
Lab #9 - Logistic Regression Part I
Econ 224

September 25th, 2018

Introduction

In this lab we’ll study logistic regression. The first part of the lab will involve carrying out some calculations
to better understand how logistic regression works and what it means. The second part of the lab will show
you the basics of how to carry out logistic regresion in R.

Part I - Theoretical

In this part of the lab, we’ll carry out some theoretical derivations to better understand logistic regression.
To make things simpler, we’ll use some slightly different notation and terminology than ISL. First we’ll define
the column vectors X and β as follows:

X =


1
X1
X2
...
Xp

 , β =


β0
β1
β2
...
βp


Notice that the first element of X is not X1: it is simply the number 1. There’s an important reason for this
that you’ll see in a moment. From the reading, we know that logistic regression is a linear model for the log
odds, namely

log
[

P (X)
1− P (X)

]
= β0 + β1X1 + · · ·+ βpXp

where P (X) is shorthand for P(Y = 1|X). Note that when I write log I always mean the natural logarithm.
Also note that when I write exp(z) I mean ez. This comes in handy if z is a complicated expression.

Using the vector notation introduced above, we can express this more compactly as

log
[

P (X)
1− P (X)

]
= X ′β

since

X ′β =
[

1 X1 X2 · · · Xp

]

β0
β1
β2
...
βp

 = β0 + β1X2 + β2X2 + · · ·+ βpXp

I will call X ′β the linear predictor since it is the linear function of X that we use to predict Y . By
exponentiating both sides of the log-odds expression from above and re-arranging, obtain the following:

1

P (X)
1− P (X) = exp(X ′β)

P (X)[1 + exp(X ′β)] = exp(X ′β)

P (X) = exp(X ′β)
1 + exp(X ′β)

P (X) = Λ(X ′β)

where the function Λ is defined as follows
Λ(z) = ez

1 + ez

Exercise #1

(a) Verify that Λ(z) = 1
1 + e−z

.
(b) Using (b), write an alternative expression for P (X).

Solution to Exercise #1

(a) Dividing the numerator and denominator by ez, which cannot result in division by zero since ez is
always positive, we have

Λ(z) = ez

1 + ez
= 1

1/ez + 1 = 1
1 + e−z

(b) P (X) = 1
1 + exp(−X ′β)

Interpreting β in a Logistic Regression

From the expression above, we see that βj is the partial derivative of the log-odds with respect to Xj . But
it’s difficult to think in terms of log-odds. By doing some calculus (see the exercises below), we can work out
the partial derivative of p(X) with respect to Xj , but this will not turn out to equal βj . Because P (X) is
not a linear function of X, the derivative varies with X, which makes things fairly complicated. There are
two main approaches for dealing with this problem. One is to evaluate the derivative at a “typical” value of
X such as the sample mean. Another is to use the “divide by 4 rule.” This rule says that if we increase Xj

by one unit, P (X) will change by no more than sign(βj)× |βj/4|. In the following exercise, you’ll derive this
rule.

Exercise #2

(a) Analyze the function Λ(z): calculate its derivative, and its limits as z → −∞ and +∞. What values
can this function take? Is it increasing? Decreasing? Explain.

(b) Use the chain rule and your answer to (a) to find the partial derivative of Λ(X ′β) with respect to Xj .
(c) What is the maximum value of the derivative of Λ(z)? At what value of z does it occur?
(d) Use your answers to parts (a), (b) and (c) to justify the “divide by 4 rule.”
(e) The “divide by 4 rule” provides an upper bound on the effect of Xj on P (X). When is this upper

bound close to the derivative you calculated in part (c)?

2

Solution to Exercise #2

(a) The function Λ takes values between 0 and 1. When z = 0, Λ(z) = e0/(1 + e0) = 1/2. As z → ∞,
Λ(z)→ 1 and as z → −∞, Λ(z)→ 0. We calculate its derivative using the quotient rule as follows

dΛ(z)
dz

= ez(1 + ez)− ezez

(1 + ez)2 = ez

(1 + ez)2

Since ez is always greater than zero, the derivative is always positive so Λ(z) is strictly increasing.
(b) The key is to treat the linear predictor X ′β as a function of Xj , namely

f(Xj) = X ′β = β0 + β1X1 + · · ·+ βjXj + βj+1Xj+1 + · · ·+ βpXp

Now, by the chain rule we have

∂Λ(X ′β)
∂Xj

= ∂Λ (f(Xj))
∂Xj

= exp(X ′β)
[1 + exp(X ′β)]2

∂f(Xj)
∂Xj

= βj exp(X ′β)
[1 + exp(X ′β)]2

(c) To find the value of z that maximizes the first derivative, we take the second derivative of Λ as follows

d2Λ(z)
dz

= ez(1 + ez)2 − 2ez(1 + ez)ez

(1 + ez)4 = ez(1 + 2ez + e2z)− 2e2z(1 + ez)
(1 + ez)4

= ez + 2e2z + e3z − 2e2z − 2e3z

(1 + ez)4 = ez − e3z

(1 + ez)4

= ez(1− e2z)
(1 + ez)4 = ez(1 + ez)(1− ez)

(1 + ez)4 = ez(1− ez)
(1 + ez)3

Thus, the first order condition is ez(1− ez) = 0. Since ez cannot equal zero for any z, the only way
for this equation to be satisfied is if ez = 1 which occurs precisely when z = 0. Substituting into our
expression from (a), we find that the derivative of Λ(z) at z = 0 is e0/(1 + e0)2 = 1/(1 + 1)2 = 1/4.

(d) From part (a), we know that the derivative of Λ(z) equals ez/(1 + ez)2 which is always positive. From
part (c) we know that this derivative is at most 1/4. Therefore, the partial derivative of Λ(X ′β) with
respect to Xj is at most βj × 1/4 = βj/4.

(e) When X ′β ≈ 0 it follows that exp(X ′β)/[1 + exp(X ′β)]2 ≈ 1/4 so the “divide by four” rule gives a
good approximation to the actual derivative.

The Latent Data Formulation of Logistic Regression

Another way to think about logistic regression is via the following generative model:

y∗i = X ′iβ + εi, yi =
{

1 if y∗i > 0
0 if y∗i ≤ 0 , εi ∼ iid Logistic(0, 1)

where the Logistic(0, 1) distribution has CDF Λ(z) = ez/(1+ez) and pdf λ(z) = ez/(1+ez)2. The expressions
Λ and λ should look familiar, since we worked with them above. We call this a generative model because
it tells us how to generate the observations yi using the regressors Xi. If we want to simulate data from a
logistic regression model, the latent data formulation gives us a convenient way to do so.

The idea behind the latent data formulation is that a continuous unobserved random variable y∗i determines
whether the observed binary random variable yi is zero or one. The term latent is just a synonym for
unobserved. While this may seem odd, in specific examples we can often give y∗i a meaningful interpretation.
For example, suppose that yi = 1 if person i voted for Hilary Clinton in the 2016 presidential election and Xi

contains demographic information, e.g. income, education, race, sex, and age. The latent variable y∗i can be
viewed as a measure of person i’s strength of preference for Hilary Clinton relative to Donald Trump. If y∗i is
large and positive, person i strongly prefers Clinton; if y∗i is large and negative, person i strongly prefers
Trump; if y∗i = 0, person i is indifferent.

3

Exercise #3

(a) Show that λ(z) is symmetric about zero, i.e. λ(z) = λ(−z).
(b) Show that the latent data formulation implies P(yi = 1) = Λ(X ′iβ). Hint: if Z is a continuous RV with

a pdf that is symmetric about zero, then P(−Z < c) = P(Z ≤ c).

Solution to Exercise #3

(a) Expand the denominator, and then multiply by exp(−2z)/ exp(−2z), yielding

λ(x) = exp(z)
[1 + exp(z)]2 = exp(z)

1 + 2 exp(z) + exp(2z) = exp(−z)
exp(−2z) + 2 exp(−z) + 1 = exp(−z)

[1 + exp(−z)]2 = λ(−z)

(b) P(yi = 1) = P(y∗i > 0) = P(X ′iβ + εi > 0) = P(−εi < X ′iβ) = P(−εi ≤ X ′iβ) = Λ(X ′iβ)

Part II - Logistic Regression in R

Now we’ll take a quick look at how to carry out logistic regression in R using a simulated dataset. In
Thursday’s lab you’ll use what you learn in this part to study a real-world example.

Simulating Data from a Logistic Regression

The R function rlogis creates iid draws from the logistic distribution. If we only specify one argument,
rlogis assumes that this is the number of random draws that we wish to make, and sets the values of
its location and scale parameters to 0 and 1, respectively. This is what we want, since these parameters
correspond to the Logistic(0, 1) distribution that appears in the latent data formulation from above. Using
rlogis, we can simulate data from a logistic regression model as follows:

set.seed(1234)
n <- 500
b0 <- 0.5
b1 <- 1
x <- rnorm(n, mean = 1.5, sd = 2)
ystar <- b0 + b1 * x + rlogis(n)
y <- 1 * (ystar > 0)
mydat <- data.frame(x, y)

Running a Logistic Regression in R

We can now run a logistic regression use the simulated dataset mydat to carry out logistic regression. Note
that in a certain sense this is silly: we generated the data so we know the true values of β0 and β1. Why
bother carrying out logistic regression to estimate them? There are two answers to this question. First, this
is only an example: don’t be so picky! Second, it can be extremely valuable to work with simulated data to
check whether our statistical methods are working correctly. If we know for sure that the data came from a
logistic regression model, then our logistic regression estimates should be close to the truth. If they’re not,
then something is wrong with our computer code.

The R function glm can be used to carry out logistic regression. The name of this function is an acronym for
generalized linear model. Generalized linear models (GLMs) are exactly what their name says, a generalization

4

of linear regression. GLMs include logistic regression as a special case. To tell glm that we want to carry
out a logistic regression, we need to specify family = binomial(link = 'logit'). Otherwise the syntax is
practically identical to that of lm. We specify a formula, y ~ x, and indicate a dataframe in which R should
look to find y and x:

lreg <- glm(y ~ x, mydat, family = binomial(link = 'logit'))
summary(lreg)

Call:
glm(formula = y ~ x, family = binomial(link = "logit"), data = mydat)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.61173 0.04538 0.30466 0.63221 1.88450

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3630 0.1344 2.700 0.00693 **
x 0.9638 0.1004 9.596 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 555.65 on 499 degrees of freedom
Residual deviance: 381.74 on 498 degrees of freedom
AIC: 385.74

Number of Fisher Scoring iterations: 6

Notice that the output of summary when applied to a glm object is a little different from what we’ve seen for
lm objects. But let’s focus on what’s the same. We still obtain the estimates of each of the coefficients in our
model, along with standard errors, test statistics, and p-values. We can use this information to carry out
statistical inference exactly as we do with linear regression: R has already done all the hard work for us by
calculating the standard errors.

Exercise #4

Construct approximate 95% confidence intervals for the parameters β0 and β1 based on the logistic regression
output from above. Do your confidence intervals include the true parameter values that we used to simulate
the data?

Solution to Exercise #4

The confidence interval for the regression intercept is 0.36 ± 0.27 which includes the true value: β0 = 0.5.
Similarly, the confidence interval for the regression slope is 0.96 ± 0.2 which includes the true value: β1 = 1.

5

Predicted Probabilities for Logistic Regression

Many of the functions we used with lm also work with glm. For example, to extract the coefficients from a
generalized linear model, we can use the command coef:

coef(lreg)

(Intercept) x
0.3629592 0.9637594

We can also use the function predict to calculated the predicted probability that y = 1 given particular
values of the predictors Xi. There’s just one slight wrinkle here: we need to make sure to specify type =
'response' to indicate to R that we want the predicted probabilities. For example, we can calculate the
predicted probability that yi = 1 given that Xi = 0 as follows:

predict(lreg, newdata = data.frame(x = 0), type = 'response')

1
0.5897566

Similarly, we can calculate the predicted probability that yi = 1 given that Xi equals the sample mean of X
as follows:

predict(lreg, newdata = data.frame(x = mean(x)), type = 'response')

1
0.8596206

If we don’t specify anything for newdata, then predict will give us the predicted probabilities for the observed
values of X:

phat <- predict(lreg, type = 'response')
head(phat)

1 2 3 4 5 6
0.37330981 0.91240407 0.98013788 0.06222354 0.93312689 0.94180674

Exercise #5

(a) Write an R function called Lambda that calculates the value of ez/(1 + ez).
(b) Using your function from part (a) and the results of lreg, calculate the predicted probability that

yi = 1 when: (i) Xi = 0 and (ii) Xi = X̄ without using predict. Check that your results match those
calculated using predict above.

Solution to Exercise #5

6

Lambda <- function(x) {
1 / (1 + exp(-x))

}
bhat_0 <- coef(lreg)[1]
bhat_1 <- coef(lreg)[2]
Lambda(bhat_0)

(Intercept)
0.5897566

Lambda(bhat_0 + bhat_1 * mean(x))

(Intercept)
0.8596206

Calculating Marginal Effects

As we discussed above, βj is not the partial derivative of P (X) with respect to Xj . But since we have a
formula for this partial derivative, we can calculate it for any value of X. In the following exercise, you will
compare the exact calculation to the approximation given by the “divide by 4” rule.

Exercise #6

(a) Use the “divide by 4” rule to calculate the maximum possible effect of X on the predicted probability
that yi = 1 using the results of lreg.

(b) Calculate the effect of X on the predicted probability that yi = 1 at Xi = X̄.
(c) Compare your answers to (a) and (b)

Solution to Exercise #6

Divide by 4 rule
bhat_1 / 4

x
0.2409399

Marginal effect at average x
linear_predictor <- bhat_0 + bhat_1 * mean(x)
bhat_1 * exp(linear_predictor) / (1 + exp(linear_predictor))^2

x
0.1162997

7

Plotting a Logistic Regression

We can plot a logistic regression function using a method very similar to the one we used to plot a linear
regression:

library(ggplot2)
ggplot(mydat, aes(x, y)) +

stat_smooth(method='glm',
method.args = list(family = "binomial"),
formula = y ~ x)

0.00

0.25

0.50

0.75

1.00

−5 0 5

x

y

To add the datapoints, we just add geom_point()

library(ggplot2)
ggplot(mydat, aes(x, y)) +

stat_smooth(method='glm', method.args = list(family = "binomial"),
formula = y ~ x) +

geom_point()

8

0.00

0.25

0.50

0.75

1.00

−5 0 5

x

y

This doesn’t look very nice! That’s because there are only two possible y-values meaning that the observations
will overlap substantially. A helpful way to distinguish them visually is to add a bit of random noise to
the points so they no longer overlap. This is called jittering and ggplot2 will do it for us if we replace
geom_point() with geom_jitter()

library(ggplot2)
ggplot(mydat, aes(x, y)) +

stat_smooth(method='glm', method.args = list(family = "binomial"),
formula = y ~ x) +

geom_jitter()

0.0

0.5

1.0

−5 0 5

x

y

9

That’s a bit too much random noise in the y-dimension. We can control the amount of jittering by specifying
width and height arguments to geom_jitter as follows

library(ggplot2)
ggplot(mydat, aes(x, y)) +

stat_smooth(method='glm', method.args = list(family = "binomial"),
formula = y ~ x) +

geom_jitter(width = 0.5, height = 0.1)

0.0

0.4

0.8

−5 0 5

x

y

From this plot it is easy to tell that there are many more observations with y = 1 than y = 0, something that
was not at all clear from the plot using geom_point().

10

	Introduction
	Part I - Theoretical
	Exercise #1
	Solution to Exercise #1
	Interpreting \beta in a Logistic Regression
	Exercise #2
	Solution to Exercise #2

	The Latent Data Formulation of Logistic Regression
	Exercise #3
	Solution to Exercise #3
	Part II - Logistic Regression in R
	Simulating Data from a Logistic Regression
	Running a Logistic Regression in R

	Exercise #4
	Solution to Exercise #4
	Predicted Probabilities for Logistic Regression

	Exercise #5
	Solution to Exercise #5
	Calculating Marginal Effects

	Exercise #6
	Solution to Exercise #6
	Plotting a Logistic Regression

