

)]
= J−1

00 M − J−1
00 J01K

1/2HSK
−1/2W

where we have substituted the definition of HS and used the fact that, as we showed
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above, K(N − J10J
−1
00 M) = W . Combining these,

CS = J−1
00 J01

(
I −K1/2HSK

−1/2
)
δ + J−1

00 M − J−1
00 J01K

1/2HSK
−1/2W

= J−1
00 J01δ −

(
J−1
00 J01K

1/2HSK
−1/2

)
δ + J−1

00 M −
(
J−1
00 J01K

1/2HSK
−1/2

)
W

=
(
J−1
00 J01

)
δ −

(
J−1
00 J01

)
K1/2HSK

−1/2(δ +W ) + J−1
00 M

= J−1
00 M + J−1

00 J01
[
δ −K1/2HSK

−1/2(δ +W )
]

= J−1
00 M + J−1

00 J01
(
δ −K1/2HSK

−1/2D
)

Thus, expressing everything in terms of the independent normal random vectors M and
D = δ +W , we have[

CS

DS

]
=

[
J−1
00 M + J−1

00 J01
(
δ −K1/2HSK

−1/2D
)

KSπSK
−1D

]

Now, recall that

ΛS = ∇θµ(θ0, γ0)
′CS + [πS∇γµ(θ0, γ0)]

′DS −∇γµ(θ0, γ0)
′δ

Multiplying through,

∇θµ(θ0, γ0)
′CS = ∇θµ(θ0, γ0)

′ [J−1
00 M + J−1

00 J01
(
δ −K1/2HSK

−1/2D
)]

and

[πS∇γµ(θ0, γ0)]
′DS = ∇γµ(θ0, γ0)

′π′
SDS

= ∇γµ(θ0, γ0)
′π′

SKSπSK
−1D

= ∇γµ(θ0, γ0)
′ (K1/2K−1/2

)
π′
SKSπS

(
K−1/2K−1/2

)
D

= ∇γµ(θ0, γ0)
′K1/2

(
K−1/2π′

SKSπSK
−1/2

)
K−1/2D

= ∇γµ(θ0, γ0)
′K1/2HSK

−1/2D
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Therefore,

ΛS = ∇θµ(θ0, γ0)
′CS + [πS∇γµ(θ0, γ0)]

′DS −∇γµ(θ0, γ0)
′δ

= ∇θµ(θ0, γ0)
′ [J−1

00 M + J−1
00 J01

(
δ −K1/2HSK

−1/2D
)]

+
[
∇γµ(θ0, γ0)

′K1/2HSK
−1/2D

]
−∇γµ(θ0, γ0)

′δ

= ∇θµ(θ0, γ0)
′J−1

00 M +∇θµ(θ0, γ0)
′J−1

00 J01
(
δ −K1/2HSK

−1/2D
)

−∇γµ(θ0, γ0)
′ (δ −K1/2HSK

−1/2D
)

= ∇θµ(θ0, γ0)
′J−1

00 M +
[
∇θµ(θ0, γ0)

′J−1
00 J01 −∇γµ(θ0, γ0)

′] (δ −K1/2HSK
−1/2D

)
= ∇θµ(θ0, γ0)

′J−1
00 M +

[
J10J

−1
00 ∇θµ(θ0, γ0)−∇γµ(θ0, γ0)

]′ (
δ −K1/2HSK

−1/2D
)

= ∇θµ(θ0, γ0)
′J−1

00 M + ω′ (δ −K1/2HSK
−1/2D

)
Now we can easily calculate the mean and variance of the scalar random variable ΛS as
we have expressed it as a linear combination of two independent normal random vectors:
M and D = δ +W . Recall that[

M

W

]
∼ Np+q

([
0

0

]
,

[
J00 0

0 K

])

where K = J11. Exploiting the symmetry of variance matrices in several places as well
as the symmetry and idempotency of HS, we have

E[ΛS] = E
[
∇θµ(θ0, γ0)

′J−1
00 M

]
+ E

[
ω′ (δ −K1/2HSK

−1/2D
)]

= ∇θµ(θ0, γ0)
′J−1

00 E [M ] + ω′δ − ω′K1/2HSK
−1/2E[δ +W ]

= ω′δ − ω′K1/2HSK
−1/2 (δ + E[W ])

= ω′δ − ω′K1/2HSK
−1/2δ

= ω′ (I −K1/2HSK
−1/2

)
δ

V ar
[
∇θµ(θ0, γ0)

′J−1
00 M

]
=

[
∇θµ(θ0, γ0)

′J−1
00

]
V ar[M ]

[
∇θµ(θ0, γ0)

′J−1
00

]′
= ∇θµ(θ0, γ0)

′J−1
00 J00J

−1
00 ∇θµ(θ0, γ0)

= ∇θµ(θ0, γ0)
′J−1

00 ∇θµ(θ0, γ0)
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V ar
[
ω′ (δ −K1/2HSK

−1/2D
)]

=
(
ω′K1/2HSK

−1/2
)
V ar[D]

(
ω′K1/2HSK

−1/2
)′

= ω′K1/2HSK
−1/2KK−1/2HSK

1/2ω

= ω′K1/2HS

(
K−1/2K1/2

) (
K1/2K−1/2

)
HSK

1/2ω

= ω′K1/2HSHSK
1/2ω

= ω′K1/2HSK
1/2ω

V ar[ΛS] = V ar
[
∇θµ(θ0, γ0)

′J−1
00 M

]
+ V ar

[
ω′ (δ −K1/2HSK

−1/2D
)]

= ∇θµ(θ0, γ0)
′J−1

00 ∇θµ(θ0, γ0) + ω′K1/2HSK
1/2ω

Estimating AMSE So far, all we have done, admittedly at great length, is derive the
limit distribution of µ̂S. Now we’re finally ready to state our model selection criterion:
the FIC. From Lemma 4.3.5, the asymptotic mean-squared error of

√
n (µ̂S − µtrue) is

r(S) = Bias2 + Variance
=

[
ω′(I −K1/2HSK

−1/2)δ
] [
ω′(I −K1/2HSK

−1/2)δ
]′

+
[
∇θµ(θ0, γ0)

′J−1
00 ∇θµ(θ0, γ0) + ω′K1/2HSK

1/2ω
]

= ω′(I −K−1/2HSK
1/2)δδ′(I −K1/2HSK

−1/2)ω

+ω′K1/2HSK
1/2ω + τ 20

Where
τ 20 = ∇θµ(θ0, γ0)

′J−1
00 ∇θµ(θ0, γ0)

which is non-negative and does not vary across models. Ideally, we would simply choose
S to minimize AMSE(S) but the formula depends on various unknowns. The solution
is, of course, to estimate them. Under local mis-specification, consistent estimators of all
quantities except δ are readily available: they’re just the usual ML estimators.3

So what can we do about δ? Notice from above that we actually need to estimate δδ′,
not δ. If we had a consistent estimator δ̃ of δ, then δ̃δ̃′ would be a consistent estimator
of δδ′. Unfortunately no consistent estimator of δ exists under local mis-specification.
Intuitively, the problem is that the data become “less and less informative” about δ
as the sample size grows. Instead, the FIC substitutes an asymptotically unbiased

3There’s a slight issue about whether it makes more sense to use the estimates from the wide model
or from a given submodel but this doesn’t show up anywhere in the asymptotics. For more discussion on
this point, see Claeskens & Hjort (2003).
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estimator of this quantity, constructed as follows. First, we know from Lemma 4.3.3
that

Dn = δ̂Full
d→ D = δ +W ∼ Nq(δ,K)

Thus, δ̂Full is an asymptotically unbiased estimator of δ. By the Continuous Mapping
Theorem,

DnD
′
n

d→ DD′

But, by the shortcut formula

E[DD′] = V ar(D) + E[D]E[D′] = K + δδ′

which means that DnD
′
n is an asymptotically biased estimator of δδ′. Fortunately, to re-

move the bias we simply need to subtract K. Thus, our asymptotically unbiased estimator
of δδ′ is

DnD
′
n − K̂

Substituting this quantity along with consistent estimators of everything else provides an
asymptotically unbiased estimator of AMSE.

The FIC We could really just stop here, but in the paper Claeskens and Hjort express
the FIC in a slightly different (and simpler) way by removing constants that do not
vary across models. First they construct the limit experiment version of the AMSE by
substituting DD′ −K for δδ′. This yields

r̂(S) = ω′(I −K1/2HSK
−1/2) (DD′ −K) (I −K−1/2HSK

1/2)ω

+ω′K1/2HSK
1/2ω + τ 20

= ω′(I −K1/2HSK
−1/2)DD′(I −K−1/2HSK

1/2)ω

−ω′Kω + ω′K1/2HSK
−1/2Kω + ω′KK−1/2HSK

1/2ω

−ω′K1/2HSK
−1/2KK−1/2HSK

1/2ω

+ω′K1/2HSK
1/2ω + τ 20

= ω′(I −K1/2HSK
−1/2)DD′(I −K−1/2HSK

1/2)ω

−ω′Kω + ω′K1/2HSK
1/2ω + ω′K1/2HSK

1/2ω

−ω′K1/2HSK
1/2ω

+ω′K1/2HSK
1/2ω + τ 20

= ω′(I −K1/2HSK
−1/2)DD′(I −K−1/2HSK

1/2)ω

+2ω′K1/2HSK
1/2ω + (τ 20 − ω′Kω)
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Next they write the limiting (i.e. infeasible) version of the FIC by subtracting τ 20 −ω′Kω

since this is constant across models. This gives

FIC = ω′(I −K1/2HSK
−1/2)DD′(I −K−1/2HSK

1/2)ω

+2ω′K1/2HSK
1/2ω

= ω′(I −K1/2HSK
−1/2)DD′(I −K−1/2HSK

1/2)ω + 2ω′
SKSωS

Where ωS = πSω. Finally, the FIC substitutes estimators as follows

F̂ IC = ω̂′(I − K̂1/2ĤSK̂
−1/2)δ̂Fullδ̂

′
Full(I − K̂−1/2ĤSK̂

1/2)ω̂ + 2ω̂′
SK̂Sω̂S

This formula may look somewhat complicated, but calculating it only requires quantities
that we get automatically from fitting the full model. Thus, the FIC does not require us
to fit each of the candidate models.

4.4 Extensions of FIC Idea
The FIC idea turns out to be extremely general, and has been extended in a number of
directions by the original authors, among others. Claeskens, Croux and Van Kerckhoven
(2006) adapt the FIC idea to a number of loss functions besides MSE in the case of logistic
regression, while Claeskens, Croux and Van Kerckhoven (2007) consider the problem of
model selection for autoregressive models. Claeskens & Hjort (2008) consider both more
general loss functions and focus parameters that depend on the data through some kind of
average. In a more theoretical contribution, Claeskens & Carroll work out the asymptotics
necessary to extend the FIC to semiparametric problems. More recently, Brownlees and
Gallo (2011) use the FIC to choose the amount of shrinkage used in estimation of the
deterministic component of a conditional duration model, while Zhang, Wan and Zhou
(2012) derive an FIC-type criterion for Tobit model selection. The idea behind the FIC
can even be extended to GMM models. This is the topic of an upcoming lecture.

4.5 Schorfheide (2005)
Although developed independently, Schorfheide (2005) shares many similarities with Claeskens
& Hjort (2003). Working in a local asymptotic framework, this paper proposes for choos-
ing VAR lag length and deciding between maximum likelihood and loss function-based
estimation in multistep forecasting problems.



Chapter 5

Asymptotic Properties

There’s a large and somewhat technical literature on the asymptotic properties of different
model selection procedures, and we won’t have time to do it justice here. Leeb and
Pötscher (2009a) give an overview. For more details, in line with the presentation given
below, see Sin and White (1992, 1996), Pötscher (1991), and Leeb and Pötscher (2005).
To learn more about the tradeoff between consistency and efficiency, see Yang (2005,
2007).

5.1 Introduction

Up until now we’ve made proceeded by setting forth desiderata for model selection, e.g.
minimize the KL divergence or predictive mean-squared error, and then making enough
assumptions until we could derive a criterion. And although the details of the derivations
were all different, in each of the examples we’ve considered to far, the result amounted
to adding a penalty to the maximized log-likelihood to account for model complexity, for
example:

AIC = 2`T (θ̂)− 2 length(θ)
BIC = 2`T (θ̂)− log(T ) length(θ)

We’re now going to take a completely different perspective. Instead of asking what as-
sumptions we need to derive a particular criterion, we’ll ask “given the penalty term that
this criterion applies to the log-likelihood, how will it perform in large samples?” We’ll
concern ourselves in particular with two properties: consistency and efficiency.

71
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Consistency Suppose that we have a set of candidate models, one of which is actually
the true DGP. It seems clear that in this setting we’d like our model selection procedure
to correctly identify the true DGP as the sample size grows. This is the idea behind
consistency. Traditionally, we say that a model selection criterion is consistent if it
selects the true DGP with probability approaching one as T → ∞. Since this notion
only makes sense if the set of candidate models contains the true DGP, a fairly strong
assumption, we can also consider slightly different notions of consistency as in Sin and
White (1992, 1996). We will explore this below. The crucial point about consistent
selection is that, in the limit, the probability that the “best” model is chosen approaches
one. Which model this is, of course, depends on how we have defined best.

Efficiency It’s somewhat rare that the goal of model selection is to determine which
model is the “truth” or even which model is the KL minimizer. More commonly we
estimate a model for some specific purpose: perhaps we want to estimate a particular
parameter or make a good forecast. From this perspective it is natural to look for a
model selection criterion that with good risk properties, e.g. low mean-squared error.
Intuitively, we’l like the criterion to perform “almost as well” as the risk-optimal model
in our candidate set. This property, which we’ll make more precise below, is called
efficiency.

Efficiency or Consistency: Pick One You may be thinking “consistency and effi-
ciency both sound great so let’s find a criterion that satisfies them both!” Unfortunately,
this turns out to be impossible: if a model selection criterion is consistent it cannot be
efficient, and vice-versa. For more on this point, see Yang (2005, 2007). Perhaps a more
informative way of putting this is that there is an unavoidably price to be paid for con-
sistent model selection in terms of poor risk properties. We will see an illustration of this
below in a simple example based on estimating the mean of a normal population.

5.2 Penalizing the Log-Likelihood

Suppose we want to choose the model that minimizes the KL-divergence, as described
above in the chapter on AIC-type criteria. Will our model selection criteria give us the
“right answer” in the limit as we obtain more and more data? To answer this question we
will distinguish two properties, which Sin and White (1992, 1996) call “weak consistency”
and “consistency.” This terminology is a little confusing, since we usually encounter a
distinction between weak and strong consistency that corresponds to whether we have
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convergence in probability or convergence almost surely. That’s not the distinction that
is being drawn here. Instead the point is to distinguish between what happens when
two or more models “tie” for lowest KL-divergence in the population. The property of
weak consistency requires only that we never select a model that does not minimize the
KL-divergence as the sample size goes to infinity. In contrast consistency requires that
we select the model with the fewest parameters among all those that minimize the KL-
divergence. A criterion that is not consistent but is weakly consistent is sometimes called
conservative.

Setup: Let g be the true, unknown data density. Now consider a collection of models Mk

indexed by k = 1, 2, . . . , K where θk is the parameter vector under model Mk and θ̂k is the
corresponding maximum likelihood estimator. Let fk,t(yt|θk) be the density of observation
t under model k and suppose we’re interested in choosing a model to mininimze the KL
divergence from g to fk. For simplicity, suppose that we can express the likelihood of
model k as

∑T
t=1 log fk,t(Yt|θk). Note: we do not assume the data are independent.

General Form of Information Criteria We will consider model selection criteria of
the following form:

IC(Mk) = 2
T∑
t=1

log fk,t(Yt|θ̂k)− cT,k

where cT,k is the penalty term for Mk. The question we will explore is how different
choices of the penalty term cT,k give rise to criteria that behave in different ways.

5.2.1 Weak Consistency

To begin, suppose that, among the candidate models, there is a unique KL-minimizing
model among the candidates. We say that a model selection criterion is weakly consis-
tent if it selects this KL-minimizing candidate model with probability approaching one
as T → ∞.

Sufficient Conditions for Weak Consistency Suppose that exactly one of the can-
didates minimizes the KL distance: call it Mk0 . To state this precisely, suppose that

lim inf
T→∞

(
min
k 6=k0

1

T

T∑
t=1

{KL(g; fk,t)−KL(g; fk0,t)}

)
> 0
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Then, if cT,k > 0 and cT,k = op(T ), IC(Mk) is weakly consistent: it selects Mk0 with
probability approaching one in the limit. Weak consistency continues to hold if the penalty
term cT,k equals zero for one of the models, so long as it is strictly positive for all of the
others.

AIC and BIC are Weakly Consistent since both satisfy T−1cT,k
p→ 0.

BIC Penalty: cT,k = log(T )× length(θk)
AIC Penalty: cT,k = 2× length(θk)

5.2.2 Consistency

But what if two or more models minimize the KL-divergence? We very often use infor-
mation criteria to select among nested models to decide, for example, whether to restrict
certain elements of θ to be equal to zero. Suppose we want to choose the number of lags
to include in an AR model. The usual way to do this is to specify a maximum lag-length,
say 3 periods, and then evaluate each of the AR models up to this order: AR(1), AR(2),
and AR(3). But in this example is is entirely possible that the KL minimizer will fail to
be unique. The AR(2) model is just a special case of the AR(3) with one coefficient set
equal to zero. Similarly, the AR(1) model is just a special case of the AR(2). Stated mode
generally, if an AR(k) model with all coefficients different from zero is the KL minimizer,
then an AR(k+1) model also minimizes the KL divergence, as does an AR(k+2) and an
AR(k+3) by setting certain coefficients to zero. In situations like this, where there is a tie
in the KL divergence, it makes sense to choose the most “parsimonious” specification, in
other words the one with the fewest parameters. This idea is often called consistency.

Sufficient Conditions for Consistency Suppose that, among our set of candidate
models there is a tie in the KL divergence. Let J be the set of all models that attain
the minimum KL divergence. Among these, let J0 denote the subset with the minimum
number of parameters. Either of the following two conditions is sufficient for consistency.
In other words, both (a) and (b) imply that we will select a model from J0 with probability
approaching one in the limit:

P
T→∞

{
min

`∈J\J0

[IC(Mj0)− IC(M`)] > 0

}
= 1

Here are the alternative sets of conditions:

(a) The following two conditions are sufficient for consistency:
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(i) For all k 6= ` ∈ J

lim sup
T→∞

1√
T

T∑
t=1

{KL(g; fk,t)−KL(g; f`,t)} <∞

(ii) For all j0 ∈ J0 and ` ∈ (J \J0)

P
{
(cT,` − cT,j0) /

√
T → ∞

}
= 1

(b) The following two conditions are also sufficient for consistency:

(i) For all k 6= ` ∈ J

T∑
t=1

[log fk,t(Yt|θ∗k)− log f`,t(Yt|θ∗` )] = Op(1)

where θ∗k and θ∗` are the respective KL minimizing parameter values.

(ii) For all j0 ∈ J0 and ` ∈ (J \J0)

P (cT,` − cT,j0 → ∞) = 1

Note that each of these alternative sets of conditions has two parts: the first is a regularity
condition that restricts the asymptotic behavior of the models in J while the second is
a condition on the penalty term cT,k. We immediately see that the penalty terms for the
AIC and TIC cannot satisfy (a)(ii) or (b)(ii) since (cT,`− cT,j0) does not depend on sample
size. While this does not consitute a proof, it does turn out that neither is consistent:
even in the limit AIC and TIC have a non-zero probability of “overfitting,” i.e. selection
a model that is in J \J0. In constrast, under (b)(i) the BIC is consistent since

cT,` − cT,j0 = log(T ) {length(θ`)− length(θj0)}

The term in braces is positive since ` ∈ J \J0, i.e. ` is not as parsimonious as j0, and
log(T ) → ∞. This means that in the limit, BIC will always select a model in J0.

What about selecting the true DGP? The way we will just defined consistency did
not in fact require that the true DGP is among the models under consideration. If the
true DGP is among the models in our set, however, the preceding result gives conditions
under which we are guaranteed to select it in the limit. Why is this the case? First of
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all, the true DGP minimizes the KL and the minimized value is zero. (See the notes for
Lecture 1.) The only way that another model could also minimize the KL divergence in
this case is if it has “superfluous” parameters. For example, suppose the true DGP is
an AR(1) but we also consider an AR(2). Hence, the true DGP is necessarily the most
parsimonious model among those that minimize the KL divergence.

5.3 Efficient Model Selection

Roughly speaking, a model selection criterion is called efficient if it performs “nearly
as well” as the theoretical optimum relative to some loss function. To make this more
concrete, we’ll look at a particular example.

Let {εt}∞−∞ by an iid sequence of N(0, σ2) random variables and let {Xt} be a station-
ary Gaussian Process that satisfies

Xt + a1Xt−1 + a2Xt−2 + · · · = εt

for some set of coefficients {aj}. We attempt to approximate this stochastic process with
an AR(k) model, namely

Xt + a1Xt−1 + · · ·+ a2Xt−k = εt

and calculate estimates â1, . . . , âk using observations X1, . . . , XT . Now, suppose our goal
is to make good one-step-ahead forecasts where “good” means minimum mean-squared
prediction error. To keep things simple it is typically assumed that we have a new realiza-
tion Y1, . . . , YT of the same time series that is independent of X1, . . . , XT . This is indeed
an unrealistic assumption, but it simplifies various calculations. Although it’s possible to
proceed without it, you’ll often see it invoked. The one-step-ahead prediction is

Ŷt+1 = −â1Yt − â2Yt−2 − · · · − âkYt−k+1

as the one-step-ahead mean-squared prediction error is

MSPE(k) = E

[(
Yt+1 − Ŷ (k)t+1

)2
|X1, . . . , XT

]
Our ideal would be to estimate an AR(k∗) model for forecasting where k∗ minimizes
MSPE(k). Since we don’t know k∗ we use a model selection criterion to estimate it. Let
k̂ be the lag-length that is selected by some model selection criterion. We say that this
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criterion is asymptotically efficient if

MSPE(k̂)

MSPE(k∗)

p→ 1 as T → ∞

Under appropriate assumptions, it can be shown for this example that the AIC and AICc

are asymptotically efficient while the BIC is not. To get this result to work, we need
an asymptotic framework in which none of the candidate models provides “too good” of
an approximation to the true DGP. The way to get this to work is to suppose that the
true AR order is growing with sample size. For more discussion, see Leeb and Pötscher
(2009a).

5.4 A Simple Example

Let Y1, . . . , YT
iid∼ N(µ, 1) and consider two models: M0 assumes that µ = 0 while M1

doesn’t make any assumption about the value of µ. Now suppose we want to use an
information criterion to choose between M0 and M1. We’ll consider penalty terms of
the form cT,k = dT × length(θk) which includes both the AIC and BIC as special cases.
Since M0 has zero parameters while M1 has one parameter, our information criteria are
as follows:

IC0 = 2max
µ

{`T (µ) : M0}

IC1 = 2max
µ

{`T (µ) : M1} − dT

`T (µ) =
T∑
t=1

log

(
1√
2π

exp

{
−1

2
(Yt − µ)2

})
...
= −T

2

{
σ̂2 + log(2π)

}
− T

2

(
Ȳ − µ

)2
= C − T

2

(
Ȳ − µ

)2
Hence, substituting 0 for µ under M0 and the MLE Ȳ for µ under M1, we have

IC0 = 2max
µ

{`T (µ) : M0} = 2C − T Ȳ 2

IC1 = 2max
µ

{`T (µ) : M1} − dT = 2C − dT
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Therefore,
IC1 − IC0 = T Ȳ 2 − dT

and we choose M1 if this quantity is positive, in other words if

T Ȳ 2 ≥ dT∣∣∣√T Ȳ ∣∣∣ ≥
√
dT

Thus, our selected model is

M̂ =

{
M1, |

√
T Ȳ | ≥

√
dT

M0, |
√
T Ȳ | <

√
dT

and our post-selection estimator is

µ̂ =

{
Ȳ , |

√
T Ȳ | ≥

√
dT

0, |
√
T Ȳ | <

√
dT

For the AIC we have dT = 2 while for the BIC we have dT = log(T ). Now let’s examine
the asymptotics as T → ∞.

Case I: µ 6= 0 In this case, M1 is the true DGP and the unique KL-minimizer. Since
it’s the true DGP, the KL divergence for M1 is exactly zero. (See Lecture 1.) We can
calculate the KL divergence for M0 using similar steps to those we employed to derive the
AICc in Lecture 2. First, we have

log g(y)− log fθ(y) = −1

2
(y − µ)2 +

1

2
y2 = µ

(
y − µ

2

)
since the constant − log(2π)/2 appears in each term and hence cancels. Thus,

KL(g; fθ) =

∫
1√
2π

exp

{
−1

2
(y − µ)2

}
µ
(
y − µ

2

)
dy =

µ2

2

To summarize, we have

KL(g;M1) = 0, KL(g;M0) =
µ2

2
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Now let’s check our sufficient conditions for weak consistency. First, we have

lim inf
T→∞

(
min
k 6=k0

1

T

T∑
t=1

{KL(g; fk,t)−KL(g; fk0,t)}

)
= lim inf

T→∞

1

T

T∑
t=1

(
µ2

2
− 0

)
= lim inf

T→∞

(
µ2

2

)
> 0

as required. Now, the condition on the penalty term is cT,k = op(T ), in other words
cT,k/T

p→ 0 both the AIC and BIC penalties satisfy this condition. Hence, if M1 is the
true model, both the AIC and BIC will select it with probability approaching 1 as T → ∞.

Case II: µ = 0 In this case, both M1 and M0 are true and both minimize the KL
divergence. The most parsimonious model, however, is M0. Hence, using our notion of
consistency (not weak consistency), we’d like our criteria to select M0. We’ll use the
second set of sufficient conditions for consistency. In this example, it’s easy to verify
(b)(i). Since a N(0, 1) model is nested inside a N(µ, 1) model, if the true distribution is
N(0, 1) then the likelihood ratio statistic is asymptotically χ2(1), hence the log-likelihood
ratio is Op(1) as required.

We know from above that the AIC penalty does not satisfy (b)(ii) but the BIC penalty
does. Hence the BIC will select M0 with probability approaching one in the limit.

Finite Sample Selection Probabilities Since this is such a simple example, we can
do better than appeal to asymptotics: we can calculate the exact finite-sample behavior
of the selection criteria. The AIC penalty is 2 × length(θ) which corresponds to dT = 2.
Hence, the AIC-selected model is

M̂AIC =

{
M1, |

√
T Ȳ | ≥

√
2

M0, |
√
T Ȳ | <

√
2

Hence,

P
(
M̂AIC =M1

)
= P

(∣∣∣√T Ȳ ∣∣∣ ≥ √
2
)

= P
(∣∣∣√Tµ+ Z

∣∣∣ ≥ √
2
)

= P
(√

Tµ+ Z ≤ −
√
2
)
+
[
1− P

(√
Tµ+ Z ≤

√
2
)]

= Φ
(
−
√
2−

√
Tµ
)
+
[
1− Φ

(√
2−

√
Tµ
)]

where Z ∼ N(0, 1) using the fact that Ȳ ∼ N(µ, 1/T ) since V ar(Yt) = 1.
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Now, the BIC penalty is log(T )× length(θ) which corresponds to dT = log(T ). Hence,
the BIC-selected model is

M̂BIC =

{
M1, |

√
T Ȳ | ≥

√
log(T )

M0, |
√
T Ȳ | <

√
log(T )

Using the exact same steps as for the AIC except with
√

log(T ) in the place of
√
2, we

have

P
(
M̂BIC =M1

)
= P

(∣∣∣√T Ȳ ∣∣∣ ≥√log(T )
)

= Φ
(
−
√

log(T )−
√
Tµ
)
+
[
1− Φ

(√
log(T )−

√
Tµ
)]

You can view an interactive plot of the preceding expression online at the following url:
http://fditraglia.shinyapps.io/CH_Figure_4_1/.

What is the probability of overfitting? Suppose µ = 0. In this case both models are
KL-minimizers but we’d prefer M0 since it’s more parsimonious. For a generic information
criterion of the form we’re considering here, we calculate the “probability of overfitting”
as follows

P
(
M̂ =M1

)
= P

(
|
√
T Ȳ | ≥

√
dT

)
= P (|Z| ≥

√
dT )

= P (Z2 ≥ dT ) = P (χ2
1 ≥ dT )

where Z ∼ N(0, 1). For the AIC dT = 2 so the probability of overfitting is P (χ2
1 ≥ 2) ≈

0.157. For the BIC dT = log(T ) so the probability of overfitting is P (χ2
1 ≥ log T ) → 0 as

T → 0.

The Post-Selection Estimator

µ̂ =

{
Ȳ , |

√
T Ȳ | ≥

√
dT

0, |
√
T Ȳ | <

√
dT

http://fditraglia.shinyapps.io/CH_Figure_4_1/


5.4. A SIMPLE EXAMPLE 81

Consider MSE risk, scaling up by T since variances for well-behaved problems are O(1/T ).
Recall from above that

√
T Ȳ =

√
Tµ+ Z where Z ∼ N(0, 1). Thus,

RT (µ) = TEµ [(µ̂− µ)] = Eµ

[(√
T µ̂−

√
Tµ
)]

= E

{[(√
Tµ+ Z

)
1
{√

Tµ+ Z ≥
√
dT

}
−

√
Tµ
]2}

= 1−
∫ b

a

z2φ(z) dz + Tµ2 [Φ(b)− Φ(a)]

where

a = −
√
dT −

√
Tµ

b =
√
dT −

√
Tµ

To evaulate this risk function, we need an explicit formula for the integral that makes up
the second term. This sounds like a job for integration by parts! We’ll take u = −z and
dv = −z exp{−z2/2} since

d

dz

(
exp

{
−z

2

2

})
= −z exp

{
−z

2

2

}
Thus, v = exp{−z2/2}, du = −1 and we have∫ b

a

z2φ(z) dz =
1√
2π

∫ b

a

z2 exp

{
−z

2

2
dz

}
=

1√
2π

[
−z exp

{
−z

2

2

}∣∣∣∣b
a

+

∫ b

a

exp

{
−z

2

2

}
dz

]
= aφ(a)− bφ(b) + Φ(b)− Φ(a)

Putting it all together, we have

RT (µ) = 1− [aφ(a)− bφ(b) + Φ(b)− Φ(a)] + Tµ2 [Φ(b)− Φ(a)]

= 1 + [bφ(b)− aφ(a)] + (Tµ2 − 1) [Φ(b)− Φ(a)]

where

a = −
√
dT −

√
Tµ

b =
√
dT −

√
Tµ



82 CHAPTER 5. ASYMPTOTIC PROPERTIES

You can view an interactive plot of the preceding expression online at the following url:
http://fditraglia.shiny.io/fditraglia/CH_Figure_4_2/.

What we see from the picture is that, in exchange for low risk in a small neighborhood
of µ = 0, BIC has max risk that diverges as the sample size increases. In contrast, AIC has
bounded max risk. This isn’t just a problem with BIC: any consistent selection criterion
will suffer from this defect.

Postscript The preceding is a special example of a more general phenomenon: con-
sistency and efficiency are mutually exclusive properties. In general, consistent model
selection criterion will have unbounded minimax risk. There is a huge literature on this
topic but it’s fairly technical. The key observation is that pointwise and uniform risk
approximations give very different results. Yang (2007) gives a readable introduction.
See Leeb and Pötscher (2009) for a comprehensive list of references.

http://fditraglia.shiny.io/fditraglia/CH_Figure_4_2/


Chapter 6

Moment Selection for GMM

6.1 Review of Generalized Method of Moments

The best all-around reference for for GMM is Hall (2005). These notes draw on chapters
3–7 of his book and use essentially the same notation.

6.1.1 Key Assumptions

Let f be a q-vector of functions of an observable random r-vector vt and a p-vector of
parameters θ ∈ Θ ⊆ Rp where Θ is compact. The GMM estimator is defined as follows:

ḡT (θ) =
1

T

T∑
t=1

f(vt, θ)

θ̂T = argmin
θ∈Θ

ḡT (θ)
′WT ḡT (θ)

The basic assumptions required for GMM estimation are as follows.

Strict Stationarity The sequence {vt : − ∞ < t < ∞} of random r-vectors is a
strictly stationary process with sample space V ⊆ Rr. Importantly, this implies that the
expectations of any functions of vt are constant over time.

Population Moment Condition E[f(vt, θ0)] = 0 for some θ0 ∈ interior(Θ).

Global Identification For any θ̃ ∈ Θ such that θ̃ 6= θ0, E[f(vt, θ̃)] 6= 0.

83
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Weighting Matrix The (q × q) weighting matrix WT is positive semi-definite and
converges in probability to a postitive definite constant matrix W .

6.1.2 Regularity Conditions

Regularity Conditions for Moment Functions The q moment functions f : V×Θ →
Rq satisfy the following conditions:

(i) f is vt-almost surely continuous on Θ

(ii) E[f(vt, θ)] <∞ exists and is continuous on Θ

Regularity Conditions for Derivative Matrix

(i) The q × p matrix ∇θ′f(vt, θ) exists and is vt-almost continuous on Θ

(ii) E[∇θf(vt, θ0)] <∞ exists and is continuous in a neighborhood Nε of θ0

(iii) sup
θ∈Nε

∣∣∣∣∣∣T−1
∑T

t=1∇θf(vt, θ)− E[∇θf(vt, θ)]
∣∣∣∣∣∣ p→ 0

Regularity Conditions for Variance of Sample Moment Conditions

(i) E[f(vt, θ0)f(vt, θ0)
′] exists and is finite.

(ii) lim
T→∞

V ar
[√

T ḡT (θ0)
]
= S exists and is a finite, positive definite matrix.

6.1.3 Asymptotics Under Correct Specification

Under the set of assumptions given above, we obtain the following:

Consistency of GMM Estimator θ̂T
p→ θ0

Asymptotic Normality of GMM Estimator
√
T (θ̂T − θ0)

d→ N (0,MSM ′)

M = (G0WG0)
−1G′

0W

G0 = E[∇θ′f(vt, θ0)]
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6.1.4 The J-test Statistic

The J-test statistic is given by

JT = T ḡT (θ̂
′
T ) Ŝ

−1 ḡT (θ̂T )

where Ŝ is a consistent estimator of S, the long-run variance matrix of the GMM sample
moment conditions. In other words,

S →p S ≡ lim
T→∞

Var

[
T−1/2

T∑
t=1

f(vt, θ)

]

We will need to consider the asymptotic behavior of this quantity in two settings:
when the population moment condition is satisfied, and when it is violated.

Correct Specification Earlier in this document we reviewed the basic asymptotic
results for GMM estimation under standard regularity conditions assuming the population
moment condition is correct. Our main findings were that, regardless of weighting matrix,
GMM is consistent and asymptotically normal. The particular choice of WT only affects
the asymptotic variance of the estimator. To study the behavior of the J-test in this
setting, we need to examine an asymptotic expansion for the estimated sample moment.
Using Taylor Expansion arguments, we can show that

W
1/2
T

√
T ḡT (θ̂T ) = [Iq − P (θ0)]W

1/2
√
T ḡT (θ0) + op(1)

where

P (θ0) = F (θ0) [F (θ0)
′F (θ0)]

−1
F (θ0)

′

F (θ0) = W 1/2E[∇θf(vt, θ0)]

The matrix P (θ0) is called the identifying restrictions and corresponds to the particular
projection of W 1/2E[f(vt, θ)] actually used in GMM estimation. Its orthogonal comple-
ment, N = Iq−P (θ0), is called the overidentifying restrictions. The expansion just stated
shows that the asymptotic behavior of the estimated sample moment is entirely governed
by the overidentifying restrictions. Via a CLT for

√
T ḡT (θ0), it follows that

W
1/2
T

√
T ḡT (θ̂T )

d→ N (0, NW 1/2SW 1/2N ′)
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Note that the N = Iq −P (θ0) has rank q− p since it is the orthogonal complement of the
rank p projection matrix P (θ0). Hence, in the limit we obtain a singular normal distri-
bution, that is a q-dimensional random vector that concentrates on a (q− p)-dimensional
subspace of Rq. Substituting the efficient weighting matrix Ŝ−1 we find that JT

d→ χ2
q−p

by the Continuous Mapping Theorem, if that the population moment condition is correct.

Incorrect Specification When the GMM population moment condition E[f(vt, θ)] = 0

is false for all θ ∈ Θ, the situation is completely different. In this case the probability limit
of θ̂T in general will depend on the choice of weighting matrix and the rate of convergence
depends on the rate at which WT converges to W . Unsurprisingly, this leads to very
different behavior for the J-test statistic. So exactly in what sense is E[f(vt, θ)] = 0

false? For now we’ll consider fixed mis-specification. Specifically we’ll suppose that

E[f(vt, θ)] = µ(θ), ||µ(θ)|| > 0 ∀ θ ∈ Θ

Note that this situation can only occur if q > p since we can always solve the population
moment conditions exactly for θ in the just-identified case. Let Ŝ be an estimator of
the variance matrix of the moment conditions and let W be the probability limit of Ŝ−1.
Then, if µ∗ = µ(θ∗) is the probability limit of ḡT (θ̂), where θ∗ is the solution to the
projected moment conditions given by the identifying restrictions, we have

1

T
JT = ḡT (θ̂T )

′Ŝ−1ḡT (θ̂T ) = µ′
∗Wµ∗ + op(1)

As long as W is positive definite, µ′
∗Wµ∗ > 0 since µ(θ) > 0 for all θ ∈ Θ. Thus,

JT = Tµ′
∗Wµ∗ + op(T ). In other words, under fixed mis-specification the J-test statistic

diverges at rate T .

6.2 Andrews’ GMM Moment Selection Criteria

The consistency and asymptotic normality results for GMM estimation rely on the as-
sumption that the moment conditions used in estimation are correct. That is, they assume
that E[f(vt, θ0)] = 0. But what if we are unsure of this assumption? In many real-world
applications we have a fairly large collection of moment functions, the q elements of f ,
some of which may have been derived under different economic or statistical assumptions
that others. It could easily be the case that only some of the moment functions in f

satisfy the moment conditions, while others do not. To take a simple example, we may
have a collection of instrumental variables that arise from different sources or different
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assumptions on the DGP. Perhaps only some of these instruments are truly exogenous
but we are unsure which. Andrews (1999) proposes a family of moment selection criteria
(MSC) for this situation, in which the aim is to consistently select any and all elements
of f that satisfy the moment condition, and eliminate those that do not.

Roughly speaking, the intuition is as follows. When we studied AIC, BIC and friends,
we discussed how the maximized log-likelihood measures model fit but unfairly advan-
tages models with more parameters. The various model selection criteria we examined
amounted to adding some kind of “penalty” term to correct for this by penalizing more
complicated models. In a similar vein, so long as we have more moment conditions than
parameters, the J-test statistic provides a measure of how well the data “fit” the moment
conditions: the bigger the statistic, the greater the evidence that the moment conditions
are violated. The problem is that J-test statistic tends to increase as we add additional
moment conditions even if they are correct. Thus, if we simply compared J-statistics, we
would be led to select too few moment conditions. To correct for this, Andrews (1999)
considers a variety of “bonus terms” that reward estimators based on a lager number of
moment conditions. Using this idea, he derives GMM analogues of AIC, BIC and the
Hannan-Quinn information criterion, and studies the conditions under which a bonus
term will yield consistent moment selection.

6.2.1 Notation

Let fmax be a (q × 1) vector containing all of the moment functions under consideration.
Let c be a selection vector, a (q × 1) vector of ones and zeros indicating which elements
of fmax we use in estimation for a particular candidate specification. Let C denote the
set of all candidates and |c| denote the number of moment conditions used to estimate
candidate c. Naturally, we require that there are at least as many moment conditions as
parameters to estimate. Let θ̂T (c) be the efficient two-step GMM estimator based on the
moment conditions E[f(vt, θ, c)] = 0 and define

Vθ(c) =
[
G0(c)S(c)

−1G0(c)
]−1

G0(c) = E[∇′
θf(vt, θ0; c)]

S(c) = lim
T→∞

V ar

[
1√
T

T∑
t=1

f(vt, θ0; c)

]
JT (c) = T ḡT

(
θ̂T (c); c

)′
ŜT (c)

−1ḡT

(
θ̂T (c); c

)
where Ŝ(c) is a consistent estimator of S(c).
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6.2.2 Moment Selection Heuristics

So how should we choose c? Two principles come to mind. First, we know that using
only correctly specified moment conditions in estimation ensures that θ̂T

p→ θ0. Thus, to
ensure consistent estimation, we should seek to eliminate any moment conditions whose
expectation is non-zero. Second, it can be shown (see Hall, 2005; Theorem 6.1) that
adding additional correctly specified moment conditions cannot increase the asymptotic
variance of our estimator. Putting these two pieces together, Andrews (1999) suggests
that we attempt to identify the maximal set of correctly specified moment conditions.

But what exactly does this mean? Identification is a bit tricky when we start to
consider the possibility that some of our moment conditions do not have expectation zero.
The potential problem is that different subsets of fmax could satisfy the population moment
condition at different values of θ. We will need to rule this possbility out somehow. Let
Z0 denote the set of all candidates c such that E[f(vt, θ; c)] = 0 for some θ ∈ Θ. Then,
of all the candidates c ∈ Z0, let MZ0 denote those that contain the maximum number
of elements of fmax. For Andrews’ suggestion to be meaningful, we need to assume that
MZ0 contains exactly one element, which we’ll call c0.

Andrews proposes adding a “bonus term” to the J-test statistic, leading to moment
selection critera (MSC) of the form

MSC(c) = JT (c)−B(T, |c|)

where B is a “bonus term” that “rewards” specifications that use more moment conditions
in estimation and may depend on sample size. In calculating the J-test statistic, Andrews
recommends using a centered covariance matrix estimator

Ŝ(c) =
1

T

T∑
t=1

[
f(vt, θ̂T (c); c)− ḡT (θ̂T (c); c)

] [
f(vt, θ̂T (c); c)− ḡT (θ̂T (c); c)

]′
based on the weighing matrix that would be efficient if the moment conditions were cor-
rectly specified. This estimator is consistent for S(c) regardless of whether the population
moment conditions hold. To carry out moment selection, we choose c to minimize the
criterion, defining ĉT = argmin

c∈C
MSC(c).

6.2.3 Consistent Selection

The main point of Andrews (1999) is to establish sufficient conditions on the bonus term
that guarantee consistent selection of any and all correctly specified moment conditions
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with probability approaching one in the limit. First we’ll take a look at the conditions,
and then the proof.

Regularity Conditions for the J-test Statistic

(i) If E[f(vt, θ; c)] = 0 for a unique θ ∈ Θ, then JT (c)
d→ χ2

|c|−p

(ii) If E[f(vt, θ; c)] 6= 0 for all θ ∈ Θ then T−1JT (c)
p→ a(c), a finite, positive constant

that may depend on c.

Regularity Conditions for Bonus Term The bonus term can be written asB(|c|, T ) =
κTh(|c|), where

(i) h(·) is strictly increasing

(ii) κT → ∞ as T → ∞ and κT = o(T )

Identification Conditions

(i) MZ0 = {c0}

(ii) E[f(vt, θ0; c0)] = 0 and E[f(vt, θ; c0)] 6= 0 for any θ 6= θ0

Theorem 6.2.1. Under the preceding assumptions, ĉT
p→ c0.

Proof. We’re trying to show that the moment conditions ĉT selected by our criterion
are consistent for the maximal set c0 of correct moment conditions. By definition ĉT =

argmin
c∈C

MSCT (c), so we need to show that

lim
T→∞

P [{MSCT (c)−MSCT (c0) > 0, ∀c 6= c0}] = 1

To simplify the notation, define

∆T (c, c0) = MSCT (c)−MSCT (c0)

= [JT (c)− h(|c|)κT ]− [JT (c0)− h(|c0|)κT ]
= [JT (c)− JT (c0)] + κT [h(|c0|)− h(|c|)]

Now, we are interested in ∆T (c, c0) only for situations in which c 6= c0. Subject to this
restriction, there are two cases, which we consider in turn.
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Case 1 Consider c1 6= c0 such that E[f(vt, θ1; c1)] = 0 for a unique θ1. In this case the
first Regularity Condition for the J-test Statistic applies to both c1 and c0 and we have

JT (c1)− JT (c0)
d→ χ2

|c1|−p − χ2
|c0|−p = Op(1)

By the first Identification Condition, c0 is the unique maximal set of correct moment
conditions. Hence |c0| > |c1|. Now, by the first Regularity Condition for the Bonus Term,
h is strictly increasing. It follows that h(|c0|) − h(|c1|) > 0. By the second Regularity
Condition for the Bonus Term, κT → ∞. Thus,

κT [h(|c0|)− h(|c1|)] → ∞

It follows that ∆T (c1, c0) → ∞ and we obtain our desired result.

Case 2 Consider c2 6= c0 such that E[f(vt, θ; c2)] 6= 0 for any θ ∈ Θ. In this case, the
first Regularity Condition for the J-test Statistic applies to c0, while the second applies
to c2 so we have

T−1 [JT (c2)− JT (c0)] = a(c2) + op(1)− T−1Op(1)

Now, whatever the value [h(|c0|)− h(|c|)] happens to be, it is definitely finite since h is
strictly increasing by the first Regularity Condition for the Bonus Term, and both |c|
and |c0| are finite. By the second Regularity Condition for the Bonus Term, κT = o(T ).
Hence,

T−1κT [h(|c0|)− h(|c2|)] = o(1)

Putting the pieces together, we have

T−1∆T (c2, c0) = a(c2) + op(1)− T−1Op(1) + o(1)

= a(c2) + op(1)

By the second Regularity Condition for the J-test Statistic, a(c2) > 0. Thus, T−1∆T (c2, c0) >

0 with probability approaching one as T → ∞. It follows that ∆T (c2, c0) → ∞ with prob-
ability approaching one as T → ∞, as required.

6.2.4 Which Criteria Are Consistent?

Among some other possibility, Andrews (1999) considers the following criteria which are
constructed by making the bonus term resemble some of our old friends from maximum
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likelihood model selection:

GMM-BIC(c) = JT (c)− (|c| − p) log(T )

GMM-HQ(c) = JT (c)− 2.01 (|c| − p) log(log(T ))

GMM-AIC(c) = JT (c)− 2 (|c| − p)

We see immediately that GMM-AIC does not satisfy the necessary conditions for consis-
tency, since κT = 2 does not diverge as T → ∞. In constrast, both the GMM-BIC and
GMM-HQ diverge as T → ∞, so we simply need to check the requirement that κT = o(T ).
For GMM-BIC we have

lim
T→∞

log T

T
= lim

T→∞

1

T
= 0

by l’Hôpital’s rule, and similarly for GMM-HQ

lim
T→∞

log log T

T
= lim

T→∞

1

log T
= 0

Thus both GMM-BIC and GMM-HQ provide consistent moment selection.

6.2.5 Asymptotics for GMM-AIC

We saw in the previous subsection that GMM-AIC does not satisfy the sufficient conditions
for consistent moment selection. The question remains: how does this criterion behave
in the limit? To answer this question, we revisit the proof of consistent selection from
above. It turns out that GMM-AIC behaves differently in the two cases considered in the
proof. Combining them, we will see that GMM-AIC is not a consistent moment selection
criterion.

Case 2 In this case, we examined c2 6= c0 such that E[f(vt, θ; c2)] 6= 0 for any θ ∈ Θ.
In other words, the moment conditions indexed by c2 are not satisfied for any parameter
value θ. Asymptotically, GMM-AIC will never select such a set of moment conditions.
To see why, recall that κT = 2 for GMM-AIC. Although it does not diverge, this choice
of κT is still o(T ). Thus, the argument from Case 2 still applies to the GMM-AIC. We
did not in fact use the assumption that κT diverges in the proof of this case!

Case 1 In this case, we examined c1 6= c0 such that E[f(vt, θ1; c1)] = 0 for a unique θ1.
In other words, we considered a situation in which there is a parameter vector θ1 at which
the moment conditions indexed by c1 are satisfied. Now, the difference of J-test statistics
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continues to be Op(1) regardless of the choice of κT , provided the regularity conditions
are satisfied. Thus, substituting κT = 2, we have

∆T (c1, c0) = Op(1) + 2 [h(|c0|)− h(|c|)]

But since the second term is a constant, this is simply ∆T (c1, c0) = Op(1). In other words,
the GMM-AIC is a random variable, even in the limit as T → ∞.

So where does this leave us? In Case 2 GMM-AIC cosistently selects c0, but in Case 1
GMM-AIC is random even in the limit. Putting these two results together, we see that,
although it will never select a set of false moment conditions, GMM-AIC chooses randomly
among the set of correct moment conditions. In other words, it will not necessarily select
c0 as T → ∞.

6.2.6 Extensions of Andrews (1999)

Two followup papers extended the criteria described above. Andrews and Lu (2001)
consider simultaneous model and moment selection for GMM. The basic idea is the same,
except that the parameter vector θ is restricted under some specifications. For example,
we may consider setting a coefficient to zero. Accordingly, the “bonus term” depends both
on the number of moment conditions used in estimation and the number of parameters
that are estimated. Hong, Preston & Shum (2003) extend Andrews and Lu (2001) to
Generalized Empirical Likelihood estimators. For details on this class of estimators and
their properties, see Newey & Smith (2004).

6.2.7 Drawbacks to Andrews’ Approach

Andrews (1999) has a very specific goal: to state conditions under which it is possible to
carry out consistent moment selection for GMM. This is an important and very useful
contribution. Nevertheless, there are several reasons why the framework used in Andrews
(1999) may not be appropriate in practical applications of GMM moment selection.

First, the identification condition MZ0 = {c0} is stronger than it may appear. Section
7.3.1 of Hall (2005) gives an example: a linear IV model with one endogenous regressor,
jointly normal errors, and eight instruments. Six of the instruments are exogenous, but
two are in fact endogenous. The goal of moment selection is to find the exogenous in-
struments. Even in this very simple setting, the identification condition fails: there are
two different candidates, each containing six moment conditions, for which it is possible
to find a parameter value at which the population moment conditions are satisfied. One
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of these parameters is the true θ and the other is not. The problem with the identifi-
cation assumption isn’t so much that it’s strong. Without strong assumptions, it’s hard
to learn anything. The problem is that it’s not especially transparent: when considering
a particular problem it can be hard to get a handle on whether this assumption makes
sense.

A second problem concerns irrelevant moment conditions. The idea of using any
and all correctly specified moment conditions in estimation is based on the fact that the
asymptotic variance of the GMM estimator cannot increase as we use additional moment
conditions in estimation. The finite-sample situation, however, can be very different. Mo-
ment conditions that add very little information, so-called “irrelevant moment conditions,”
can lead to very poor finite sample performance. The GMM-MSC of Andrews (1999) does
not address this problem. Two papers that do are Hall & Peixe (2003) and Hall, Inoue,
Jana & Shin (2003). More recently, Chen & Liao (2013) suggest using LASSO, which
we’ll study in an upcoming lecture, to choose the valid and revelant moment conditions.

A third issue concerns the nature of the analogy between the AIC and BIC and their
GMM-MSC counterpoints. Like BIC, GMM-BIC is consistent and like AIC, GMM-AIC is
not. The relationship ends here, however. As we saw in our first lectures of the semester
there is a very specific idea behind both the AIC and the BIC: the former attempts to
correct the bias in the maximized log-likelihood as an estimator of the KL divergence,
and the latter provides a large-sample approximation to the Bayesian posterior model
probabilities under a uniform prior. Neither of these ideas has anything to do with the
arguments behind the GMM-MSC criteria. Beyond conditions on the asymptotic behavior
of the bonus term, any relationship to the AIC and BIC is merely cosmetic. This raises
an interesting question: can we re-work any of the principles we used to derive model
selection criteria for maximum likelihood so that they can be applied to GMM moment
selection? The answer turns out to be yes, as we will see below.

6.3 The Focused Moment Selection Criterion
This section is based on my working paper “Using Invalid Instruments on Purpose: Fo-
cused Moment Selection for GMM.” For the current version, see my website: http:
//www.ditraglia.com.

6.3.1 Introduction

In practical applications of GMM, we are rarely interested in determining which moment
conditions are correct. More commonly, our goal is to answer a research question, typically

http://www.ditraglia.com
http://www.ditraglia.com
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involving a parameter of interest µ that depends on the underlying GMM parameter
vector θ. Accordingly, it might make sense to try to get “good” estimates of µ, regardless
of whether this involves using correct or incorrect moment conditions. The basic idea is
that we might want to use a moment condition that is slightly mis-specified provided that
it is sufficiently informative about µ: the decrease in variance could easily outweigh the
increase in bias in a MSE-sense. This is very similar to the idea that underlies Mallow’s Cp,
Akaike’s Final Prediction Error, and, you guessed it, the Focused Information Criterion
of Hjort & Claeskens (2003). My approach is most similar to the FIC, so I’ve named it
the Focused Moment Selection Criterion, or FMSC for short.

6.3.2 Overview of FMSC Derivation

Local Mis-specification

E

[
g(Zni, θ0)

h(Zni, θ0)

]
=

[
0

τ/
√
n

]

Identification Condition E[g(Zni, θ0)] = 0 identifies θ0.

Moment Selection Matrix The matrix of zeros and ones ΞS selects the moment
conditions used to estimate candidate specification S.

Candidate GMM Estimator

θ̂S = argmin
θ∈Θ

[ΞSfn(θ)]
′
[
ΞSW̃Ξ′

S

]
[ΞSfn(θ)]

where

fn(θ) =
1

n

n∑
i=1

f(Zni, θ) =

[
gn(θ)

hn(θ)

]
=

[
n−1

∑n
i=1 g(Zni, θ)

n−1
∑n

i=1 h(Zni, θ)

]

and W̃ is positive semi-definite weighting matrix that converges in probability to a positive
definite matrix W .

Some Notation Let Z denote the limiting random variable, for which all moment
conditions are correctly specified and define

F =

[
G

H

]
=

[
∇θ g(Z, θ0)

∇θ h(Z, θ0)

]
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and

Ω = V ar [f(Z, θ0)] =

[
Ωgg Ωgh

Ωhg Ωhh

]

High-Level Condition I – Expansion for GMM

√
n
(
θ̂S − θ0

)
= −KS

√
n [ΞSfn(θ0)] + op(1)

Where

FS = ΞSF

WS = ΞSWΞ′
S

MS = ΞSM

ΩS = ΞSΩΞ
′
S

KS = [F ′
SWSFS]

−1F ′
SWS

High-Level Condition II – CLT
√
nfn(θ0)

d→M where

M =

[
Mg

Mh

]
∼ N

([
0

τ

]
,Ω

)

Asymptotic Distribution of GMM Estimator
√
n(θ̂S − θ0) →d −KSMS

Target Parameter µ0 = µ(θ0), µ̂S = µ(θ̂S) where µ(·) is differentiable.

Asymptotic Distribution of µ̂S

√
n (µ̂S − µ0) →d −∇θµ(θ0)

′KSMS

AMSE (µ̂S) = ∇θµ(θ0)
′KSΞS

{[
0 0

0 ττ ′

]
+ Ω

}
Ξ′
SK

′
S∇θµ(θ0)

Asymptotically Unbiased Estimator of τ Here is where we use the identification
condition. Let θ̂valid denote the valid estimator, that is the estimator that uses only mo-
ment conditions in g. Our identification assumption ensures that this estimator identifies
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θ0. We have

√
n
(
θ̂valid − θ0

)
= −Kv

√
ngn(θ0) + op(1)

d→ −KvMh

So this estimator has no asymptotic bias. Under local mis-specification, no consistent
estimator of τ exists, but we can construct an asymptotically unbiased estimator by
plugging θ̂valid into the sample analogue of the h moment conditions. In particular, the
estimator is

√
nhn

(
θ̂valid

)
. By a Mean-Value Expansion:

τ̂ =
√
nhn

(
θ̂valid

)
=

√
nhn(θ0) +H

√
n
(
θ̂valid − θ0

)
+ op(1)

= −HKv

√
nfn(θ0) + Iq

√
nhn(θ0) + op(1)

= Ψ
√
nfn(θ0) + op(1)

Thus, τ̂ d→ ΨM where Ψ =
[
−HKv Iq

]
, so we have ΨM ∼ Nq(τ,ΨΩΨ′).

Asymptotically Unbiased Estimator of ττ ′ Let Ω̂ and Ψ̂ be consistent estimators
of Ω and Ψ. Then, τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′ →d Ψ(MM ′ − Ω)Ψ′. That is, τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′ provides an
asymptotically unbiased estimator of ττ ′.

The Focused Moment Selection Criterion At long last, we can write down the
FMSC. The following expression provides an asymptotically unbiased estimator of AMSE(µ̂S)

FMSCn(S) = ∇θµ(θ̂)
′K̂SΞS

{[
0 0

0 τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′

]
+ Ω̂

}
Ξ′
SK̂

′
S∇θµ(θ̂)

6.3.3 A Very Simple Example

This is the simplest possible example of the FMSC: choosing between OLS and 2SLS. Sup-
pose that we have a vector of valid instruments z and we want to estimate the coefficient
β on a single endogenous regressor x in the following linear system:

yi = βxi + εi

xi = z′iπ + vi
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It’s no problem accomodating additional exogenous control regressors: just project them
out of the system before proceeding.

Now, if we want to estimate β, one option is to use the 2SLS estimator

β̃ = [x′PZx]−1 x′PZy

Another option is to use the OLS estimator

β̂ = (x′x)−1 x′y

But why on earth would we ever want to use OLS? If x is endogenous and we have
some valid instruments, shouldn’t we use 2SLS? The answer, as you may have guessed
is: “it depends: there’s a bias-variance tradeoff.” By using 2SLS, we guarantee that our
estimator will be asymptotically unbiased, but this comes at the cost of a much higher
asymptotic variance. If x is not too endogenous it could make sense to use OLS rather
than IV. This is exactly the idea that the FMSC tries to capture.

To put this problem into the FMSC framework, we write

En

[
ziεi

xiεi

]
=

[
0

τ/
√
n

]

Because everything is linear, it’s straightforward to derive the limiting distributions of
the OLS and 2SLS estimators. After some algebra, we find that the AMSE expressions
take a very simple form:

AMSE(OLS) =
τ 2

σ4
x

+
σ2
ε

σ2
x

AMSE(2SLS) =
σ2
ε

γ2

where σ2
x = γ2 + σ2

v , γ2 = π′Qzπ, and Qz = plim Z ′Z/n. Thus, the AMSE of the OLS
estimator is lower than that of the IV estimator whenever

τ 2

σ2
vσ

2
ε

<
σ2
x

γ2
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The usual estimators of σ2
x, γ2, and σ2

v remain consistent under local mis-specification:

σ̂2
x = n−1x′x

p→ π′Qzπ + σ2
v

γ̂2 = n−1x′Z(Z ′Z)−1Z ′x
p→ π′Qzπ

σ̂2
v = σ̂2

x − γ̂2

To get a consistent estimator of σ2
ε under local mis-specification, we can use either the

residuals from OLS or 2SLS, but 2SLS may be more robust. To implement the FMSC for
this problem, we simply need an asymptotically unbiased estimator of τ 2.

The asymptotically unbiased estimator of τ for this problem is

τ̂ =
√
n
[
x′(y − xβ̃)/n

]
= n−1/2x′(y − xβ̃)

since τ̂ d→ N(τ, V ) where

V = σ2
εσ

2
x

(
σ2
v

γ2

)
Hence

τ̂ 2 − σ̂2
ε σ̂

2
x

(
σ̂2
v

γ̂2

)
is an asymptotically unbiased estimator of τ 2. Substituting this quantity and rearranging,
the FMSC tells us to use the OLS estimator whenever

T̂FMSC =
τ̂ 2γ̂2

σ̂2
v σ̂

2
ε σ̂

2
x

< 2

After some algebra, it turns out that T̂FMSC is numerically equivalent to the Hausman
Test statistic and that T̂FMSC

d→ χ2(1) when τ = 0. Thus, in the simple example of
choosing between OLS and 2SLS, the FMSC is identical to carrying out a Hausman Test
with a critical value of 2, which corresponds to a 16% significance level. Notice that
this is exactly the same significance level that appeared when we interpreted the AIC as a
hypothesis test in our simple example of estimating a normal mean! This relationship only
holds, so far as I know, for the present example. Viewed from the opposite perspective,
these derivations indicate that the textbook procedure of using a Hausman Test to choose
between OLS and 2SLS can be be rigorously grounded in a loss-based framework. The
usual significance levels of 5 or 10%, however, are too lenient: they would lead us to use
OLS in some situations that do not lead to a favorable bias-variance tradeoff.



Chapter 7

High-Dimensional Linear Regression

7.1 Introduction

So far we’ve looked at model selection. For example, we considered the problem of choos-
ing the “best” set of regressors for a forecasting problem. Here, the idea was to consider
dropping regressors with small coefficients to get a favorable bias-variance tradeoff. There
are several problems with this approach. First, variable selection can be unstable because
of the discrete nature of the problem: small changes in the underlying data could lead to
large changes in the selected set of regressors. Second, it is only computationally infeasible
to consider all possible subsets of regressors when p < 30. Our colleague Andy Postelwaite
actually has a microeconomic theory paper about this called “Fact Free Learning.” You
should check it out: it’s very interesting!

In this lecture we’ll consider an alternative to model selection called “shrinkage.” The
idea is roughly as follows: rather than making a discrete choice of which variables are
“in” and which are “out,” it might make more sense to leave everything in the model
but “regularize” or “shrink” the estimated coefficients away from the maximum likelihood
estimator, much as a Bayesian prior does. Rather than attempting to incorporate prior
beliefs, however, here the idea is merely to find a clever way of adding bias that buys us
a large decrease in variance. There will still be a model selection component here, but it
will involve a single, continuous “tuning” or “smoothing” parameter.

99
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7.2 Review of Matrix Decompositions

7.2.1 The QR Decomposition

Any n × k matrix A with full column rank can be decomposed as A = QR, where R is
an k × k upper triangular matrix and Q is an n × k matrix with orthonormal columns.
The columns of A are orthogonalized in Q via the Gram-Schmidt process. Since Q has
orthogonal columns, we have Q′Q = Ik. It is not in general true that QQ′ = I, however.
In the special case where A is square, Q−1 = Q′.

Note: The way we have defined things here is here is sometimes called the “thin” or
“economical” form of the QR decomposition, e.g. qr_econ in Armadillo. In our “thin”
version, Q is an n × k matrix with orthogonal columns. In the “thick” version, Q is an
n×n orthogonal matrix. Let A = QR be the “thick” version and A = Q1R1 be the “thin”
version. The connection between the two is as follows:

A = QR = Q

[
R1

0

]
=
[
Q1 Q2

] [ R1

0

]
= Q1R1

Least-Squares via the QR Decomposition We can calculate the least squares esti-
mator of β as follows

β̂ = (X ′X)−1X ′y = [(QR)′(QR)]
−1

(QR)′y

= [R′Q′QR]
−1
R′Q′y = (R′R)−1R′Qy

= R−1(R′)−1R′Q′y = R−1Q′y

In other words, β̂ is the solution to Rβ = Q′y. While it may not be immediately apparent,
this is a much easier system to solve that the normal equations (X ′X)β = X ′y. Because
R is upper triangular we can solve Rβ = Q′y extremely quickly. The product Q′y is a
vector, call it v, so the system is simply

r11 r12 r13 · · · r1,n−1 r1k

0 r22 r23 · · · r2,n−1 r2k

0 0 r33 · · · r3,n−1 r3k
... ... . . . . . . ... ...
0 0 · · · 0 rk−1,k−1 rk−1,k

0 0 · · · 0 0 rk





β1

β2

β3
...

βk−1

βk


=



v1

v2

v3
...

vk−1

vk


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Hence, βk = vk/rk which we can substitute into βk−1rk−1,k−1 + βkrk−1,k = vk−1 to solve
for βk−1, and so on. This is called back substitution. We can use the same idea when
a matrix is lower triangular only in reverse: this is called forward substitution.

To calculate the variance matrix σ2(X ′X)−1 for the least-squares estimator, simply
note from the derivation above that (X ′X)−1 = R−1(R−1)′ . Inverting R, however, is easy:
we simply apply back-substitution repeatedly. Let A be the inverse of R, aj be the jth
column of A, and ej be the jth element of the k× k identity matrix, i.e. the jth standard
basis vector. Inverting R is equivalent to solving Ra1 = e1, followed by Ra2 = e2, and so
on all the way up to Rak = ek. In Armadillo, if you enclose a matrix in trimatu() or
trimatl(), and then request the inverse, the library will carry out backward or forward
substitution, respectively.

QR Decomposition and Orthogonal Projections When working with orthogonal
projections, as we do in linear regression, the QR decomposition is particularly helpful.
Consider a projection matrix PX = X(X ′X)−1X ′. Provided that X has full column rank,
we have begin

PX = QR(R′R)−1R′Q′ = QRR−1(R′)−1R′Q′ = QQ′

Recall that, in general, it is not true that QQ′ = I even though Q′Q = I because we’re
using the economical QR decomposition in which Q has orthonormal columns but may
not be a square matrix. Just to make this completely transparent, consider a very simple
example:

X =

 1 0

0 1

0 0


Then, we have

X ′X =

[
1 0 0

0 1 0

] 1 0

0 1

0 0

 =

[
1 0

0 1

]

but

XX ′ =

 1 0

0 1

0 0

[ 1 0 0

0 1 0

]
=

 1 0 0

0 1 0

0 0 0


It’s important to keep the fact that UU ′ 6= I in mind when using the QR decomposition
for more complicated matrix calculations.
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7.2.2 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is probably the most elegant result in linear
algebra. It’s also an invaluable computational and theoretical tool in statistics and econo-
metrics.1 The SVD allows us to express any m×n matrix A of arbitrary rank r according
to

X = UDV ′ = (orthogonal)(diagonal)(orthogonal)

• U is an m×m orthogonal matrix whose columns contain the eigenvectors of AA′

• V is an n× n orthogonal matrix whose columns contain the eigenvectors of A′A

• D is an m× n matrix whose first r main diagonal elements are the singular values
d1, . . . , dr. All other elements of D are zero.

• The singular values d1, . . . , dr are the positive eigenvalues of A′A which are identical
to the positive eigenvalues of AA′. (In other words, some of the eigenvalues are zero,
but the rest are positive: these are the singular values.)

It turns out that the SVD provides orthonormal bases for each of the so-called “fun-
damental subspaces” of a matrix A. In particular:

1. column space: first r columns of U

2. row space: first r columns of V

3. null space: last n− r columns of V

4. left null space: last m− r columns of U

For this reason is it a very important result linear algebra.

SVD for Symmetric Matrices If A is symmetric then the SVD takes a very special
form. By the spectral theorem, we can write A = QΛQ′ where Λ is a diagonal matrix
containing the eigenvalues of A and Q is an orthonormal matrix whose columns are the
corresponding eigenvectors. Accordingly we have

AA′ = (QΛQ′)(QΛQ′)′ = QΛQ′QΛQ′ = QΛ2Q′

and similarly
A′A = (QΛQ′)′(QΛQ′) = QΛQ′QΛQ′ = QΛ2Q′

1Some excellent references on the SVD include Strang (1993) and Kalman (2002).
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using the fact that Q is orthogonal and Λ diagonal. Thus, when A is symmetric the SVD
reduces to U = V = Q and D = Λ2 so that negative eigenvalues become positive singular
values.

The “Economical” SVD The number of singular values equals r, the rank of A,
which is at most min{m,n}. This means that some of the columns of U or V will be
irrelevant since they will be multiplied by zeros in D. Accordingly, most linear algebra
libraries provide an “economical” SVD that only calculate the columns of U and V that
are multiplied by non-zero values in D. In Armadillo, for example, the command is
svd_econ. We can write the economical SVD in summation form as

A =
r∑

i=1

diuiv′
i

where r = rank(A) and the singular values di are arranged in order from largest to
smallest. In matrix form, this is given by:

A
(n×p)

= U
(n×r)

D
(r×r)

V ′
(r×p)

In the economical SVD, U and V may no longer be square, so they are not orthogonal
matrices but their columns are still orthonormal.

Approximation Property of SVD The Frobenius norm of a matrix A is given by

||A||F =

√√√√ m∑
i=1

n∑
i=1

a2ij =
√

trace(A′A)

Using this norm as a measure of “approximation error”, it can be shown that the SVD
provides the best low rank approximation to a matrix X. Using the “economical” form of
the SVD, we can write

X =
r∑

i=1

diuiv′
i

where the index is i is defined such that the largest singular value comes first, followed by
the second largest, and so on. This expression gives the rank-r matrix X as a sum of r
rank-1 matrices. Now suppose that the rank of X is large and we wanted to approximate
X using a matrix X̂L with rank L < k. If we measure the reconstruction error using the
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Frobenius norm, it can be shown that the truncated SVD

X̂L =
L∑
i=1

diuiv′
i

provides the best rank L approximation to X. In other words, X̂L is the argmin over all
rank L matrices of the quantity ||X − X̂L||F . It is also possible to provide bounds on the
quality of the approximation, and thus choose an appropriate truncation.

7.3 Gauss-Markov, meet James-Stein

Consider the linear regression model

y = Xβ + ε

In Econ 705 you learned that ordinary least squares (OLS) is the minimum variance unbi-
ased linear estimator of β under the assumptions E[ε|X] = 0 and V ar(ε|X) = σ2I. When
the second assumption fails, you learned that generalized least squares (GLS) provides
a lower variance estimator than OLS. All of this is fine, as far as it goes, but there’s an
obvious objection: why are we restricting ourselves to unbiased estimators? Generically,
we know that there is a bias-variance tradeoff. So what happens if we allow ourselves to
consider biased estimators?

7.3.1 Dominance and Admissibility

To understand what follows, we’ll need two concepts from decision theory: dominance
and admissibility. Let θ̂ and θ̃ be two estimators of θ, and R be a risk function, e.g.
MSE. We say that θ̂ dominates θ̃ with respect to R if R(θ̂, θ) ≤ R(θ̃, θ) for all possible
values of θ wand the inequality is strict for at least one possible value of θ. We say that
θ̂ is admissible if there is no estimator that dominates it. To prove that an estimator is
inadmissible it suffices to find an estimator that dominates it.

7.3.2 A Very Simple Example

Suppose we observe a random p-vector X ∼ N (θ, I) and our task is to estimate the
p-vector of unknown parameters θ. The maximum likelihood estimate for this problem is
the sample mean which, since we have only one observation, is θ̂ = X.
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To calculate the MSE of this estimator, first note that

(
θ̂ − θ

)′ (
θ̂ − θ

)
= (X − θ)′ (X − θ) =

p∑
i=1

(Xi − θi)
2 ∼ χ2

p

Since the mean of a χ2 random variable equals its degrees of freedom, we see that
MSE(θ̂) = p. We will now show that there exists another estimator that strictly domi-
nates the MLE for this problem provided that p ≥ 3, namely

θ̂JS = θ̂

(
1− p− 2

θ̂′θ̂

)
= X − (p− 2)X

X ′X

This is the so-called James-Stein Estimator which outperforms MLE by “shrinking” the
components of the sample mean vector towards zero. The more elements in θ that we
wish to estimate, the more strongly it shrinks towards zero. Similarly, the smaller in
magnitude the MLE as measured by θ̂′θ̂ the more it shrinks towards zero. We can express
the MSE of θ̂JS as follows:

MSE
(
θ̂JS
)

= E

[(
θ̂JS − θ

)′ (
θ̂JS − θ

)]
= E

[{
(X − θ)− (p− 2)X

X ′X

}′{
(X − θ)− (p− 2)X

X ′X

}]
= E

[
(X − θ)′ (X − θ)

]
− 2(p− 2)E

[
X ′(X − θ)

X ′X

]
+ (p− 2)2E

[
1

X ′X

]
= p− 2(p− 2)E

[
X ′(X − θ)

X ′X

]
+ (p− 2)2E

[
1

X ′X

]
where the final equality uses the fact that X is the MLE for this problem so that
E
[
(X − θ)′ (X − θ)

]
= p as we calculated above. This expression is not particularly

helpful as it stands, but we can greatly simplify things by taking a closer look at the
second term. Writing the numerator out in summation form, we have

E

[
X ′(X − θ)

X ′X

]
= E

[∑p
i=1Xi (Xi − θi)

X ′X

]
=

p∑
i=1

E

[
Xi(Xi − θi)

X ′X

]
While this is in no way obvious at first glance it turns out that

E

[
Xi(Xi − θi)

X ′X

]
= E

[
X ′X − 2X2

i

(X ′X)2

]
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for i = 1, . . . , p.2 Using this fact, we have

E

[
X ′(X − θ)

X ′X

]
=

p∑
i=1

E

[
X ′X − 2X2

i

(X ′X)2

]
= pE

[
1

X ′X

]
− 2E

[∑p
i=1X

2
i

(X ′X)2

]
= pE

[
1

X ′X

]
− 2E

[
X ′X

(X ′X)2

]
= (p− 2)E

[
1

X ′X

]
and substituting this into our expression for the MSE of the James-Stein estimator, we
find that

MSE
(
θ̂JS
)

= p− 2(p− 2)

{
(p− 2)E

[
1

X ′X

]}
+ (p− 2)2E

[
1

X ′X

]
= p− (p− 2)2E

[
1

X ′X

]
Since E[1/(X ′X)] exists and is positive whenever p ≥ 3, and since (p − 2)2 is always
positive, the second term in the MSE expression is negative Because the first term is the
MSE of the MLE, the James-Stein Estimator strictly dominates whenever p ≥ 3.

7.3.3 The James Stein Estimator More Generally

The preceding example was quite specific, but the Stein phenomenon is quite general.
Whenever you have at least three regressors, least squares is inadmissible under quadratic
loss. As it happens, the James-Stein estimator is also inadmissible! It turns out that
another estimator, the so-called “positive part” James-Stein estimator, has strictly smaller
risk even though it isn’t admissible either. The positive part James-Stein estimator is
defined as follows

β̂JS = β̂

[
1− (p− 2)σ̂2

β̂′X ′Xβ̂

]
+

where β̂ is the OLS estimator, (x)+ = max(x, 0). and σ̂2 is the usual OLS-based estimator
of the error variance. The role of the “positive part” in the preceding expression is
to prevent us from shrinking past zero to get a negative estimate for an element of β
with a small OLS estimate. Although this estimator isn’t altogether that widely used in
economics, Bruce Hansen has a forthcoming paper in Econometric Reviews (Hansen, 2013)
that explores its performance relative to OLS and LASSO, another shrinkage estimator
that we will explore below. See also Hansen (2014a) for an Stein-like approach to shrinkage
estimation in parametric models and Hansen (2014b) for a an estimator that combines

2Write out the expectation as a p-fold integral and use integration by parts.
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OLS and IV using similar principles. Efron and Morris (1977) give good intuitive overview
of the so-called “Stein Paradox.” We know that shrinkage is a good idea. Now we’ll
consider some more general forms of shrinkage, starting with Ridge Regression.

7.4 Ridge Regression

Ridge regression is a technique that was originally designed to address the problem of
multicollinearity. When two or more predictors are very strongly correlated, OLS can
become unstable. For example, if x1 and x2 are nearly linearly dependent, a large positive
coefficient β1 could effectively cancel out a large negative coefficient β2. Ridge Regression
attempts to solve this problem by shrinking the estimated coefficients towards zero and
towards each other. This is accomplished by adding a squared L2-norm “penalty” to the
OLS objective function, yielding

β̂Ridge = argmin
β

(y − 1nβ0 −Xβ)′(y − 1nβ0 −Xβ) + λβ′β

where 1n is an (n × 1) vector of ones, β0 denotes the regression intercept and β =

(β1, . . . , βp)
′ the remaining coefficients. The Ridge Penalty parameter λ is a non-negative

constant that we have to choose. Note that we do not penalize the intercept in Ridge
Regression. The easiest and most common way to handle this is simply to de-mean both
X and y before proceeding. so that there is no intercept and the problem becomes

β̂Ridge = argmin
β

(y −Xβ)′(y −Xβ) + λβ′β

Throughout these notes we will assume that everything has been de-meaned so there is
no intercept.

7.4.1 Ridge is Not Scale Invariant

When we carry out OLS, if we re-scale a regressor x, replacing it with cx where c is
some nonzero constant, then the corresponding OLS coefficient estimate is scaled by 1/c

to compensate. In other words, OLS is scale invariant. The same is not true of Ridge
Regression, so it is common to convert the columns of the design matrix to the same units
before proceeding. The usual way of handling this is simply to standardize each of the
regressors.
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7.4.2 Another Way to Express Ridge Regression

The following is an equivalent statement of the Ridge Regression problem:

β̂Ridge = argmin
β

(y −Xβ)′(y −Xβ) subject to β′β ≤ t

In other words, Ridge Regression is like least squares “on a budget.” If you want to make
one coefficient estimate larger, you have to make another one smaller. The “income” level
t maps one-to-one to λ, although the mapping is data-dependent.

7.4.3 Ridge as Bayesian Linear Regression

As you may recall from the first part of the semester, Bayesian models with informative
priors automatically provide a form of shrinkage. Indeed, many frequentist shrinkage
estimators can be expressed in Bayesian terms. Provided that we ignore the regression
constant, the solution to Ridge Regression is equivalent to MAP (maximum a posteriori)
estimation based on the following Bayesian regression model

y|X, β, σ2 ∼ N(Xβ, σ2In)

β ∼ N(0, τ 2Ip)

where σ2 is assumed known and λ = σ2/τ 2. In other words, Ridge Regression gives
the posterior mode. Since this model is conjugate, the posterior is normal. Thus,
in addition to being the MAP estimator, the solution to Ridge Regression is also the
posterior mean.

7.4.4 An Explicit Formula for Ridge Regression

The objective function is

Qridge = (y −Xβ)′(y −Xβ) + λβ′β

= y′y − β′Xy − y′Xβ + β′X ′Xβ + λβ′Ipβ

= y′y − 2y′Xβ + β′(X ′X + λIp)β
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Recall the following facts about matrix differentiation3

∂(a′x)

∂x
= a

∂(x′Ax)

∂x
= (A+ A′)x

Thus, we have
∂

∂β
Q(β) = −2X ′y + 2(X ′X + λIp)β

since (X ′X + λIp) is symmetric. Thus, the first order condition is

X ′y = (X ′X + λIp)β

Hence,
β̂Ridge = (X ′X + λIp)

−1X ′y

So is (X ′X+λIp) guaranteed to be invertible? We need this to be the case for the solution
of the Ridge Regression problem to be unique. In the following section, we’ll provide an
alternative way of analyzing the problem by turning it into something we’re more familiar
with: OLS.

7.4.5 Ridge Regression via OLS

From the first half of the semester, you may recall that Bayesian linear regression can be
thought of as “plain-vanilla” OLS using a design matrix that has been augmented with
“fake” observations that represent the prior. This turns out to be a very helpful way of
looking at Ridge Regression. Define

ỹ =

[
y
0p

]
, X̃ =

[
X√
λIp

]
The objective function for Ridge Rgression is identical to the OLS objective function for
the augmented dataset, namely

argmin
β

(
ỹ − X̃β

)′ (
ỹ − X̃β

)

3See, for example, Harville (1997; Chapter 15).
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Which we can show as follows:

(
ỹ − X̃β

)′ (
ỹ − X̃β

)
=

[
(y −Xβ)′ (−

√
λβ)′

] [ (y −Xβ)

−
√
λβ

]
= (y −Xβ)′(y −Xβ) + λβ′β

7.4.6 Ridge is Always Unique

We know that the OLS estimator is only unique provided that the design matrix has
full column rank. In constrast there is always a unique solution to the Ridge Regression
problem, even when there are more regressors than observations. This follows immediately
from the preceding: the columns of

√
λIp are linearly independent, so the columns of the

augmented data matrix X̃ are also linearly independent, regardless of whether the same
holds for the columns of X. Thus we can use Ridge Regression even in settings in which
there are more regressors than observations!

7.4.7 Efficient Calculations for Ridge Regression

Since we’ve reduced Ridge Regression to OLS on a modified dataset, we can use the QR
decomposition for efficient and stable calculations. First take the QR decomposition of
X̃, namely X̃ = QR. Then,

β̂Ridge = (X̃ ′X̃)−1X̃ ′ ỹ = R−1Q′ ỹ

which we can obtain by back-solving the system Rβ̂Ridge = Q′ ỹ. In situations where
p � n, it’s actually much faster to use the SVD rather than the QR decomposition
because the rank of X will be n in this case. For details on how to implement this, see
Murphy (2012; Section 7.5.2).

7.4.8 Effective Degrees of Freedom for Ridge Regression

For OLS, model complexity depends on the number of free parameters: p. This is equal
to the trace of the hat matrix:

trace(H) = trace
{
X(X ′X)−1X ′} = trace

{
X ′X(X ′X)−1

}
= trace {Ip} = p
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The situation is more complicated for Ridge Regression since, although there are p param-
eters, they are not free: the L2 penalty shrinks them towards zero and towards each other.
By analogy to OLS, the “effective degrees of freedom” of Ridge Regression, a measure of
model complexity, is defined as the trace of the analogue of the OLS hat matrix:

df(λ) = trace {H(λ)} = trace
{
X(X ′X + λIp)

−1X ′}
To better understand this quantity, we first take the economical SVD of X, namely X =

UDV ′. Under the assumption that rank(X) = p, V is (p×p) and hence V ′V = V ′V = Ip.
Thus, we have

df(λ) = trace
{
X(X ′X + λIp)

−1X ′}
= trace

{
UDV ′(V D2V ′ + λIp)

−1V DU ′}
= trace

{
UDV ′(V D2V ′ + λV V ′)−1V DU ′}

= trace
{
UDV ′ [V (D2 + λIp)V

′]−1
V DU ′

}
= trace

{
UD(D2 + λIp)

−1DU ′}
= trace

{
D2(D2 + λIp)

−1
}

=

p∑
i=1

d2i
d2i + λ

We see that the effective degrees of freedom tend to zero as λ→ ∞, and equal p if λ = 0,
which simply gives OLS.

7.4.9 Comparing the Ridge and OLS Predictions

Take the economical singular value decomposition of the (n × p) centered design matrix
X. We have

X
(n×p)

= U
(n×r)

D
(r×r)

V ′
(r×p)

where r = rank(X) and thus

X ′X = (UDV ′)′(UDV ′) = V DU ′UDV ′ = V D2V ′

Provided that the columns of X are linearly independent, r = p and hence V D2V ′ is
the eigen-decomposition of X ′X. Since X is centered, the sample covariance matrix of
the regressors is S = X ′X/n. Since it is simply a scalar multiple of X ′X, the sample
covariance matrix S has the same eigenvectors as X ′X, namely the columns of V . Since
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V diagonalizes X,

X ′X = V D2V ′

V ′X ′XV = D2

V ′(X ′X/n)V = D2/n

V ′SV = D2/n

In other words,
v′
iSvi = d2i /n

The left hand side is simply the sample variance of the linear combination Xvi of the
predictor data, and this variance equals d2i /n. In fact, since vi is the ith eigenvector of
S, it follows that Xvi contains the observations for the ith sample principal component
of x! Now, since X = UDV ′, we have XV = UD and hence Xvi = uidi. Thus, up to
scale, the basis vector ui for the column space of X is identical to the ith sample principal
component. This gives us a nice way of understanding how Ridge shrinks. Continuing
under the assumption that r = p so that V is (p× p) and V ′V = V ′V = Ip, we have

ŷRidge = Xβ̂Ridge = (UDV ′)V (D2 + λIp)
−1DU ′y

= UD(D2 + λIp)
−1DU ′y = UD2(D2 + λIp)

−1U ′y

=

[
p∑

i=1

ui

(
d2i

d2i + λ

)
u′
i

]
y

Now, the singular values di are arranged from largest to smallest and this corresponds
to the variance of Xvi and hence ui. The smaller d2i the greater the shrinkage. Thus,
Ridge Regression shrinks low variance directions by a large amount, and high variance
directions by a small amount. In contrast, for OLS we have

β̂ = UU ′y =

p∑
i=1

uiui
′y

so there is no shrinkage in any direction.

7.4.10 Choosing λ for Ridge

To implement Ridge Regression we need a method of choosing λ. One idea is cross-
validation, either k-fold or leave-one-out. Since Ridge Regression is a linear smoother, we
can use the computational trick you derived on Problem Set 5 to avoid directly calculating
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the leave-one-out estimators. The role of the OLS “hat matrix” H = X(X ′X)−1X ′ is
played by H(λ) = X(X ′X + λIp)

−1X ′.
But what about AIC and BIC? I am not aware of any results that extend the asymp-

totic results we examined for AIC and BIC in maximum likelihood estimation to Ridge
Regression. There are some analogous results for LASSO, which we’ll talk about below,
based on replacing the the number of parameters in the penalty term with the “effective
degrees of freedom.” One could try the analogous procedure for Ridge. It would be inter-
esting to compare the results to cross-validation. The Generalized Information Criterion
(GIC) of Konishi and Kitagawa (1996) provides an extension of TIC to maximum penal-
ized likelihood estimation, which includes Ridge as a special case. I haven’t seen this used
in practice, but it might be worth trying.

7.5 Principal Components Regression

There is another kind of shrinkage estimation that is very closely related to Ridge Regres-
sion called principal components regression (PCR). The procedure is very simple:

1. Calculate the SVD X = UDV ′ and let vi be the ith column of V .

2. Construct the sample principal components: zi = Xvi.

3. Throw away all but the first M principal components, where M < p.

4. Regress y on z1, . . . , zk.

Recall from above that Ridge Regression shrinks all principal components towards zero
but shrinks low variance directions more than high variance directions. In constrast, PCR
truncates all principal components beyond the kth, shrinking them “all the way” to zero,
and doesn’t apply any shrinkage to the first k principal components. In essence, PCR is a
much less smooth version of Ridge Regression. The received wisdom is that PCR typically
results in worse predictions than Ridge because it shrinks the low variance directions too
much and doesn’t shrink the high variance directions at all. A recent paper, however,
suggests this evaluation may not be entirely accurate. Dhillon et al (2013) show that
the MSE risk of PCR is always within a constant factor of that of Ridge Regression. (In
fact, the constant is 4.) In contrast, there are situations in which Ridge Regression can
be arbitrarily worse than PCR. Admittedly, the scenario they outline is extreme, but the
basic point is sound: Ridge Regression may be better than PCR in some situations, but
not all.
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7.6 LASSO

Ridge Regression adds a squared L2-norm penalty to the usual OLS criterion function:

β̂Ridge = argmin
β

(y − 1nβ0 −Xβ)′(y − 1nβ0 −Xβ) + λ ||β||22

By analogy, we could imagine trying some other penalty function to get a different kind
of shrinkage behavior. Tibshirani’s (1996) “Least Absolute Shrinkage and Selection Op-
erator” (LASSO) does exactly this by adding an L1 penalty to the OLS criterion function:

β̂Lasso = argmin
β

(y − 1nβ0 −Xβ)′(y − 1nβ0 −Xβ) + λ ||β||1

where ||β||1 =
∑p

j=1 |βj|. Like Ridge, LASSO avoids the problem of coefficient estimates
that are “unreasonably large” by penalizing the legnth of β. Yet the way in which it
penalizes is quite different, as we will see. Again, we usually center both X and y to
eliminate the unpenalized intercept. The rest of these notes assume this has already been
done, so the problem becomes:

β̂Lasso = argmin
β

(y −Xβ)′(y −Xβ) + λ ||β||1

Like Ridge, Lasso is not scale invariant, so we typically standardize the columns of X
before proceeding.

7.6.1 No Closed Form for LASSO

Unlike Ridge Regression, which can be written as an explicit linear function of y, the
solution to Lasso is non-linear: no closed form solution exists. There are very fast iterative
procedures, however, that can solve the Lasso problem for a whole range of λ values. For
details, see Murphy (2012; Chapter 13) and Friedman, Hastie & Tibshirani (2010).

7.6.2 An Equivalent Formulation of the LASSO

Like Ridge Regression, the Lasso optimization problem can be recast as minimization
subject to a budget constraint, specifically

argmin
β

(y −Xβ)′(y −Xβ) subject to
p∑

j=1

|βj| ≤ t



7.6. LASSO 115

There is a data-dependent, one-to-one mapping between λ and t.

7.6.3 LASSO as a Bayesian MAP Estimator

Like Ridge, LASSO can be viewed as a maximum a posteriori (MAP) estimator for a
Bayesian linear regression model with a known error variance σ2, ignoring the intercept.4

What differs is the prior. Whereas Ridge uses a conjugate normal prior, Lasso uses
a non-conjugate Laplace, aka “double exponential” prior. Specifically, the model is as
follows:

y|X, β, σ2 ∼ N(Xβ, σ2In)

β ∼
p∏

j=1

Lap(βj|0, τ)

where λ = 1/τ . The Laplace Density is given by

Lap(x|µ, τ) = 1

2τ
exp

{
−|x− µ|

τ

}
where the parameter µ is the mean, as well as median and mode, while the variance is
2τ 2. Compared to the normal distribution, the Laplace has much fatter tails and a higher
peak at its mean. Moreover, the Laplace density has a “kink” at µ.

7.6.4 Why Use an L1 Penalty?

The original idea behind Lasso (Tibshirani, 1996) was to design a shrinkage procedure for
high-dimensional linear regression that combined the best features of Ridge and subset
selection, while avoiding their drawbacks. Subset selection provides interpretable results –
each regressor is either “in” or “out” – and estimates the coefficients on selected regressors
without bias. Unfortunately, it suffers from a very high variance due to the discrete nature
of the problem and is computationally infeasible when p is greater than 30 or so. Ridge
has a low variance, but this comes at the cost of biased estimates. Moreover, since Ridge
includes all regressors in the model, the results can be hard to interpret. The idea behind
Lasso is to both shrink and select: all coefficient estimates are regularized away from MLE
but some are regularized all the way to zero and hence discarded from the model. At the
same time, we want to make sure keep the computational complexity under control. The

4Another way of saying this is that we put an improper uniform prior on the intercept.
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Lasso solution is always sparse provided that λ is sufficiently large. For this reason, there
has been quite a lot of interest in Lasso as a variable selection technique in recent years.

One of the most important features of Lasso is that it is a convex optimization problem.
More generally, consider a penalty term of the form

∑p
j=1 |βj|q. When q = 1 we have Lasso,

and when q = 2 we have Ridge. There is an important tradeoff here: a desire for sparse
solutions and low bias pushes us towards non-convex penalties and suggests that we make
q very small. On the other hand, a desire for computational feasibility and low variance
pushes suggests that we use larger values of q. Lasso uses the smallest value of q that
keeps the problem convex, effectively trying to take the best of both worlds. For recent a
treatment of non-convex penalty functions, see Taddy (2013).

7.6.5 Editorial: Don’t be Fooled by Sparsity

Many researchers favor Lasso because they consider sparse solutions interpretable. But
just because your solution is sparse, that doesn’t make it meaningful. When two predictors
are highly correlated, Ridge assigns them very similar coefficients. In contrast, Lasso
more or less arbitrarily gives one a zero coefficient and the other a nonzero coefficient.
Extremely small changes to the dataset can easily flip the identities of the zero and
nonzero coefficients. This suggests that we should be cautious about trying to use Lasso
for variable selection. Indeed, the theoretical results that justify its use in this fashion
lean heavily on the assumption that the DGP is in fact sparse. This is a very strong
assumption, particularly in social science. There are many situations in which Lasso
works well, but at the end of the day it’s simply an algorithm. And algorithms can’t do
our thinking for us.

7.6.6 Comparing Lasso to Ridge

Because of the nature of its penalty function, Lasso tends to shrink large coefficients
less than Ridge and small coefficients more, leading to a sparse solution. One way of
understanding this is to take a Bayesian perspective. Since its prior has fatter tails and
is highly peaked around zero, Lasso “expects” a few fairly large coefficients and many
coefficients that are effectively zero. This is illustrated in Figure 7.1.

When p = 2, we can draw a picture of both the Ridge and Lasso problems in their
“budget constraint” form. Both have the same objective function, which is proportional
to the normal likelihood and describes a set of elliptical contours in (β1, β2) – space,
centered at the MLE. Whereas Ridge has a circular constraint set, however, Lasso has a
diamond-shaped one. Figure 7.2 shows how this difference in penalty functions leads to
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Figure 7.1: Both Ridge and Lasso can be viewed as MAP estimators based on a Bayesian
linear regression model. Whereas Ridge, at left, puts a normal prior on the regression
coefficients, Lasso, at right, uses a Laplace prior, which has fatter tails and a taller peak
at zero. This figure appears in Chapter 6 of James et al. (2013).

very different results. Sometimes the likelihood surface will hit a “corner” of the Lasso
constraint set, leading to a zero coefficient estimate. In contrast, the Ridge constraint set
has no corners and since it’s circular there’s nothing “special” about points on either axis.

Yet another way to understand the difference between Ridge and Lasso is algebraically.
For simplicity, and without loss of generality, suppose that X is orthonormal. Another
way of putting this is, suppose that we’ve replaced X with its principal components. In
this special case, it turns out that we can derive a closed form solution for Lasso. First
we’ll find the MLE. Since X ′X = I, we have

β̂MLE = (X ′X)−1X ′y = X ′y

or written elementwise,

β̂MLE
j =

n∑
i=1

xijyi

Similarly, for Ridge Regression we have

β̂Ridge = (X ′X + λIp)
−1
X ′y = (Ip + λIp)

−1 β̂MLE

hence
β̂Ridge
j =

(
1

1 + λ

)
β̂MLE
j
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Figure 7.2: In each panel β̂ denotes the MLE and the ellipses represent the contours of
the likelihood. Both Lasso, at left, and Ridge, at right, shrink towards zero and away
from the MLE. Because of its diamond-shaped constraint set, however, Lasso leads to a
sparse solution, whereas Ridge does not. This figure appears in Chapter 6 of James et al
(2013).

The calculations for Lasso are a bit more involved since there is no closed-form solution.
We’re trying to solve

argmin
β

(y −Xβ)′(y −Xβ) + λ ||β||1

Now using X ′X = I along with β̂MLE = X ′y, we can expand the first term as

(y −Xβ)′(y −Xβ) = y′y − 2β′X ′y + β′X ′Xβ

= (constant)− 2β′β̂MLE + β′β

Thus, for the case of orthonormal regressors we have:

β̂Lasso = argmin
β

(β′β − 2β′β̂MLE) + λ ||β||1

= argmin
β

p∑
j=1

(
β2
j − 2βjβ̂

MLE
j + λ |βj|

)
Here’s the key: because the regressors are orthonormal, the optimization problem has
been “de-coupled.” Since each βj only appears in one term of the sum, we can solve the
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overall optimization problem by solving p completely independent optimization problems:

β̂Lasso
j = argmin

βj

(
β2
j − 2βjβ̂

MLE
j + λ |βj|

)
Each of these p objective functions has three terms. The first and third are always positive:
they depend only on the absolute magnitude of βj. In contrast, the second term could
be either positive or negative depending on the signs of β̂MLE

j and βj. Now, β̂MLE
j is

outside our control: it’s simply a function of the data. And whatever the magnitude of
βj changing its sign will not effect either β2

j or λ|βj|. It follows that since we want to
minimize the criterion, we should match the sign of βj to that of β̂MLE

j . This ensures
that the second term is negative. Accordingly, we consider two cases.

Case I: β̂MLE
j > 0 As explained above we need to match the sign of βj to that of the

MLE. Thus, we must have βj > 0. Since βj > 0, it follows that |βj| = βj and the problem
becomes

β̂Lasso
j = argmin

βj

β2
j − 2βjβ̂

MLE
j + λβj

Now that that pesky absolute value is gone, this is a straightforward calculus problem.
The first order condition is 2βj + λ = 2β̂MLE

j . Solving, we have

βj = β̂MLE
j − λ

2

But we’re not quite done: we need βj > 0 but the preceding expression will give a negative
value for βj if λ is big enough. To keep this from happening, our corner solution must be
to set βj = 0 in this case. In other words, we have

β̂Lasso
j =

(
β̂MLE
j − λ

2

)
+

= sign
(
β̂MLE
j

)(∣∣∣β̂MLE
j

∣∣∣− λ

2

)
+

Case II: β̂MLE
j ≤ 0 In this case, we must have βj ≤ 0 to match the sign of the MLE. It

follows that |βj| = −βj so the problem becomes

β̂Lasso
j = argmin

βj

β2
j − 2βjβ̂

MLE
j − λβj

The first order condition is 2βj = 2β̂MLE
j + λ. Solving,

β̂j = β̂MLE
j +

λ

2
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Figure 7.3: These plots illustrate Ridge and Lasso shrinkage for the special case of or-
thonormal regressors. The horizontal axis in each plot is the MLE, while the vertical
axis is the shrinkage estimator. Ridge appears at left and Lasso at right. The dashed
45-degree line in each plot corresponds to zero shrinkage. This figure appears in Chapter
6 of James et al (2013).

In this case we need βj < 0, just like β̂MLE
j . But if λ is sufficiently large, this requirement

will be violated. To keep this from happening, our corner solution is, again, βj = 0. We
can express this as

β̂Lasso
j = sign

(
β̂MLE
j

)(∣∣∣β̂MLE
j

∣∣∣− λ

2

)
+

Hooray! We got the same answer in each case! To summarize, provided that X is
orthonormal, the Ridge and Lasso estimators are as follows:

β̂Ridge
j =

(
1

1 + λ

)
β̂MLE
j

β̂Lasso
j = sign

(
β̂MLE
j

)(∣∣∣β̂MLE
j

∣∣∣− λ

2

)
+

Figure 7.3 depicts the difference between these two procedures. Whereas Ridge shrinks
each element of β̂MLE by the same proportion, namely 1/(1 + λ), Lasso sets any elements
of β̂MLE that are less than λ/2 to zero and translates all other elements by a constant
distance λ/2.

7.6.7 Effective Degrees of Freedom for Lasso

For a given value of λ how complex is the corresponding Ridge fit compared to the Lasso
fit? Is there a way for us to express these very different procedures in common units?
We argued above that a reasonable measure of the complexity of Ridge Regression by
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H(λ) = trace {X(X ′X + λIp)
−1X ′}. Since Lasso doesn’t, in general, have a closed form

it’s not immediately clear what the appropriate analogy should be. It turns out (Zou,
Hastie & Tibshirani; 2007) that the the number of nonzero fitted coefficients provides an
unbiased estimator of effective degrees of freedom for Lasso.

A cautionary note: two recent papers suggest that there are some complications in the
analogy by which “effective degrees of freedom” in regularized regression are compared to
parameter counts in ordinary regression. I haven’t had a chance to look at these in detail
yet, so if you’re particularly keen you should write up a nice summary and send it to me!
The papers are: Kaufman & Rosset (2013) and Janson, Fithian & Hastie (2013).

7.6.8 How to Choose λ for LASSO?

Unlike Ridge, there’s no computational shortcut for leave-one-out cross-validation that
we can apply to Lasso. We can still use this procedure, but we have to do it the hard
way. Of course we could also use k-fold cross-validation. But what about those model
selection criteria we studied earlier in the semester? Is it possible to say anything about
AIC, AICC , BIC, and Cp in the context of Lasso estimation? The answer turns out to be
yes and many familiar properties carry over. Flynn, Hurvich and Simonoff (2013) show
that the natural extensions of AIC, AICC and Cp to Lasso, using the effective degrees of
freedom in place of the number of parameters, are asymptotically efficient. In a simulation
study, they find that AIC, BIC and Cp sometimes select values of λ that are far too small:
they “catastrophically overfit.” In contrast, AICC performs well, just as it did in the case
of ordinary linear regression.

There is also a literature on the appropriate choice of λ in settings where we hope to
use Lasso to carry out variable selection. See the book Statistics for High-Dimensional
Data by Bühlmann and van de Geer (2011) for details and further references.

7.6.9 Elastic Net

There are arguments in favor of Ridge, and there are arguments in favor of Lasso. So
why not try combining them? This is precisely the idea behind the so-called elastic net.
Rather than an L1 or squared L2-norm penalty, the elastic net uses

λ

p∑
i=1

(
αβ2

j + (1− α)|βj|
)

The tuning parameter α controls “how close” the elastic net is to Ridge Regression. When
α = 1, we have Ridge. When α = 0 we have Lasso. For any value in between, we have a
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combination of the two. For more on the elastic net, see Murphy (2013; Section 13.5.3).

7.6.10 The Bayesian Lasso

As mentioned above, the Lasso can be viewed as the MAP estimator from a Bayesian
regression model with a Laplace prior, treating the error variance as known. The posterior
mode, however, is a somewhat less than ideal summary. If forced to summarize a posterior
using a single number we’d typically be much more comfortable with the mean or median.
Park and Casella (2008) propose fully Bayesian version of the Lasso using a conditional
Laplace prior for β and a noninformative, scale-invariant prior for the error variance σ2.
Using the marginal likelihood to select λ, the posterior mean provides an estimator that
is not exactly sparse, but appears to represent a compromise between Ridge and Lasso.
By writing the Laplace distribution as a exponential scale mixture of normals, they show
how to Gibbs sample the model and additionally consider inference and hyperpriors for
λ.

7.7 Shrinkage Estimation Using R
Chapter 6 of James et al. (2013) ends with three “Labs” illustrating how to carry out
various model selection and shrinkage procedures in R. The second and third of these
contain Ridge Regression, Lasso, and PCR. There are some errors in the code as it
appears in the book, so I’ve put together a corrected version with extensive comments
called ISLR_ch6_lab.R and posted it in the GitHub repository for this class: https:
//github.com/fditraglia/econ722. This code makes heavy use of the excellent GLMNET
package for R which is documented in Friedman, Hastie & Tibshirani (2010). If you want
to do your calculations using Matlab I’m afraid I can’t offer you any guidance on the
appropriate packages but if you send me some details, I’ll include them in future versions
of this document.

https://github.com/fditraglia/econ722
https://github.com/fditraglia/econ722


Chapter 8

Classical Factor Analysis and PCA

This chapter draws on material from Chapters 11–12 of Murphy’s Machine Learning: A
Probabilistic Perspective, Andrew Ng’s lecture notes for CS229 at Stanford, and Jolliffe’s
Principal Component Analysis.

8.1 EM Algorithm

8.1.1 The Idea behind the EM Algorithm

For simplicity, we’ll consider an iid setup for now although the EM can be used in situ-
ations with dependence. We’ll also suppose that the latent variable is continuous. If it’s
discrete the idea is exactly the same but the integral is replaced by a sum.

`(θ) =
T∑
t=1

log p(xt; θ) =
T∑
t=1

log

(∫
p(xt, zt; θ) dz

)
where xt is observed and zt is unobserved. In many interesting models there is no explicit
formula for the MLE in terms of the marginal density p(xt; θ) but there is an explicit
formula in terms of the joint density p(xt, zt; θ). This is exactly the setting in which
the EM algorithm is useful. Rather than directly maximizing `(θ), the EM algorithm
proceeds iteratively over the following two steps:

(E-step) Construct a lower bound for `(θ)

(M-step) Optimize the lower bound over θ

Roughly speaking, the EM algorithm converts a single complicated optimization problem
into a sequence of simple optimization problems. The trick is to ensure that the resulting

123
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Figure 8.1: Illustration of the EM Algorithm: to maximize the log likelihood, the red
curve, we create a sequence of successive approximations, the blue and green curves, and
maximize these. This appears as Figure 9.14 in Bishop’s (2006) Pattern Recognitiion and
Machine Learning.

sequence of estimators converges to the MLE. Jensen’s Inequality is the key so I’ll briefly
remind you of a few importnat facts before proceeding.

8.1.2 Jensen’s Inequality

Recall that a function is called convex if its Hessian matrix is positive semi-definite and
strictly convex if its Hessian matrix is positive definite. For functions of a single variable
the condition is f ′′(x) ≥ 0 ∀x ∈ R for convex and f ′′(x) > 0 ∀x ∈ R for strictly
convex. In statistics, one of the most useful results concerning convex functions is Jensen’s
Inequality

Proposition 8.1.1 (Jensen’s Inequality). Let f be a convex function and X be a random
variable. Then E[f(X)] ≥ f(E[X]). If f is strictly convex then the inequality is strict
unless P (X = E[X]) = 1, i.e. X is a constant. For the equivalent results for concave
functions, simply reverse the inequality.

8.1.3 A Lower Bound for the Likelihood

Let ft(zt) be some arbitrary density function over the support of zt, that is any function
satisfying ft(zt) ≥ 0 and ∫

ft(zt) dzt = 1
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We have

`(θ) =
T∑
t=1

log p(xt; θ) =
T∑
t=1

log

(∫
p(xt, zt; θ) dzt

)

=
T∑
t=1

log

(∫
ft(zt)

[
p(xt, zt; θ)

ft(zt)

]
dzt

)
Now we use Jensen’s inequality and the fact that log is a concave function over its domain
to find that

log

(∫
ft(zt)

[
p(xt, zt; θ)

ft(zt)

]
dzt

)
≥
∫
ft(zt) log

[
p(xt, zt; θ)

ft(zt)

]
dzt

What’s going on here? Since ft is a density the integral inside the parentheses is an
expectation of a particular function of the argument of integration zt. The parameter θ
and the observed vector of realizations xt are constants with respect to the integration.
Substituting the preceding inequality into the sum, we have established that

`(θ) ≥
T∑
t=1

(∫
ft(zt) log

[
p(xt, zt; θ)

ft(zt)

]
dzt

)
for any density function ft. This is the lower bound for the likelihood that we will use in
the E-step. The question is, how should we choose ft?

The key idea is to turn the inequality into an equality at a particular value of θ.
Intuitively, we want to ensure that, in a given iteration of the algorithm, the actual
likelihood and the lower bound agree at the value of θ that emerged from the preceding
iteration. In this way, our sequence of approximating functions will “trace out a path”
along the true likelihood, ultimately ensuring that the EM algorithm will converge to the
MLE. Since log is in fact strictly concave, the only way for Jensen’s inequality to hold
with equality is if

p(xt, zt; θ)

ft(zt)
= c

for some constant c that does not depend on zt. The question is, how should we choose
ft to achieve this? Rearranging, integrating, and using the fact that ft is a density,

cft(zt) = p(xt, zt; θ)

c

∫
ft(zt) dzt =

∫
p(xt, zt; θ) dzt

c = p(xt; θ)
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Substituting for c, solving for ft and using the definition of a conditional density we have

ft(zt) =
p(xt, zt; θ)

p(xt; θ)
= p(zt|xt; θ)

In other words, to make the lower bound hold with equality at a particular value of θ,
say θ∗, it suffices to set ft equal to the conditional density of zt given xt evaluated at θ∗.
Crucially this is a both a probability density and a function of zt only since we plug in
the observed value of xt.

8.1.4 The Algorithm

In the previous subsection we showed that if we set ft(zt) = p(zt|xt; θ
∗) then

`(θ∗) =
T∑
t=1

(∫
ft(zt) log

[
p(xt, zt; θ

∗)

ft(zt)

]
dzt

)
and, more generally for any value of θ

`(θ) ≥
T∑
t=1

(∫
ft(zt) log

[
p(xt, zt; θ)

ft(zt)

]
dzt

)
by Jensen’s Inequality. Now we are ready to state the EM algorithm:

Algorithm 8.1.1 (EM Algorithm). First select a starting value θ(1). Then repeat the
following two steps repeatedly until convergence

(E-step) For each t set f (j−1)
t (zt) = p(zt|xt; θ

(j−1)) where θ(j−1) is the solution from the
M-step of the preceding iteration.

(M-step) θ(j) = argmax
θ∈Θ

T∑
t=1

(∫
f
(j−1)
t (zt) log

[
p(xt, zt; θ)

f
(j−1)
t (zt)

]
dzt

)

If j = 2 then θ(j−1) is simply the starting value θ(1).

Note that in the M-step the argument θ over which we maximize only enters the
expression p(xt, zt; θ). The density f (j−1)(zt) does not depend on θ, it depends on the
constant θ(j−1) that solved the M-step of the previous iteration. The amazing thing about
the EM algorithm is that it is guaranteed to converge to a local maximum of the likelihood
function: each successive iteration monotonically improves the likelihood as we will see
below. This fact along the the way we constructed our lower bound to hold with equality
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at the value of θ from the previous M-step gives us an excellent tool for debugging our
code: simply plot

`(θ(j)) =
T∑
t=1

(∫
f
(j)
t (zt) log

[
p(xt, zt; θ

(j))

f
(j)
t (zt)

]
dzt

)

against j. The preceding expression is the objective function from the (j + 1)th M-step
evaulated at the solution from the jth M-step. By construction, this If the is equal to the
likelihood evaulated at θ(j). If the plot is not increasing monotonically in j, then there
must be a bug in your code.

8.1.5 Why Does the EM Algorithm Converge?

Let θ(j) and θ(j+1) be two succesive solutions to the M-step of the EM algorithm. We will
now show that `(θ(j)) ≤ θ(j+1). In other words, the EM algorithm monotonically improves
the likelihood in each iteration. Since {θ(j)} is a monotonic sequence, it converges as long
as it is bounded (Rudin Theorem 3.14). Since `(θ(1)) is a lower bound, if follows that the
EM algorithm is guaranteed to converge to a local maximum of the likelihood function
provided that the likelihood function is bounded above. All that remains is to actually
demonstrate that `(θ(j)) ≤ θ(j+1).

By definition,

θ(j+1) = argmax
θ∈Θ

T∑
t=1

(∫
f
(j)
t (zt) log

[
p(xt, zt; θ)

f
(j)
t (zt)

]
dzt

)

Now let θ̃ be some arbitrary value of θ. Since θ(j+1) is the argmax, evaluating the objective
function at θ̃ cannot yield a greater value than evaluating it at θ(j+1). Since this holds for
any θ̃ it holds in particular for θ(j). Hence,

T∑
t=1

(∫
f
(j)
t (zt) log

[
p(xt, zt; θ

(j+1))

f
(j)
t (zt)

]
dzt

)
≥

T∑
t=1

(∫
f
(j)
t (zt) log

[
p(xt, zt; θ

(j))

f
(j)
t (zt)

]
dzt

)
= `(θ(j))

since we chose f (j)
t (zt) to make Jensen’s Inequality strict at θ(j). Now, recall from above

that for any density ft(zt) and any value of θ,

`(θ) ≥
T∑
t=1

(∫
ft(zt) log

[
p(xt, zt; θ)

ft(zt)

]
dzt

)
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by Jensen’s Inequality. Since this holds in general, it also holds in particular for θ = θ(j+1)

and ft(zt) = f
(j)
t (zt). Hence,

`(θ(j+1)) ≥
T∑
t=1

(∫
f
(j)
t (zt) log

[
p(xt, zt; θ

(j+1))

f
(j)
t (zt)

]
dzt

)

Combining the two inequalities gives `(θ(j+1)) ≥ `(θ(j)) as claimed.

8.2 Factor Analysis

Before we proceed, I’ll just remind you of some key facts about normal distributions and
we’ll need below.

8.2.1 Facts about the Multivariate Normal Distribution

Linear Combinations

Suppose that X ∼ N(µ,Σ) and Y = a + BX where a is a vector and B a matrix of
constants. Then Y ∼ (a+Bµ,BΣB′).

Marginals and Conditionals

Let X1 and X2 be random vectors such that (X ′
1, X

′
2) ∼ N(µ,Σ) where

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Then,

X1 ∼ N(µ1,Σ11)

X2 ∼ N(µ2,Σ22)

X1|X2 ∼ N(µ1|2,Σ1|2)

where,

µ1|2 = µ1 + Σ12Σ
−1
22 (X2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21
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Figure 8.2: Illustration of Factor Analysis, although the notation is slightly different from
mine. (I need to draw my own version of this.) This appears as figure 12.1 in Murphy
(2012).

8.2.2 The Factor Analysis Model

Classical Factor Analysis specifies a joint distribution on the observable random p-vector
X and an unobserved or “latent” random k-vector Z, as follows

Z ∼ Nk(0k, Ik)

ε ∼ Np(0p,Ψ)

Z ⊥ ε

X = µ+ ΛZ + ε

where µ is a p×1 vector of parameters, Λ is a p×k matrix of parameters called the factor
loading matrix, and Ψ is a p × p diagonal matrix of parameters. Factor Analysis can be
viewed as a “low rank parameterization” of a multivariate normal distribution. The idea
is that, while X is a random p-vector, its realizations lie close to a k-dimensional affine
subspace: Λ maps Z from Rk to a linear subspace of Rp, µ shifts this subspace away from
the origin, and ε adds axis-aligned Gaussian noise. Hence it makes sense to require that
k is strictly less than both p, the dimension of X, and T , the sample size.

The intution is as follows: Factor Analysis “forces” Z to “explain” the correlation
structure of X. This is why Ψ is required to be diagonal. The diagonal elements of Ψ
are sometimes called the idiosyncratic variance terms, since each corresponds to a single
component of X. This is the key point: conditional on the factors Z, the elements of X
are independent.

The factor analysis model implies that the joint distribution of Z and X is normal.
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Specifically,[
Z

X

]
=

[
0k

µ

]
+

[
Ik 0k×p

Λ Ip

][
Z

ε

]

=

[
0k

µ

]
+

[
Ik 0k×p

Λ Ip

]
N

([
0k

0p

]
,

[
Ik 0k×p

0p×k Ψ

])

∼ N

([
0k

µ

]
,

[
I Λ′

Λ ΛΛ′ +Ψ

])

The algebra for the variance matrix calculation is as follows:

V =

[
Ik 0k×p

Λ Ip

][
Ik 0k×p

0p×k Ψ

][
Ik 0k×p

Λ Ip

]′

=

[
Ik 0k×p

Λ Ψ

][
Ik Λ′

0p×k Ip

]

=

[
Ik Λ′

Λ ΛΛ′ +Ψ

]

8.2.3 The Factor Analysis Model is Not Identified

Suppose we want to estimated the parameters µ,Λ,Ψ of the factor analysis model. The
first natural question is whether this model is even identified. The mean vector µ doesn’t
provide any problems for identification since we can always demean X before proceeding.
Excluding µ, the factor analysis model has k(p+ 1) free parameters: Λ is a p× k matrix
and Ψ is a diagonal p× p matrix.

Unfortunately the Factor Analysis is not identified as given above. To see why, suppose
that R is an orthogonal matrix, i.e. RR′ = R′R = I. Geometrically, R is a rotation: it
leaves the length of any vector v unchanged since

||Rv|| =
√

(Rv)′(Rv) =
√
v′R′Rv =

√
v′v = ||v||

And it leaves the distance between any two vectors v and w unchanged since

||Rv −Rw|| = ||R(v − w)|| =
√
[R(v − w)]′ [R(v − w)]

=
√

(v − w)′R′R(v − w) =
√

(v − w)′(v − w) = ||v − w||

From the joint distribution for X and Z that we derived above it follows that the marginal
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distribution of X is N(µ,ΛΛ′ + Ψ). Thus if we observe realizations x1,x2, . . . ,xT of a
sequence of iid random vectors X1, X2, . . . , XT generated from the Factor Analysis model
the log-likelihood is given by

`(µ,Λ,Ψ) = log

[
T∏
t=1

exp
{
−1

2
(xt − µ)′ (ΛΛ′ +Ψ)−1 (xt − µ)

}
(2π)p/2 |ΛΛ′ +Ψ|1/2

]

Now suppose that we evaluate the log-likelihood at Λ̃R rather than Λ. Since Λ only enters
through the outer product ΛΛ′ the likelihood is unchanged:

Λ̃Λ̃′ = (ΛR)(ΛR)′ = ΛRR′Λ′ = ΛΛ′

We have shown that the matrix of factor loadings is only identified up to a rotation.
Another way to think about this is in terms of the latent variable Z, Since X = µ+ΛZ+ε,
post-multiplying Λ by R is the same as pre-multiplying Z by R. As explained above, this
constitutes a rotation of the vector Z. But since Z is a spherical normal distribution,
rotating it cannot change the likelihood.

If we merely plan to use Factor Analysis for prediction this lack of identification is
irrelevant: it does not affect the predictive performance of the model in any way. If we
ultimately hope to interpret the latent factors, however the lack of identification becomes
problematic. There are various ways to get a unique solution for the factor loadings Λ

that involve making various restrictions on the matrix of factor loadings Λ. The first
question is: so how many restrictions do we need?

Since the lack of identication comes from rotational invariance, we need to count the
number of free parameters in a k× k rotation matrix. Start with the first column: it has
k − 1 free parameters since the only constraint is that it have length one. The second
column must also have length one, but it has the further restriction that it must be
orthogonal to the first column. Hence it has k − 2 free parameters. Continuing in this
way, we see that there are (k−1)+(k−2)+ . . .+(k−k+1) = k(k−2)/2 free parameters
in a general k × k rotation matrix.

There are a number of possible solutions to the lack of identification:

• Constraining the columns of Λ to be orthonormal This is essentially how
PCA works, as we’ll see below.

• Constraining Λ to be lower triangular This constraint imposes that the first
element of X only depends on the first factor, the second element of X only depends
on the first two factors, and so on. In this choice of which variables to list as the
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first elements of X can make a big difference.

• Imposing Sparsity on Λ There are a number of proposals for “sparse factor
analysis,” including using LASSO and imposing an `1 penalty on the factor loadings.
Although this might not completely solve the identification problem, setting many
of the elements of Λ to exactly zero can partially resolve it.

• Choosing an Informative Rotation Matrix If you read old textbooks on mul-
tivariate statistics, you’ll see a number of suggestions, including something called
the “varimax” method. Typically, these solutions involve some kind of sparsity
condition.

• Use a Non-Gaussian Distribution for the Factors The lack of identification
in the Factor Analysis Model comes from the rotational invariance of a multivari-
ate normal distribution with an identity covariance matrix. Using a distribution
other than the normal can partially eliminate this problem: a Laplace distribution,
for example, has diamond-shaped contours. This is the idea behind “Independent
Components Analysis” (ICA).

8.2.4 The Latent Factors

The unobserved random variables Z1, . . . , ZT that generate X1, . . . , XT under the Factor
Analysis Model are called the latent factors or the latent scores. In some settings the
factor scores are given a particular interpretation and we may wish to infer them from
the observable data. (Warning: interpreting the factors can be very difficult because
of the lack of idenfication of the factor model!) Because this model is Gaussian, we can
easily work out the conditional distribution of the latent factors using joint distribution of
(Z ′, X ′)′. Indeed, this is precisely what we’ll need to do to implement the EM algorithm,
as we’ll see below.

8.2.5 Deriving EM for Classical Factor Analysis

This is a great problem for the EM algorithm since it can be viewed as a case of missing
data: if Z were observed, this would just be a standard multivariate regression problem!

The E-step: Inferring the Latent Factors

In this step we set f (j−1)
t (zt) = p(zt|xt; θ

(j−1)) for each t where θ(j−1) is the value of θ
that solved the optimization problem from the preceding M-step or, if j = 2, the starting
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value. In the notation of the factor analysis problem we need to calculate:

f
(j−1)
t (zt) = p(zt|xt;µ

(j−1),Λ(j−1),Ψ(j−1))

As we showed above, [
Z

X

]
∼ N

([
0k

µ

]
,

[
I Λ′

Λ ΛΛ′ +Ψ

])

Hence, using the properties of the normal distribution reviewed earlier in this document:

Z|X ∼ Nk(µZ|X ,ΣZ|X)

µZ|X = Λ′(ΛΛ′ +Ψ)−1(X − µ)

ΣZ|X = Ik − Λ′(ΛΛ′ +Ψ)−1Λ

The M-Step: Optimizing the Lower Bound

In this step, we solve

θ(j) = argmax
θ∈Θ

T∑
t=1

(∫
f
(j−1)
t (zt) log

[
p(xt, zt; θ)

f
(j−1)
t (zt)

]
dzt

)

Before carrying out the optimization problem, we’ll first manipulate the objective function
to simplify it and remove constant terms that don’t depend on the model parameters.
Substituting the notation of the Factor Analysis Model and rearranging, we can write the
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objective function for the jth M-step as follows:

Q(j)(µ,Λ,Ψ) =
T∑
t=1

∫
f
(j−1)
t (zt) log

[
p(xt, zt;µ,Λ,Ψ)

f
(j−1)
t (zt)

]
dzt

=
T∑
t=1

∫
f
(j−1)
t (zt)

[
log p(xt, zt;µ,Λ,Ψ)− log f

(j−1)
t (zt)

]
dzt

=
T∑
t=1

∫
f
(j−1)
t (zt) log p(xt, zt;µ,Λ,Ψ) dzt −

T∑
t=1

∫
f
(j−1)
t (zt) log f

(j−1)
t (zt) dzt

=
T∑
t=1

∫
f
(j−1)
t (zt) log p(xt, zt;µ,Λ,Ψ) dzt + C

=
T∑
t=1

∫
f
(j−1)
t (zt) log p(xt, zt;µ,Λ,Ψ) dzt −

T∑
t=1

∫
f
(j−1)
t (zt) log f

(j−1)
t (zt) dzt

=
T∑
t=1

∫
f
(j−1)
t (zt) log [p(xt|zt;µ,Λ,Ψ)p(zt)] dzt + C

=
T∑
t=1

∫
f
(j−1)
t (zt) log p(xt|zt;µ,Λ,Ψ) dzt +

T∑
t=1

∫
f
(j−1)
t (zt) log p(zt) dzt + C

=
T∑
t=1

∫
f
(j−1)
t (zt) log p(xt|zt;µ,Λ,Ψ) dzt + C

where C denotes an arbitrary constant and we have used the fact that p(zt) does not
depend on any of the model parameters since Z ∼ Nk(0, I).

Writing the joint distribution with X as the first block rather than Z, we have[
X

Z

]
∼ N

([
µ

0k

]
,

[
ΛΛ′ +Ψ Λ

Λ′ I

])

Hence, using the properties of normal distributions

X|Z ∼ Np(µX|Z ,ΣX|Z)

µX|Z = µ+ ΛZ

ΣX|Z = Ψ

so
p(xt|zt;µ,Λ,Ψ) =

exp
{
−1

2
(xt − µ− Λzt)

′Ψ−1(xt − µ− Λzt)
}

(2π)p/2 |Ψ|1/2
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and hence

log p(xt|zt;µ,Λ,Ψ) = −1

2

[
log |Ψ|+ p log(2π) + (xt − µ− Λzt)

′Ψ−1(xt − µ− Λzt)
]

Updating Λ: Differentiating,

∇Λ log p(xt|zt;µ,Λ,Ψ) = ∇Λ

[
1

2
(xt − µ)′Ψ−1Λzt +

1

2
z′tΛ

′Ψ−1(xt − µ)− 1

2
z′tΛ

′Ψ−1Λzt

]
= ∇Λ

[
z′tΛ

′Ψ−1(xt − µ)− 1

2
z′tΛ

′Ψ−1Λzt

]
= ∇Λ

[
tr
{
z′tΛ

′Ψ−1(xt − µ)
}
− 1

2
tr
{
z′tΛ

′Ψ−1Λzt
}]

= ∇Λtr
{
Λ′Ψ−1(xt − µ)z′t

}
− 1

2
∇Λtr

{
Λ′Ψ−1Λztz

′
t

}
where we have used the fact that each term is a scalar, and thus equals its trace, and
tr(AB) = tr(BA) with zt playing the role of A.

It remains to calculate two matrix derivatives. For the first term we need to calculate
∇Xtr(X ′A) where Λ plays the role of X and Ψ−1(xt − µ)z′t plays the role of A. It turns
out that1

∇Xtr(X ′A) = A

For the second term we need to calculate ∇Atr(X ′BXC) where Λ plays the role of X,
Ψ−1 plays the role of B, and ztz

′
t plays the role of C. It turns out that2

tr(X ′BXC) = BXC +BXC ′

Finally, we have,

∇Λ log p(xt|zt;µ,Λ,Ψ) = Ψ−1(xt − µ)z′
t −

1

2

(
Ψ−1Λztz′

t +Ψ−1Λztz′
t

)
= Ψ−1(xt − µ)z′

t −Ψ−1Λztz′
t

Thus, the first order condition for Λ is

T∑
t=1

∫
f
(j−1)
t (zt)

[
Ψ−1(xt − µ)z′

t −Ψ−1Λztz′
t

]
dzt = 0

1See, inter alia, Peterson & Pederson (2012) The Matrix Cookbook, Section 2.5.1 or the Wikipedia
article on Matrix Calculus.

2Ibid.
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Rearranging,

Ψ−1

T∑
t=1

(xt − µ)

∫
f
(j−1)
t (zt) z′

t dzt = Ψ−1Λ
T∑
t=1

∫
f
(j−1)
t (zt) ztz′

t dzt

T∑
t=1

(xt − µ)

∫
f
(j−1)
t (zt) z′

t dzt = Λ

(
T∑
t=1

∫
f
(j−1)
t (zt) ztz′

t dzt

)

Solving for Λ and substituting the result of the E-step,

Λ(j) =

(
T∑
t=1

(xt − µ)

∫
f
(j−1)
t (zt) z′

t dzt

)(
T∑
t=1

∫
f
(j−1)
t (zt) ztz′

t dzt

)−1

=

(
T∑
t=1

(xt − µ)

∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
z′
t dzt

)(
T∑
t=1

∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
ztz′

t dzt

)−1

=

[
T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′][ T∑
t=1

{(
µ
(j−1)
zt|xt

)(
µ
(j−1)
zt|xt

)′
+
(
Σ

(j−1)
zt|xt

)}]−1

where N (z|µ,Σ) denotes a multivariate normal density with argument z, mean µ and
variance matrix Σ and

µ
(j−1)
zt|xt

=
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1 (
xt − µ(j−1)

)
Σ

(j−1)
zt|xt

= I−
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1

Λ(j−1)

Notice that the M-step update for Λ looks what would be the multivariate OLS estimator
if Z were observed: Λ′ = (Z ′Z)−1Z ′X. Since we don’t observe Z we substitute its
conditional mean given X. The only twist is the conditional variance term in the term
that serves as the analogue of (Z ′Z)−1. This accounts for the uncertainty in our estimate
of Z based on observing X.

Updating µ: Differentiating and rearranging,

∇µ log p(xt|zt;µ,Λ,Ψ) = −1

2
∇µ

(
−µ′Ψ−1xt + µ′Ψ−1µ+ µ′Ψ−1Λzt − x′

tΨ
−1µ+ z′tΛ

′Ψ−1µ
)

= ∇µ

(
x′
tΨ

−1µ− z′tΛ
′Ψ−1µ− 1

2
µ′Ψ−1µ

)
=

(
x′
tΨ

−1
)′ − (z′tΛ′Ψ−1

)′ −Ψ−1µ

= Ψ−1 (xt − Λzt − µ)
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where we have used the results ∇xa
′x = a and∇xx

′Ax = (A + A′)x along with the fact
that Ψ−1 is symmetric.3 Hence the first-order condition for µ is

T∑
t=1

∫
f
(j−1)
t (zt)

[
Ψ−1 (xt − Λzt − µ)

]
dzt = 0

Left-multiplying both sides by Ψ, using the fact that f (j−1)
t (zt) is a density, and substi-

tuting the E-step gives

T∑
t=1

(
xt − Λ

∫
f
(j−1)
t (zt) zt dzt − µ

)
= 0

T x̄− Λ
T∑
t=1

∫
f
(j−1)
t (zt) zt dzt = Tµ

x̄− Λ

(
1

T

T∑
t=1

µ
(j−1)
zt|xt

)
= µ

We see that, provided that conditional expectations µ(j−1)
zt|xt

sum to zero over t, the M-step
update for µ is simply µ(j) = x̄ which doesn’t depend on j. From above,

µ
(j−1)
zt|xt

=
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1 (
xt − µ(j−1)

)
and hence, summing over t

T∑
t=1

µ
(j−1)
zt|xt

=
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1

T
(
x̄− µ(j−1)

)
So as long as µ(j−1) = x̄, the conditional expectations will sum to zero so that µ(j) = x̄.
This makes perfect sense: we know that x̄ is the MLE for the mean of a normal distribution
and we have shown that if we set µ(1) = x̄, the M-step will never update µ. This is just a
very complicated way of saying that we can demean xt before carrying out Factor Analysis
and then proceed as though µ were zero.

Updating Ψ: Recall from above that Ψ is a diagonal matrix. Let ψii denote its ith
diagonal element. Since the determinant of a diagonal matrix is simply the product of
its diagonal elements and the log of a product equals the sum of the logs, it follows that

3See, inter alia, Peterson & Pederson (2012) The Matrix Cookbook, Section 2.4.1–2 or the Wikipedia
article on Matrix Calculus.
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log |Ψ| =
∑p

i=1 logψii. Similarly, if c is a p × 1 vector then c′Ψ−1c =
∑p

i=1 c
2
i /ψii. It

follows that ∇Ψ log |Ψ| = Ψ−1 and

∇Ψc
′Ψ−1c = −Ψ−1cc′Ψ−1 = Ψ−2cc′

hence,

∇Ψ log p(xt|zt;µ,Λ,Ψ) = −1

2

[
Ψ−1 −Ψ−2(xt − µ− Λzt)(xt − µ− Λzt)

′]
Thus, the first order condition for Ψ is

−1

2

T∑
t=1

∫
f
(j−1)
t (zt)

[
Ψ−1 −Ψ−2(xt − µ− Λzt)(xt − µ− Λzt)

′] dzt = 0

Multiplying through by −2 and rearranging, we have4

(
T∑
t=1

∫
f
(j−1)
t (zt) dzt

)
Ψ−1 =

T∑
t=1

∫
f
(j−1)
t (zt)Ψ

−2(xt − µ− Λzt)(xt − µ− Λzt)
′ dzt

TΨ−1 = Ψ−2

T∑
t=1

∫
f
(j−1)
t (zt)(xt − µ− Λzt)(xt − µ− Λzt)

′ dzt

Ψ =
1

T

T∑
t=1

∫
f
(j−1)
t (zt)(xt − µ− Λzt)(xt − µ− Λzt)

′ dzt

4Remember that f
(j−1)
t (zt) is a scalar so it commutes!
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Substituting the result of the E-step, we have

Ψ(j) =
1

T

T∑
t=1

∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
(xt − µ− Λzt)(xt − µ− Λzt)

′ dzt

=
1

T

T∑
t=1

(xt − µ)(xt − µ)′ − 1

T

T∑
t=1

Λ

[∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
zt dzt

]
(xt − µ)′

− 1

T

T∑
t=1

(xt − µ)

[∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
z′t dzt

]
Λ′

+
1

T

T∑
t=1

Λ

[∫
N
(
zt|µ(j−1)

zt|xt
,Σ

(j−1)
zt|xt

)
ztz

′
t dzt

]
Λ′

=
1

T

T∑
t=1

(xt − µ)(xt − µ)′ − Λ

[
1

T

T∑
t=1

µ
(j−1)
zt|xt

(xt − µ)′

]
−

[
1

T

T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′]
Λ′

+Λ

[
1

T

T∑
t=1

{(
µ
(j−1)
zt|xt

)(
µ
(j−1)
zt|xt

)′
+
(
Σ

(j−1)
zt|xt

)}]
Λ′

This is a really complicated expression, but we can simplify it by substituting the updates
for the other parameters. Using µ = x̄, we see that the first term is the sample covariance
matrix S. Using

Λ(j) =

[
T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′][ T∑
t=1

{(
µ
(j−1)
zt|xt

)(
µ
(j−1)
zt|xt

)′
+
(
Σ

(j−1)
zt|xt

)}]−1

= AB−1

and noting that B−1 is symmetric, we have

Ψ(j) = S − AB−1

(
1

T
A′
)
−
(
1

T
A

)
B−1A′ + AB−1

(
1

T
B

)
B−1A′

= S − 2

T
AB−1A′ +

1

T
AB−1A′ = S − 1

T
AB−1A′ = S − Λ(j) 1

T
A′

= S − Λ(j)

[
1

T

T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′]

There’s just one thing that we forgot: Ψ is supposed to be a diagonal matrix and we
haven’t imposed this! Fortunately this is easy, just ignore all the non-diagonal elements:

Ψ(j) = diag

{
S − Λ(j)

[
1

T

T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′]}
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8.2.6 Summary of EM Algorithm for Factor Analysis

The MLE for µ is simply x̄ which never gets updated, so we can substitute this wherever
a µ appears. The jth step updates for Λ and Ψ are given by

Λ(j) =

[
T∑
t=1

(xt − x̄)
(
µ
(j−1)
zt|xt

)′][ T∑
t=1

{(
µ
(j−1)
zt|xt

)(
µ
(j−1)
zt|xt

)′
+
(
Σ

(j−1)
zt|xt

)}]−1

Ψ(j) = diag

{
S − Λ(j)

[
1

T

T∑
t=1

(xt − µ)
(
µ
(j−1)
zt|xt

)′]}

where µ(j−1)
zt|xt

and Σ
(j−1)
zt|xt

are calculated from the (j − 1)th step according to

µ
(j−1)
zt|xt

=
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1

(xt − x̄)

Σ
(j−1)
zt|xt

= I−
(
Λ(j−1)

)′ [
Λ(j−1)

(
Λ(j−1)

)′
+Ψ(j−1)

]−1

Λ(j−1)

and S is the sample covariance matrix:

S =
1

T

T∑
t=1

(xt − x̄)(xt − x̄)′

Computing the Matrix Inverse Note that both µ(j−1)
zt|xt

and Σ
(j−1)
zt|xt

involve the inverse
of a (p× p) matrix, namely [

Λ(j−1)
(
Λ(j−1)

)′
+Ψ(j−1)

]−1

Because of the structure of this problem, we can convert this to a simpler matrix inverse
using the following lemma:

(Ψ + ΛΛ′)−1 = Ψ−1 −Ψ−1Λ
(
I + Λ′Ψ−1Λ

)−1
Λ′Ψ−1

Since Ψ is diagonal, calculating its inverse is trivial. The remaining matrix we need to
invert, (I +Λ′Ψ−1Λ), has its dimension determined by the number of factors rather than
the number of variables in x. For example, to fit a two-factor model we only need to
invert a 2× 2 matrix. This is a huge computational simplification.
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8.2.7 Estimating the Factor Scores

We saw above that

Z|X ∼ Nk(µZ|X ,ΣZ|X)

µZ|X = Λ′(ΛΛ′ +Ψ)−1(X − µ)

ΣZ|X = Ik − Λ′(ΛΛ′ +Ψ)−1Λ

So if we want to estimate the realizations zi of the latent vector X that correspond to the
observations xi, the obvious choice is the conditional mean evaulated at the maximum
likelihood estimators, namely

ẑi = Λ̂′
(
Λ̂Λ̂′ + Ψ̂

)−1

(xi − x̄)

Notice that this is precisely the collection of values that emerge from the final M-step
since x̄ is the MLE for µ and we showed that it is never updated.

8.3 Principal Components Analysis

If asked to summarize a k-dimensional random vector x our first inclination might be to
examine its moments: the mean vector µ and variance-covariance matrix Σ. As men-
tioned above, it might be difficult or impossible to estimate Σ if k is large relative to the
sample size. More fundamentally, however, even if it were known rather than estimated,
Σ would still be challenging to interpret unless k is fairly small. Principal Components
Analysis (PCA) is a classical statistical technique that is designed to help us discover
“structure” in a variance-covariance matrix by considering particular linear combinations
of the elements of x. We can apply PCA either to a population covariance matrix or a
sample covariance matrix: the basic idea is the same in either case. To bring out some
important relationships between ideas we will examine PCA from several different, but
equivalent perspectives. To begin, we will consider what is sometimes called the “analysis
view” of PCA which amounts to solving a simple optimization problem.

8.3.1 The “Analysis View” of PCA

Suppose that α is a constant vector. Then α′x is a scalar random variable that summa-
rizes x via a weighted average. The question is, what weights provide an “interesting”
summary of x? One idea would be to choose α to maximize the variance of the linear com-
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bination α′x. Although this idea is appealing, there is an obvious problem: we can make
the variance of the linear combination arbitrarily large! To turn this into a well-defined
problem, we need to constrain α in some way. There are many possible constraints we
could use. PCA imposes a particularly simple one by requiring that α has unit norm, in
other words α′α = 1.

The First Principal Component The linear combination α1x formed from the solu-
tion to

max
α1

V ar(α1
′x) subject to α1

′α1 = 1

is called the first principal component of Σ. For a general linear combination of x we have

V ar(α′x) = E[α′xx′α]− E[α′x]E[x′α]

= α (′E[xx′]− E[x]E[x′])α′

= α′Σα

Thus, to find α1 we maximize the Lagrangian

L(α1, λ) = α′
1Σα1 − λ(α1

′α1 − 1)

where λ is a scalar Lagrange Multiplier since there is only a one constraint. The first-order
condition for α1 is

2(Σα1 − λα1) = 0

since Σ is a symmetric matrix.5 Rearranging,

(Σ− λIk)α1 = 0

so we see at once that α1 must be an eigenvector of Σ and λ the corresponding eigenvalue.
But which one? Rearranging the first-order condition for α1 gives

Σα1 = λα1

Substituting this into the objective function,

V ar(α′
1x) = α′

1Σα1 = α′
1λα1 = λα′

1α1 = λ

5In general, ∇xx
′Ax = (A+A′)x. See, for example, Harville (1997) section 15.3.
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since λ is a scalar and α′
1α1 = 1. In other words, the variance of the first principal

component equals λ. Since this is what we want to maximize, we should make λ as large
as possible. But λ must be one of the eigenvalues of Σ. Therefore, α1 is the eigenvector
corresponding to the largest eigenvalue of Σ. Recall that since Σ is a variance-covariance
matrix, is must be positive semi-definite hence all its eigenvalues must be non-negative.

The Second Principal Component To find the second PC α′
2x we maximize V ar(α′

2x) =

α′
2Σα2 subject the the normalization constraint α′

2α2 = 1 and the additional constraint
that α′

2x be uncorrelated with α′
1x. It is equivalent, of course, to impose zero covariance.

We have

V ar

([
α′

1

α′
2

]
x
)

=

[
α′

1

α′
2

]
Σ
[
α1 α2

]
=

[
α′

1Σα
′
1 α′

1Σα
′
2

α′
2Σα1 α′

2Σα2

]

Hence,

Cov (α′
1x,α

′
2x) = α′

1Σα
′
2 = α′

2Σα1

= α′
2λ1α1 = λ1α

′
2α1 = λ1α

′
1α2

where we have used the fact that Σα1 = λ1α1 as we found in our derivation of the first
PC. Since λ1 6= 0 we see that the covariance is zero precisely when α′

1α2 = 0, so we’ll use
this as our second constraint. The Lagrangian for this problem is

L(α2, λ, φ) = α′
2Σα2 − λ(α′

2α2 − 1)− φα′
2α1

hence the first order condition for α2 is

2Σα2 − 2λIα2 − φα1 = 0

Left-multiplying by α′
1, we have

2α′
1Σα2 − 2λα′

1α2 − φα1α1 = 0

But now the first and second terms are both zero, from our calculation of Cov (α′
1x,α

′
2x)

and the last term equals one by the normalization constraint for α1. Thus, we see that
φ = 0 so the first order condition simplifies to

2Σα2 − 2λα2 = 0
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which is equivalent to Σα2 = λα2 Therefore, α2 is an eigenvector of Σ corresponding to
the eigenvalue λ. As we argued in our derivation of the first PC, since λ is the variance
we want it to be as large as possible. For the second PC, however, we must respect the
constraint that α′

1α2 = 0 so we cannot take

α2 = α1

since this would make the inner product equal one! Instead, we take the next largest
variance λ2. Thus, the second PC is constructed from the eigenvector corresponding to
the second largest eigvenvalue of Σ.

The jth Principal Component By now you probably see the pattern: the jth PC is
the linear combination α′

jx where α′
j is the eigenvector corresponding to the jth eigen-

value, λj, of the covariance matrix Σ. The PCs are mutually uncorrelated and have
variance λj.

8.3.2 Reconstruction Error Interpretation

Fill in later.

8.3.3 PCA for the Sample Covariance Matrix

Let X be a design matrix from which we have subtracted the column means. Then the
sample covariance matrix S is defined as

S =
X ′X

T

This is the MLE for Σ under multivariate normality. If you prefer the unbiased estimator,
simply divide by (T − 1) rather than T . Now we can simply proceed as above with S

playing the role of Σ.

Computing Sample PCs The best way to calculate the sample PCs is to use the
singular value decomposition (SVD) of the centered design matrix X.6 We have X =

UDV ′ and hence
X ′X = V DU ′UDV ′ = V D2V ′

6For details on this decomposition, see the lecture notes for shrinkage estimation.
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Right-multiplying by V gives (X ′X)V = V D2. Thus, letting vi denote the ith column
of V , we have (X ′X)vi = d2ivi. Dividing both sides by T gives Svi = T−1d2ivi. Thus,
(vi, T

−1d2i ) are the eigenvector-eigenvalue pairs of the sample covariance matrix.
The PC loadings for S are the vi. The PC scores of the dataset are v′

ixt where xt

is the vector of observations for individual (or time period) t. Collecting these for all
individuals in the dataset gives the vector of PC scores for the ith PC:

zi =

 zi1
...
ziT

 =

 v′
ix1

...
v′
ixT

 =

 x1

...
xT

vi = Xvi

Since X has been demeaned, we have

z̄i =
1

T

T∑
t=1

v′
ixt = v′

i

(
1

T

T∑
t=1

xt

)
= v′

i0 = 0

Thus, we can calculate the variance of the ith PC score as follows:

1

T

T∑
t=1

(zit − z̄i)
2 =

1

T

T∑
i=1

z2it =
1

T
z′
izi =

1

T
(Xvi)

′(Xvi) = T−1d2i

since V ′(X ′X)V = D. In fact, we do not need to calculate Xvi to get the PC scores: we
get them for free from the SVD! To see this, note that XV = UDV ′V = UD. That is,

X
[

u1 · · · vp

]
=
[

u1 · · · up

] di 0
. . .

0 dp


In other words, zi = diui. And we’re done!

8.3.4 Probabilistic PCA

Comparison of PCA and Factor Analysis So far we have examined factor analysis
and PCA. Both procedures yield a lower-dimensional approximation to a covariance ma-
trix Σ, but they behave in very different ways. As we saw above, the goal in PCA is to
find directions of maximal variance. In essence, PCA directs its attention to the diagonal
elements of Σ. Indeed, one can show that the solution to maxB trace {V ar(B′x)} where
B is a p × q matrix is given by placing the first q Principal Components of Σ into the
columns of B. The transformed variables B′x attempt to “preserve” as much variance as
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possible. In many cases, it turns out that PCA also does a reasonable job of summarizing
the off-diagonal elements of Σ. By the Spectral Decomposition, we can write

Σ =

p∑
k=1

λkαkα
′
k

Now, because the λk are decreasing and we have imposed the normalization constraint
α′
kαk = 1, the elements of λkαkα

′
k tend to decrease as k increases. However, they are

not guaranteed to decrease. In particular, if the elements of x have different variances,
PCA will miss much of the covariance structure in its attempt to maximize variance.
In contrast, Factor Analysis is only concerned with the off-diagonal elements of Σ. The
diagonal elements are modeled by a vector of idiosyncratic errors, so the factor loadings
are only concerned with the correlations between elements of x.

A related issue is scale-invariance. Because variances are not scale-invariant, PCA
is not scale invariant. In contrast, suppose we were to define a new random vector Y
obtained by multiplying x by a diagonal matrix C. The transformed factor model would
be

Y = CX

= Cµ+ CΛZ + Cε

= µ̃+ Λ̃Z + ε̃

where ε̃ has variance matrix CΨ. In other words, the re-scaling is simply absorbed into the
model coefficients, as in linear regression, and the factors themselves, Z, remain as before.
Thus, we see that Factor Analysis is scale-invariant. As a consequence we do not need
to normalize variables before carrying out Factor Analysis: the idiosyncratic variances Ψ

“handle it for us.”
Another difference between PCA and Factor Analysis concerns the relationships be-

tween the estimated “factors.” Suppose we fit a k-factor model and then change our minds
and decide to fit a (k + 1)-factor model. We will not get the same values for the first k
factor scores, the estimates of Z, as we did before! This is in stark contrast to PCA. If
I decide to use, say, k PCs in PCR and then change my mind and use k + 1, the first k
“factors,” the PC scores, remain unchanged.

The most fundamental distinction between PCA and Factor Analysis, however, is
that Factor Analysis provides a generative probabilistic model for the data. If you know
the parameters, you can simulate data that has a factor structure. PCA, on the other
hand, is merely an algorithm. There’s no likelihood involved. It is possible, however, to
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construct a probabilistic model that behaves like PCA called Probabilistic PCA (PPCA).
This provides a very helpful way of relating PCA to Factor Analysis and drawing out
their differences.

A Generative Model for PCA To construct a probabilistic model for PCA, Tipping
and Bishop (1999) take the standard factor model considered above and restrict Ψ to be
isotropic. That is, they assume Ψ = σ2I so that the idiosyncratic variances are equal
across components of X. Under this simplification, they derive an explicit formula for the
maximum likelihood estimators of the model parameters, namely:

Λ̂ML = Vq(Lq − σ2I)1/2R

where Vq is a matrix containing the first q eigenvectors of the sample covariance matrix
S, Lq = diag{λi}qi=1constains the corresponding eigenvalues, and R is an arbitrary q × q

orthogonal rotation matrix. Since it’s arbitrary, there is no loss in generality from settting
R = I. The MLE for σ2 is shown to be

σ̂2
ML =

1

p− q

p∑
j=q+1

λj

This is the average variance of the components that are discarded by ordinary PCA! In
the limit as σ2 → 0, the factor scores become the sample PC scores.
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