
Lab #17 - Regression Discontinuity Basics
Econ 224

November 6th, 2018

Introduction

Today we’ll go through some nuts-and-bolts of sharp regression discontinuity. I’ll begin by providing some
details of the RD approach that go beyond the explanation in MM. We’ll then look at how to carry out RD
analysis in R.

“Sharp” Regression Discontinuity

Suppose we are interested in learning the causal effect of a binary treatment D on an outcome Y . In some
special settings, whether or not a person is treated is a solely determined by a special covariate x, called the
running variable

Di =
{

0 if xi < c
1 if xi ≥ c

The preceding expression says that D is a deterministic function of x: everyone who has x ≥ c is treated,
and no one who has x < c is treated. This setting is called a sharp regression discontinuity design and it
provides us with a powerful tool for causal inference. We’ll distinguish this from another kind of regression
discontinuity setup called a fuzzy regression discontinuity design below. I’ll use the shorthand RD to refer to
regression discontinuity in these notes.

When we previously used regression to carry out causal inference, the idea was to compare two groups of
people who had been matched using a set of covariates x. One group was treated and the other was not,
but both groups had exactly the same values of x. Under the assumption that treatment is “as good as
randomly assigned” after conditioning on x, we could learn the causal effect of treatment by comparing the
mean outcomes of the two groups.

Sharp RD is very different since there is no way to carry out matching using the running variable x. This is
because everyone who has x < c is untreated while everyone who has x ≥ c is treated. Instead of matching
people who have the same covariate values, sharp RD extrapolates by comparing people with different covariate
values. The basic idea is very simple: we compare people whose x is close to but slightly below the cutoff
c to people whose x is close to but slightly above the cutoff. Both D and x could affect Y , but since D
abruptly switches from 0 to 1 at c, a causal relationship between D and Y should show up as a “jump” in
the relationship between x and Y at c. For example, in the left panel there is clearly a jump at c = 0.5 and
in the right panel there is not:

0

2

4

0.00 0.25 0.50 0.75 1.00

x

y

1



0

1

2

3

0.00 0.25 0.50 0.75 1.00

x
y

If the threshold c equals 0.5, then the left figure suggests that D has a substantial causal effect on Y : when
D switches from zero to one as x crosses the threshold, the mean of Y jumps from around 2 to around 4. In
contrast, the right panel doesn’t show evidence of a causal effect of D on Y : when D switches from zero to
one, there is no discernible change in the mean of Y . Now we’ll be a little more precise about this intuition
by thinking about exactly how x and Y are related. The key will be to create a link to potential outcomes,
since this is our main tool for thinking about causality. Let’s stick with the same x-axis as in the preceding
figures: imagine that the running variable x is between zero and one, and that the cutoff c equals 0.5. This
means that anyone with x < 0.5 is untreated while anyone with x ≥ 0.5 is treated.

To begin, suppose we had a data for a large random sample of people who all had x = 0.3. If we took the
mean Y for these people we would get an unbiased estimate of E[Yi|xi = 0.3]. The crucial point about
sharp RD is that treatment is completely determined by x. This means that there is no selection bias since
individuals are not free to choose their treatment status. Since everyone with xi = 0.3 is untreated, we have
E[Yi|xi = 0.3] = E[Y0i|xi = 0.3]. Note that this is not the same thing as E[Y0i] since the running variable x
could have a direct effect on Y . In words, a person’s potential outcome when untreated could depend on her
value of x. For example, E[Y0i|xi = 0.3] may not equal E[Y0i|xi = 0.4] even though neither someone with x
equal to 0.3 nor someone with x equal to 0.4 is treated. But this is fine, since we know how to use predictive
modeling tools to estimate a conditional mean function. Here is the key point: since there is no selection into
treatment for people with x < c, we can use predictive regression to estimate E[Yi|xi] and this will give us an
estimate of E[Y0,i|x] for any x below the threshold.

What about when x is above the threshold? Consider for example, a large group of people with x = 0.6 and
suppose as above that c = 0.5. All of these people are treated since their x exceeds the threshold. If we take
the average Y for this group of people, we will obtain an unbiased estimator of E[Yi|xi = 0.6]. But since this
group of people could not possibly select out of treatment, there is once again no selection bias and hence
E[Yi|xi = 0.6] = E[Y1i|xi = 0.6]. This is not the same thing as E[Y1i] since x could affect Y directly. But,
again, this doesn’t present a problem: since there is no selection out of treatment for people with x ≥ c, we
can use predictive regression to estimate E[Yi|xi] and this will give us an estimate of E[Y1i|xi]. To summarize
the reasoning from this and the preceding paragraph,

E[Yi|xi] =
{
E[Y0i|xi], if xi < c
E[Y1i|xi], if xi ≥ c

Again, this relationship holds because individuals are not free to choose their treatment: everyone with x ≥ c
is treated and no one with x < c is treated.

There is a key distinction you need to bear in mind: E[Yi|xi] includes the effect of both D and x while
E[Y0i|xi] and E[Y1i|xi] hold D fixed. The function E[Yi|xi] answers the question “what value should we
predict for Y for someone who has a covariate value of xi?” In contrast, the function E[Y0i|xi] answers the
question “what would be the average outcome for a person with covariate value xi if I randomly assigned her
D = 0?” Similarly, E[Y1i|xi] answers the question “what would be the average outcome for a person with
covariate value xi if I randomly assigned her D = 1?” If we knew E[Y0i|xi] and E[Y1i|xi] for all values of x,
then by taking the difference, we could learn how the ATE varies across people with different values of x:

ATE(x) = E[Y1i|xi = x]− E[Y0i|xi = x] = E[Y1i − Y0i|xi = x]
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using the linearity of expectation. The idea of estimating an ATE as a function of some covariate x is called
“heterogeneous treatment effects.” For example, a treatment may be more effective for younger people than
older people. If we had experimental data, we could estimate ATE(x). But in the RD setting we only have
observational data. Crucially, we never observe E[Y0i|xi] for anyone with xi ≥ c, and we never observe
E[Y1i|xi] for anyone with xi < c.

So how can we proceed? In RD, the key assumption is that E[Y0i|xi] and E[Y1i|xi] are continuous functions
of x. In other words, while we allow for the possibility that people with different values of x will have different
potential outcomes, we assume that people with values of x that are very similar have will have potential
outcomes that are nearly equal. In particular, we assume that lim∆→0E[Y1i|xi = c+ ∆] = E[Y1i|xi = c] and
similarly that lim∆→0E[Y0i|xi = c−∆] = E[Y0i|xi = c]. But since E[Yi|xi] equals E[Y0i|xi] for x above the
threshold and E[Y1i|xi] for x below the threshold, this implies that

lim
∆→0

E[Yi|xi = c+ ∆]− E[Yi|xi = c−∆] = E[Y1i − Y0i|xi = c] = ATE(c)

So by using predictive regression to estimate E[Yi|xi] for xi just below c and comparing it to an estimate of
E[Yi|xi] for xi just above c, RD allows us to learn the average treatment effect for individuals with x = c.

A Simple Regression Discontinuity Example Using R

The following exercises guide you through the process of estimating and interpreting a simple regression
discontinuity example in R, based around Equation 4.3 in MM. In particular, we work with the following
model, in which Yi depends linearly on Xi but with a different slope and intercept on each side of a cutoff c:

Yi =
{
α0 + α1Xi + ε, for Xi < c
β0 + β1Xi + ε, for Xi ≥ c

Exercises

1. In terms of α0, α1, β0, β1, and c, what is the the value of the RD causal effect?

2. Show how to write the two “separate” linear regressions from above as a single “joint” regression:

Yi = γ0 + γ1Di + γ2Xi + γ3DiXi + ε

where Di is a dummy variable that equals one if Xi > c. What is the relationship between the
coefficients (γ0, γ1, γ2, γ3) of the joint regression, and the coefficients (α0, α1) and (β0, β1) of the
“separate” regressions?

3. Combine your answers to parts 1 and 2, to write the RD causal effect in terms of (γ0, γ1, γ2, γ3).

4. To make the regression from part 3 easier to interpret, define X̃i ≡ Xi − c and substitute (X − c+ c) in
place of X. Using this substituting, show that we can re-write the joint regression as

Yi = γ̃0 + γ̃1Di + γ̃2X̃i + γ̃3DiX̃i + εi

where γ̃1 equals the RD causal effect. How do the the other parameters of this “modified” regression
relate to the original coefficients (γ0, γ1, γ2, γ3)?

5. Simulate 500 observations from a model in which Yi = α0+α1Xi+εi to the left of c and Yi = β0+β1Xi+εi
to the right of c. Generate X from a Uniform(0, 1) distribution and and the errors ε from a N(0, σ2)
distribution. Set the value of the cutoff c equal to 0.5. Choose values of the parameters in your
simulation that imply visibly different slopes and intercepts to the left and right of the cutoff c and an
error variance that is small enough that these differences are visible in the data.
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6. Use your simulated data from part 5 to fit the regression model from part 4. Plot the raw data along
with the estimated regression lines to the left and right of the cutoff.

7. What is the estimated RD causal effect from your simulated data? What is the standard error? Does
the true causal effect from your simulation design lie within the the 95% confidence interval?

Solutions

1. If we let f(x) = α0 +α1x and h(x) = β0 +β1x, the RD causal effect is h(c)−f(c) = (β0−α0)+(β1−α1)c.
2. Define Di = 1{Xi > c}, which implies that (1−Di) = 1{Xi ≤ c}. Using this notation, we can write

Yi = (1−Di)× (α0 + α1Xi) +Di × (β0 + β1Xi) + εi

= (α0 + α1Xi) +Di × [(β0 + β1Xi)− (α0 + α1Xi)] + εi

= α0 + (β0 − α0)Di + α1Xi + (β1 − α1)DiXi + εi

Thus, we see that γ0 = α0, γ1 = (β0 − α0), γ2 = α1, and γ3 = (β1 − α1).
3. The RD causal effect is (β0 − α0) + (β1 − α1)c = γ1 + γ3c.
4. Replacing X with (X − c+ c), we obtain

Yi = γ0 + γ1Di + γ2(Xi − c+ c) + γ3Di(Xi − c+ c) + εi

= γ0 + γ1Di + (γ2X̃i + γ2c) + (γ3DiX̃i + γ3cDi) + εi

= (γ0 + cγ2) + (γ1 + cγ3)Di + γ2X̃i + γ3DiX̃i + εi

# Parameters of the "separate" regressions
a0 <- 0.3
a1 <- 0.2
b0 <- 0.8
b1 <- -0.3

# Implied parameters of the "joint" regression
g0 <- a0
g1 <- b0 - a0
g2 <- a1
g3 <- b1 - a1

# Simulation draws
set.seed(1234)
n <- 500
x <- runif(n)
cutoff <- 0.5
D <- 1 * (x > cutoff)
epsilon <- rnorm(n, sd = 0.1)
y <- g0 + g1 * D + g2 * x + g3 * D * x + epsilon

# Fit linear regression model, centering X around the cutoff
xtilde <- x - cutoff
rd <- lm(y ~ D + xtilde + xtilde:D)
coef(rd)
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(Intercept) D xtilde D:xtilde
0.4063775 0.2692492 0.2466036 -0.6603648

# Plot raw data
plot(x, y)
abline(v = cutoff, lty = 2)

# Regression line before cutoff
xbefore <- seq(0, cutoff - 0.01, 0.01)
ybefore <- predict(rd, newdata = data.frame(xtilde = xbefore - cutoff,

D = 1 * (xbefore >= cutoff)))
points(xbefore, ybefore, type = 'l', col = 'blue', lwd = 2)

# Plot regression line after cutoff
xafter <- seq(cutoff, 1, 0.01)
yafter <- predict(rd, newdata = data.frame(xtilde = xafter - cutoff,

D = 1 * (xafter >= cutoff)))
points(xafter, yafter, type = 'l', col = 'red', lwd = 2)
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# Does the true causal effect lie in the 95% confidence interval?
RD_true <- (b0 - a0) + (b1 - a1) * cutoff
RD_true

[1] 0.25

summary(rd)
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Call:
lm(formula = y ~ D + xtilde + xtilde:D)

Residuals:
Min 1Q Median 3Q Max

-0.31021 -0.06761 0.00252 0.06190 0.32662

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.40638 0.01289 31.538 < 2e-16 ***
D 0.26925 0.01740 15.474 < 2e-16 ***
xtilde 0.24660 0.04579 5.386 1.12e-07 ***
D:xtilde -0.66036 0.06152 -10.734 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09925 on 496 degrees of freedom
Multiple R-squared: 0.6171, Adjusted R-squared: 0.6148
F-statistic: 266.4 on 3 and 496 DF, p-value: < 2.2e-16
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