
Lab #6 - Predictive Regression II
Econ 224

September 11th, 2018

College Football Rankings and Market Efficiency

This example is based on the paper “College Football Rankings and Market Efficiency” by Ray Fair and John
F. Oster (Journal of Sports Economics, Vol. 8 No. 1, February 2007, pp. 3-18) and the related discussion in
Chapter 10 of Predicting Presidential Elections and Other Things by Ray Fair. The data used in this exercise
are courtesy of Professor Fair. For convenience I have posted a copy on the course website which can be read
into R as follows:

library(tidyverse)
football <- read_csv('http://ditraglia.com/econ224/fair_football.csv')
football

# A tibble: 1,582 x 10
SPREAD H MAT SAG BIL COL MAS DUN REC LV
<int> <int> <int> <int> <int> <int> <int> <int> <dbl> <dbl>

1 34 1 7 31 28 17 38 14 0 24
2 29 -1 34 29 10 41 26 18 33.3 13.5
3 10 -1 -16 -23 -33 5 -12 -25 8.33 -10.5
4 -11 1 2 -8 -8 -7 -2 -4 0 3
5 35 -1 35 35 38 25 25 28 25 5
6 -2 1 29 36 17 25 20 11 33.3 11.5
7 11 1 35 39 28 40 30 34 41.7 10
8 20 1 29 13 12 37 13 26 25 7.5
9 7 1 40 41 -7 45 36 43 66.7 11.5

10 20 -1 61 37 36 80 51 35 75 11
# ... with 1,572 more rows

Each row of the tibble football contains information on a single division I-A college football game. All of
these games were played in 1998, 1999, 2000, or 2001. We have ten weeks of data for each year, beginning in
week 6 of the college football season.

Response Variable: SPREAD

Our goal is to predict SPREAD, the point spread in a given football game. This variable is constructed as
follows. For each game, one of the two teams is arbitrarily designated “Team A” and the other “Team B.” The
point spread is defined as A’s final score minus B’s final score. For example, in the first row of football the
value of SPREAD is 34. This means that team A scored 34 more points than team B. Again, the designations
of A and B are completely arbitrary, so SPREAD can be positive or negative. The value of -2 for SPREAD in
row 6 indicates that the team designated A in that game scored two points fewer than team designated B.

Predictor Variables

Home Field Indicator: H

The predictor H is a categorical variable that equals 1 if team A was the home team, -1 if team B was the
home team, and 0 if neither was the home team as in, e.g. the Rose Bowl.

1



Computer Ranking Systems: (MAT, SAG, BIL, COL, MAS, DUN)

Our next set of predictors is constructed from the following computer ranking systems:

1. Matthews/Scripps Howard (MAT)
2. Jeff Sagarin’s USA Today (SAG)
3. Richard Billingsley (BIL)
4. Atlanta Journal-Constitution Colley Matrix (COL)
5. Kenneth Massey (MAS)
6. Dunkel (DUN)

Fair and Oster (2007) describe these as follows:

Each week during a college football season, there are many rankings of the Division I-A teams.
Some rankings are based on the votes of sports writers, and some are based on computer algorithms
. . . The algorithms are generally fairly complicated, and there is no easy way to summarize their
main differences.

The predictors MAT, SAG, BIL, COL, MAS and DUN are constructed as the difference of rankings for team A
minus team B in the week when the corresponding game is scheduled to occur. Suppose, for example, that in
a week when Stanford is schedule to play UCLA, Richard Billingsley has Stanford #10 and UCLA #22. The
difference of ranks is 12. So if Stanford is team A, BIL will equal 12 and if Stanford is team B, BIL will equal
-12. To be clear, each of these predictors will be positive when the team designated A is more highly ranked.

Win-Loss Record: REC

Continuing their discussion of computer ranking systems, Fair and Oster (2007) write:

Each system more or less starts with a team’s win-loss record and makes adjustments from there.
An interesting system to use as a basis of comparison is one in which only win-loss records are
used . . . denoted REC.

The predictor REC is constructed differently from MAT, SAG, BIL, COL, MAS and DUN. This predictor equals
the difference in percentage of games won for team A minus team B. For example, returning to the Stanford
versus UCLA example, suppose that Stanford has won 80% of its games thus far while UCLA has won 50%.
Then REC will equal 30 if Stanford is team A and -30 if Stanford is team B.

Las Vegas Point Spread: LV

Our final predictor is LV: the Las Vegas line point spread. ESPN defines a point spread as follows:

Also known as the line or spread, it [a point spread] is a number chosen by Las Vegas and overseas
oddsmakers that will encourage an equal number of people to wager on the underdog as on the
favorite. If fans believe that Team A is two touchdowns better than Team B, they may bet them
as 14-point favorites. In a point spread, the negative value (-14) indicates the favorite and the
positive value (+14) indicates the underdog. Betting a -14 favorite means the team must win by
at least 15 points to cover the point spread. The +14 underdog team can lose by 13 points and
still cover the spread.

For example, the value of 24 for LV row 1 of football indicates that fans believe team A is 24 points better
than team B. The fact that a point spread is an equilibrium value chosen to balance the quantity of bets for
and against a given team has some important economic implications that we will explore below.
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Exercises

1. Calculate the home field advantage. How often does the home team win? How many more points, on
average, does the home team score?

2. Run a linear regression without an intercept that uses H to predict SPREAD. Interpret the coefficient
estimates, carry out appropriate inference, and summarize the model fit. Why doesn’t it make sense to
include an intercept in this regression, or indeed in any regression predicting SPREAD?

3. Install the R package GGally and use the function ggpairs to make a pairs plot of the columns MAT,
SAG, BIL, COL, MAS, DUN, and REC. Summarize your results, including the numeric values included
in the plot.

4. Run a regression without an intercept using H, REC and the six computer ranking systems (MAT, SAG,
BIL, COL, MAS, and DUN) to predict SPREAD. Do all of the ranking systems add additional predictive
information beyond that contained in H and the other ranking systems? Carry out appropriate statistical
inference to make this determination. If, based on your results, some predictors appear to be redundant,
re-estimate your regression dropping these. Based on your results from part 4 of this question, is
it possible to make better predictions of college football games than the best of the seven computer
systems?

5. Run a regression without an intercept that predicts SPREAD using LV, H and whichever of the seven
ranking systems you found to contain independent information in part 4 above. Does H or any of the
ranking systems contain additional predictive information beyond that contained in LV? Carry out
appropriate statistical inference to make this determination.

6. What do your findings from part 5 above have to do with the concept of market efficiency? If betting
markets are efficient, what should be the slope in a regression that uses LV alone to predict SPREAD?
Can you statistically reject these values for the regression coefficients? How accurately does LV alone
predict SPREAD?

Solutions

Exercise #1

The home team wins approximately 58.6% of the time which is an 8.6% advantage. On average, the home
team scores about 4.86 more points than the away team.

football %>%
filter(H != 0) %>%
summarize(Hwin = mean(SPREAD * H > 0), Hpoints = mean(SPREAD * H))

# A tibble: 1 x 2
Hwin Hpoints

<dbl> <dbl>
1 0.586 4.86

Exercise #2

It doesn’t make sense to include an intercept since the choice of which team was designated team A was
arbitrary. The regression intercept is the prediction we should make if all of the predictors were zero. In our
example, having all the predictors equal to zero means that neither team is expected to have an advantage
over the other so our model should predict a SPREAD of zero in this case. Excluding an intercept ensures that
this is precisely what it does.

Since we have excluded the intercept, the coefficient on H is precisely the average number of additional points
that the home team scores, relative to the away team. This matches our calculations from Exercise #1 above,
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but using the regression output we can also carry out inference. The regression provides overwhelmingly
strong statistical evidence of a home field advantage.

reg1 <- lm(SPREAD ~ H - 1, football)
summary(reg1)

Call:
lm(formula = SPREAD ~ H - 1, data = football)

Residuals:
Min 1Q Median 3Q Max

-61.143 -6.143 6.143 17.857 68.143

Coefficients:
Estimate Std. Error t value Pr(>|t|)

H 4.857 0.537 9.044 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.66 on 1581 degrees of freedom
Multiple R-squared: 0.04919, Adjusted R-squared: 0.04859
F-statistic: 81.8 on 1 and 1581 DF, p-value: < 2.2e-16

Exercise #3

These predictors are highly positively correlated, which makes sense: all of them are constructed by starting
with REC and making adjustments from there. However, the correlations are far from perfect. For example,
the correlation between REC and DUN is only 0.769.

library(GGally)
football %>%

select(MAT:REC) %>%
ggpairs
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Exercise #4

Neither MAT nor MAS are statistically significant taken individually. Moreover, we cannot reject the null
hypothesis that these two variables are jointly irrelevant for predicting SPREAD:

reg2 <- lm(SPREAD ~ H + MAT + SAG + BIL + COL + MAS + DUN + REC - 1, football)

summary(reg2)

Call:
lm(formula = SPREAD ~ H + MAT + SAG + BIL + COL + MAS + DUN +

REC - 1, data = football)

Residuals:
Min 1Q Median 3Q Max

-53.542 -9.134 2.150 11.736 56.963

Coefficients:
Estimate Std. Error t value Pr(>|t|)

H 4.267073 0.436668 9.772 < 2e-16 ***
MAT -0.099306 0.060804 -1.633 0.102624
SAG 0.248165 0.054817 4.527 6.43e-06 ***
BIL 0.080436 0.034244 2.349 0.018953 *
COL -0.062588 0.035894 -1.744 0.081410 .
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MAS -0.007075 0.044624 -0.159 0.874047
DUN 0.118512 0.033769 3.509 0.000462 ***
REC 0.080412 0.030460 2.640 0.008374 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.53 on 1574 degrees of freedom
Multiple R-squared: 0.3942, Adjusted R-squared: 0.3911
F-statistic: 128 on 8 and 1574 DF, p-value: < 2.2e-16

library(car)
linearHypothesis(reg2, c('MAT = 0', 'MAS = 0'))

Linear hypothesis test

Hypothesis:
MAT = 0
MAS = 0

Model 1: restricted model
Model 2: SPREAD ~ H + MAT + SAG + BIL + COL + MAS + DUN + REC - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1576 430638
2 1574 429879 2 758.07 1.3878 0.2499

This suggests that, after controlling for the other predictors, MAT and MAS do not add any additional predictive
information. Estimating a model without them gives the following results:

reg3 <- lm(SPREAD ~ H + SAG + BIL + COL + DUN + REC - 1, football)
summary(reg3)

Call:
lm(formula = SPREAD ~ H + SAG + BIL + COL + DUN + REC - 1, data = football)

Residuals:
Min 1Q Median 3Q Max

-53.379 -9.159 2.226 11.953 60.007

Coefficients:
Estimate Std. Error t value Pr(>|t|)

H 4.31812 0.43495 9.928 < 2e-16 ***
SAG 0.18662 0.03809 4.899 1.06e-06 ***
BIL 0.07203 0.03387 2.127 0.033587 *
COL -0.08575 0.03279 -2.615 0.009014 **
DUN 0.10866 0.03151 3.449 0.000578 ***
REC 0.07666 0.03017 2.541 0.011141 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.53 on 1576 degrees of freedom
Multiple R-squared: 0.3932, Adjusted R-squared: 0.3908
F-statistic: 170.2 on 6 and 1576 DF, p-value: < 2.2e-16
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This model predicts to an accuracy of approximately 16.53 points. This is slightly better than the best
individual model, which uses only H and SAG.

reg4 <- lm(SPREAD ~ H + SAG - 1, football)
summary(reg4)

Call:
lm(formula = SPREAD ~ H + SAG - 1, data = football)

Residuals:
Min 1Q Median 3Q Max

-54.991 -9.074 1.933 12.306 58.642

Coefficients:
Estimate Std. Error t value Pr(>|t|)

H 4.13374 0.43500 9.503 <2e-16 ***
SAG 0.31952 0.01104 28.936 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.71 on 1580 degrees of freedom
Multiple R-squared: 0.3785, Adjusted R-squared: 0.3777
F-statistic: 481.2 on 2 and 1580 DF, p-value: < 2.2e-16

However, we strongly reject the null hypothesis that BIL, COL, DUN and REC are redundant after including H
and SAG:

linearHypothesis(reg3, c('BIL = 0', 'COL = 0', 'DUN = 0', 'REC = 0'))

Linear hypothesis test

Hypothesis:
BIL = 0
COL = 0
DUN = 0
REC = 0

Model 1: restricted model
Model 2: SPREAD ~ H + SAG + BIL + COL + DUN + REC - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1580 441021
2 1576 430638 4 10384 9.5003 1.372e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Exercise #5

After controlling for LV all of the other predictors are irrelevant:
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reg5 <- lm(SPREAD ~ LV + H + SAG + BIL + COL + DUN + REC - 1, football)
summary(reg5)

Call:
lm(formula = SPREAD ~ LV + H + SAG + BIL + COL + DUN + REC -

1, data = football)

Residuals:
Min 1Q Median 3Q Max

-60.379 -8.469 1.564 11.285 54.636

Coefficients:
Estimate Std. Error t value Pr(>|t|)

LV 1.051782 0.076071 13.826 <2e-16 ***
H 0.729503 0.485981 1.501 0.134
SAG 0.018065 0.037994 0.475 0.635
BIL -0.027867 0.032797 -0.850 0.396
COL -0.005476 0.031518 -0.174 0.862
DUN -0.024891 0.031290 -0.795 0.426
REC 0.018585 0.028804 0.645 0.519
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.61 on 1575 degrees of freedom
Multiple R-squared: 0.4588, Adjusted R-squared: 0.4564
F-statistic: 190.8 on 7 and 1575 DF, p-value: < 2.2e-16

linearHypothesis(reg5, c('H = 0', 'SAG = 0', 'BIL = 0', 'COL = 0', 'DUN = 0', 'REC = 0'))

Linear hypothesis test

Hypothesis:
H = 0
SAG = 0
BIL = 0
COL = 0
DUN = 0
REC = 0

Model 1: restricted model
Model 2: SPREAD ~ LV + H + SAG + BIL + COL + DUN + REC - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1581 385883
2 1575 384026 6 1856.8 1.2692 0.2684

Exercise #6

If betting markets are efficient, then LV should already contain all available information that would be helpful
for predicting SPREAD. In line with the theory of market efficiency, we found all of the other predictors to
be redundant in Exercise #5 above. If betting markets are efficient, LV should also provide an unbiased

8



prediction of SPREAD so that in the regression SPREAD = βLV + ε, β should equal 1. If this were not the
case, we could use historical data and linear regression to work out the true coefficient values and use this
information to win money. But precisely because we have such an incentive to bet when if LV gets out of line
with available information, any such anomalies should disappear quickly. Indeed, the estimate of β is very
close to 1 and we cannot reject the null hypothesis that it is equal to 1. The Las Vegas line predicts to an
accuracy of about 15.6 points.

reg6 <- lm(SPREAD ~ LV - 1, football)
summary(reg6)

Call:
lm(formula = SPREAD ~ LV - 1, data = football)

Residuals:
Min 1Q Median 3Q Max

-61.244 -9.065 1.043 10.910 54.234

Coefficients:
Estimate Std. Error t value Pr(>|t|)

LV 1.01436 0.02785 36.42 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.62 on 1581 degrees of freedom
Multiple R-squared: 0.4562, Adjusted R-squared: 0.4559
F-statistic: 1326 on 1 and 1581 DF, p-value: < 2.2e-16

linearHypothesis(reg6, c('LV = 1'))

Linear hypothesis test

Hypothesis:
LV = 1

Model 1: restricted model
Model 2: SPREAD ~ LV - 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 1582 385948
2 1581 385883 1 64.908 0.2659 0.6061

ggplot(football, aes(x = LV, y = SPREAD)) +
geom_point() +
geom_smooth(method = 'lm', formula = y ~ x - 1)
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