
Lab #1 - Gapminder Dataset
Econ 224

August 28th, 2018

Installing Required Packages

Welcome to the first lab of Econ 224! Today we’ll be giving you a crash course in two R packages that we’ll
be using throughout the semester: dplyr and ggplot2. Before we can get started, you’ll need to install both
of these packages. A quick way to install both of them at once, along with several other packages that may
come in handy later, is install.packages('tidyverse'). Note that you only need to do this once. The
dataset we’ll work with today is also available as an R package called gapminder. Make sure that you have
both tidyverse and gapminder installed before continuing.

The Gapminder Dataset

Our next step is to load both tidyverse, which contains dplyr and ggplot2, and gapminder, which contains
the data we’ll be analyzing today:

library(tidyverse)
library(gapminder)

Exercise #1

Now that you’ve loaded gapminder, use the command ?gapminder to view the R help file for this dataset
and read the documentation you find there and answer the following questions:

• What information does this dataset contain?
• How may rows and columns does it have?
• What are the names of each of the columns, and what information does each contain?
• What is the source of the dataset?

Solution to Exercise # 1

What is a tibble?

Let’s see what happens if we display the gapminder dataset:

gapminder

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.

1

3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.

10 Afghanistan Asia 1997 41.8 22227415 635.
... with 1,694 more rows

If you’re used to working with dataframes in R, this may surprise you. Rather than filling up the screen with
lots of useless information, R shows us a helpful summary of the information contained in gapminder. This
is because gapminder is not a dataframe; it’s a tibble, often abbreviated tbl. For the moment, all you need to
know about tibbles is that they are souped up versions of R dataframes that are designed to work seamlessly
with dplyr. (If you want to learn more, see the chapter entitled “Tibbles” in R for Data Science) But what
exactly is dplyr?

What is dplyr?

The dplyr package provides a number of powerful but easy-to-use tools for data manipulation in R. A good
reference is the chapter entitled “Data Transformation” in R for Data Science. We’ll be making heavy use of
dplyr throughout the semester. Rather than trying to explain everything in advance, let’s just dive right in.

Filter Rows with filter

Let’s run the following command in R and see what happens:

gapminder %>% filter(year == 2007)

A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 2007 43.8 31889923 975.
2 Albania Europe 2007 76.4 3600523 5937.
3 Algeria Africa 2007 72.3 33333216 6223.
4 Angola Africa 2007 42.7 12420476 4797.
5 Argentina Americas 2007 75.3 40301927 12779.
6 Australia Oceania 2007 81.2 20434176 34435.
7 Austria Europe 2007 79.8 8199783 36126.
8 Bahrain Asia 2007 75.6 708573 29796.
9 Bangladesh Asia 2007 64.1 150448339 1391.

10 Belgium Europe 2007 79.4 10392226 33693.
... with 132 more rows

Compare the results of running this command to what we got when we typed gapminder into the console
above. Rather than displaying the whole dataset, now R is only showing us the 142 rows for which the
column year has a value of 2007.

So how does this work? The %>% symbol is called a pipe. Pipes play very nicely with dplyr and make
our code very easy to understand. The tibble gapminder is being piped into the function filter(). The

2

argument year == 2007 tells filter() that it should find all the rows such that the logical condition year
== 2007 is TRUE.

Oh no! Have we accidentally deleted all of the other rows of gapminder? Nope: we haven’t made any changes
to gapminder at all. If you don’t believe me try entering gapminder at the console. All that this command
does is display a subset of gapminder. If we wanted to store the result of running this command, we’d need
to assign it to a variable, for example

gapminder2007 <- gapminder %>% filter(year == 2007)
gapminder2007

A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 2007 43.8 31889923 975.
2 Albania Europe 2007 76.4 3600523 5937.
3 Algeria Africa 2007 72.3 33333216 6223.
4 Angola Africa 2007 42.7 12420476 4797.
5 Argentina Americas 2007 75.3 40301927 12779.
6 Australia Oceania 2007 81.2 20434176 34435.
7 Austria Europe 2007 79.8 8199783 36126.
8 Bahrain Asia 2007 75.6 708573 29796.
9 Bangladesh Asia 2007 64.1 150448339 1391.

10 Belgium Europe 2007 79.4 10392226 33693.
... with 132 more rows

Exercise #2

1. Explain the difference between x = 3 and x == 3 in R.
2. Use filter to choose the subset of gapminder for which year is 2002.
3. If you instead try to choose the subset with year equal to 2005, something will go wrong. Try it and

explain what happens and why.
4. Store the data for Asian countries in a tibble called gapminder_asia. Display this tibble.

Solution to Exercise #2

1. The first assigns the value 3 to the variable x; the second tests whether x is equal to 3 and returns
either TRUE or FALSE.

2. Use the following code:

gapminder %>% filter(year == 2002)

A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 2002 42.1 25268405 727.
2 Albania Europe 2002 75.7 3508512 4604.
3 Algeria Africa 2002 71.0 31287142 5288.
4 Angola Africa 2002 41.0 10866106 2773.
5 Argentina Americas 2002 74.3 38331121 8798.

3

6 Australia Oceania 2002 80.4 19546792 30688.
7 Austria Europe 2002 79.0 8148312 32418.
8 Bahrain Asia 2002 74.8 656397 23404.
9 Bangladesh Asia 2002 62.0 135656790 1136.

10 Belgium Europe 2002 78.3 10311970 30486.
... with 132 more rows

3. If you go back to the help file for gapminder you’ll see that it only contains data for every fifth year.
The year 2005 isn’t in our dataset so dplyr will display an empty tibble:

gapminder %>% filter(year == 2005)

A tibble: 0 x 6
... with 6 variables: country <fct>, continent <fct>, year <int>,
lifeExp <dbl>, pop <int>, gdpPercap <dbl>

4. Use the following code:

gapminder_asia <- gapminder %>% filter(continent == 'Asia')
gapminder_asia

A tibble: 396 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.

10 Afghanistan Asia 1997 41.8 22227415 635.
... with 386 more rows

Filtering two variables

We can use filter to subset on two or more variables. For example, here we display data for the US in 2007:

gapminder %>% filter(year == 2007, country == 'United States')

A tibble: 1 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 United States Americas 2007 78.2 301139947 42952.

4

Exercise #3

1. When I displayed data for the US in 2007, I put quotes around United States but not around year.
Explain why.

2. Which country had the higher life expectancy in 1977: Ireland or Brazil? Which had the higher GDP
per capita?

Solution to Exercise #3

1. This is because year contains numeric data while country contains character data, aka string data.
2. From the results of the following code, we see that Ireland had both a higher life expectancy and GDP

per capita.

gapminder %>% filter(year == 1977, country == 'Ireland')

A tibble: 1 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Ireland Europe 1977 72.0 3271900 11151.

gapminder %>% filter(year == 1977, country == 'Brazil')

A tibble: 1 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Brazil Americas 1977 61.5 114313951 6660.

Sort data with arrange

Suppose we wanted to sort gapminder by gdpPercap. To do this we can use the arrange command along
with the pipe %>% as follows:

gapminder %>% arrange(gdpPercap)

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Congo, Dem. Rep. Africa 2002 45.0 55379852 241.
2 Congo, Dem. Rep. Africa 2007 46.5 64606759 278.
3 Lesotho Africa 1952 42.1 748747 299.
4 Guinea-Bissau Africa 1952 32.5 580653 300.
5 Congo, Dem. Rep. Africa 1997 42.6 47798986 312.
6 Eritrea Africa 1952 35.9 1438760 329.
7 Myanmar Asia 1952 36.3 20092996 331
8 Lesotho Africa 1957 45.0 813338 336.
9 Burundi Africa 1952 39.0 2445618 339.

10 Eritrea Africa 1957 38.0 1542611 344.
... with 1,694 more rows

5

The logic is very similar to what we saw above for filter. Here, we pipe the tibble gapminder into the
function arrange(). The argument gdpPercap tells arrange() that we want to sort by GDP per capita.
Note that by default arrange() sorts in ascending order. If we want to sort in descending order, we use the
function desc() as follows:

gapminder %>% arrange(desc(gdpPercap))

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Kuwait Asia 1957 58.0 212846 113523.
2 Kuwait Asia 1972 67.7 841934 109348.
3 Kuwait Asia 1952 55.6 160000 108382.
4 Kuwait Asia 1962 60.5 358266 95458.
5 Kuwait Asia 1967 64.6 575003 80895.
6 Kuwait Asia 1977 69.3 1140357 59265.
7 Norway Europe 2007 80.2 4627926 49357.
8 Kuwait Asia 2007 77.6 2505559 47307.
9 Singapore Asia 2007 80.0 4553009 47143.

10 Norway Europe 2002 79.0 4535591 44684.
... with 1,694 more rows

Exercise #4

1. What is the lowest life expectancy in the gapminder dataset? Which country and year does it correspond
to?

2. What is the highest life expectancy in the gapminder dataset? Which country and year does it
correspond to?

Solution to Exercise #4

1. The lowest life expectancy was Rwanda in 1992: 23.6 years at birth.

gapminder %>% arrange(lifeExp)

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Rwanda Africa 1992 23.6 7290203 737.
2 Afghanistan Asia 1952 28.8 8425333 779.
3 Gambia Africa 1952 30 284320 485.
4 Angola Africa 1952 30.0 4232095 3521.
5 Sierra Leone Africa 1952 30.3 2143249 880.
6 Afghanistan Asia 1957 30.3 9240934 821.
7 Cambodia Asia 1977 31.2 6978607 525.
8 Mozambique Africa 1952 31.3 6446316 469.
9 Sierra Leone Africa 1957 31.6 2295678 1004.

10 Burkina Faso Africa 1952 32.0 4469979 543.
... with 1,694 more rows

6

2. The highest life expectancy was in 2007 in Japan: 82.6 years at birth.

gapminder %>% arrange(desc(lifeExp))

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Japan Asia 2007 82.6 127467972 31656.
2 Hong Kong, China Asia 2007 82.2 6980412 39725.
3 Japan Asia 2002 82 127065841 28605.
4 Iceland Europe 2007 81.8 301931 36181.
5 Switzerland Europe 2007 81.7 7554661 37506.
6 Hong Kong, China Asia 2002 81.5 6762476 30209.
7 Australia Oceania 2007 81.2 20434176 34435.
8 Spain Europe 2007 80.9 40448191 28821.
9 Sweden Europe 2007 80.9 9031088 33860.

10 Israel Asia 2007 80.7 6426679 25523.
... with 1,694 more rows

Understanding the pipe: %>%

Let’s revisit the pipe, %>%, that we’ve used in the code examples above. I told you that the command
gapminder %>% filter(year == 2007) “pipes” the tibble gapminder into the function filter(). But
what exactly does this mean? Take a look at the R help file for the dplyr function filter. We see that
filter() takes something called .data as its first argument. Moving on to the “Arguments” section of the
help file, we see that .data is “A tbl” i.e. a tibble. To better understand what this means, let’s try using
filter without the pipe:

filter(gapminder, year == 2007, country == 'United States')

A tibble: 1 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 United States Americas 2007 78.2 301139947 42952.

Notice that this gives us exactly the same result as

gapminder %>% filter(year == 2007, country == 'United States')

A tibble: 1 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 United States Americas 2007 78.2 301139947 42952.

In other words The pipe is gives us an alternative way of supplying the first argument to a
function. Let’s try this with a more familiar R function: mean. The first argument of mean is a vector x. So
let’s try using the pipe to compute the mean of some data:

7

x <- c(1, 5, 2, 7, 2)
x %>% mean

[1] 3.4

The pipe supplies a function with its first argument. If we want to specify additional arguments, we need to
do so within the function call itself. For example, here’s how we could use the pipe to compute the mean
after dropping missing observations:

y <- c(1, 5, NA, 7, 2)
y %>% mean(na.rm = TRUE)

[1] 3.75

One important note about the pipe: it’s not a base R command. Instead it’s a command provided by the
package Magrittr. (If you’re familiar with the Belgian painter Magritte, you may realize that the name of
this package is quite witty!) This package is installed automatically along with dplyr. So if we load the
tidyverse package, which includes dplyr, the pipe is automatically available.

Exercise #5

1. Write R code that uses the pipe to calculate the sample variance of z <- c(4, 1, 5, NA, 3) excluding
the missing observation from the calculation.

2. Re-write the code from your solution to Exercise #4 without using the pipe.

Solution to Exercise #5

1. Use the following code:

z <- c(4, 1, 5, NA, 3)
z %>% var(na.rm = TRUE)

[1] 2.916667

2. Use the following code:

arrange(gapminder,lifeExp)

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Rwanda Africa 1992 23.6 7290203 737.
2 Afghanistan Asia 1952 28.8 8425333 779.
3 Gambia Africa 1952 30 284320 485.
4 Angola Africa 1952 30.0 4232095 3521.
5 Sierra Leone Africa 1952 30.3 2143249 880.
6 Afghanistan Asia 1957 30.3 9240934 821.

8

7 Cambodia Asia 1977 31.2 6978607 525.
8 Mozambique Africa 1952 31.3 6446316 469.
9 Sierra Leone Africa 1957 31.6 2295678 1004.

10 Burkina Faso Africa 1952 32.0 4469979 543.
... with 1,694 more rows

arrange(gapminder, desc(lifeExp))

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Japan Asia 2007 82.6 127467972 31656.
2 Hong Kong, China Asia 2007 82.2 6980412 39725.
3 Japan Asia 2002 82 127065841 28605.
4 Iceland Europe 2007 81.8 301931 36181.
5 Switzerland Europe 2007 81.7 7554661 37506.
6 Hong Kong, China Asia 2002 81.5 6762476 30209.
7 Australia Oceania 2007 81.2 20434176 34435.
8 Spain Europe 2007 80.9 40448191 28821.
9 Sweden Europe 2007 80.9 9031088 33860.

10 Israel Asia 2007 80.7 6426679 25523.
... with 1,694 more rows

Chaining commands

In the examples we’ve looked at so far, the pipe doesn’t seem all that useful: it’s just an alternative way
of specifying the first argument to a function. The true power and convenience of the pipe only becomes
apparent we need to chain a series of commands together. For example, suppose we wanted to display the
1952 data from gapminder sorted by gdpPercap in descending order. Using the pipe, this is easy:

gapminder %>%
filter(year == 1952) %>%
arrange(desc(gdpPercap))

A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Kuwait Asia 1952 55.6 160000 108382.
2 Switzerland Europe 1952 69.6 4815000 14734.
3 United States Americas 1952 68.4 157553000 13990.
4 Canada Americas 1952 68.8 14785584 11367.
5 New Zealand Oceania 1952 69.4 1994794 10557.
6 Norway Europe 1952 72.7 3327728 10095.
7 Australia Oceania 1952 69.1 8691212 10040.
8 United Kingdom Europe 1952 69.2 50430000 9980.
9 Bahrain Asia 1952 50.9 120447 9867.

10 Denmark Europe 1952 70.8 4334000 9692.
... with 132 more rows

Notice how I split the commands across multiple lines. This is good practice: it makes your code much
easier to read. So what’s happening when we chain commands in this way? The first step in the chain

9

gapminder %>% filter(year == 1952) returns a tibble: the subset of gapminder for which year is 1952.
The next step %>% arrange(gdpPercap) pipes this new tibble into the function arrange(), giving us the
desired result. I hope you agree with me that this is pretty intuitive: even if we didn’t know anything about
dplyr we could almost figure out what this code is supposed to do. In stark contrast, let’s look at the code
we’d have to use if we wanted to accomplish the same task without using the pipe:

arrange(filter(gapminder, year == 1952), desc(gdpPercap))

A tibble: 142 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Kuwait Asia 1952 55.6 160000 108382.
2 Switzerland Europe 1952 69.6 4815000 14734.
3 United States Americas 1952 68.4 157553000 13990.
4 Canada Americas 1952 68.8 14785584 11367.
5 New Zealand Oceania 1952 69.4 1994794 10557.
6 Norway Europe 1952 72.7 3327728 10095.
7 Australia Oceania 1952 69.1 8691212 10040.
8 United Kingdom Europe 1952 69.2 50430000 9980.
9 Bahrain Asia 1952 50.9 120447 9867.

10 Denmark Europe 1952 70.8 4334000 9692.
... with 132 more rows

There are may reasons why this code is harder to read, but the most important one is that the commands
arrange and filter have to appear in the code in the opposite of the order in which they are actually being
carried out. This is because parentheses are evaluated from inside to outside. This is what’s great about the
pipe: it lets us write our code in a way that accords with the actual order of the steps we want to carry out.

Exercise #6

1. What was the most populous European country in 1992? Write appropriate dplyr code using the pipe
to display the information you need to answer this question.

2. Re-write your code from part 1. without using the pipe.

Solution to Exercise #6

1. The most populous European country in 1992 was Germany.

gapminder %>%
filter(year == 1992, continent == 'Europe') %>%
arrange(desc(pop))

A tibble: 30 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Germany Europe 1992 76.1 80597764 26505.
2 Turkey Europe 1992 66.1 58179144 5678.
3 United Kingdom Europe 1992 76.4 57866349 22705.
4 France Europe 1992 77.5 57374179 24704.

10

5 Italy Europe 1992 77.4 56840847 22014.
6 Spain Europe 1992 77.6 39549438 18603.
7 Poland Europe 1992 71.0 38370697 7739.
8 Romania Europe 1992 69.4 22797027 6598.
9 Netherlands Europe 1992 77.4 15174244 26791.

10 Hungary Europe 1992 69.2 10348684 10536.
... with 20 more rows

2. Use the following code:

arrange(filter(gapminder, year == 1992, continent == 'Europe'), desc(pop))

A tibble: 30 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>

1 Germany Europe 1992 76.1 80597764 26505.
2 Turkey Europe 1992 66.1 58179144 5678.
3 United Kingdom Europe 1992 76.4 57866349 22705.
4 France Europe 1992 77.5 57374179 24704.
5 Italy Europe 1992 77.4 56840847 22014.
6 Spain Europe 1992 77.6 39549438 18603.
7 Poland Europe 1992 71.0 38370697 7739.
8 Romania Europe 1992 69.4 22797027 6598.
9 Netherlands Europe 1992 77.4 15174244 26791.

10 Hungary Europe 1992 69.2 10348684 10536.
... with 20 more rows

Change an existing variable or create a new one with mutate

It’s a little hard to read the column pop in gapminder since there are so many digits. Suppose that, instead
of raw population, we wanted to display population in millions. This requires us to pop by 1000000, which
we can do using the function mutate() from dplyr as follows:

gapminder %>%
mutate(pop = pop / 1000000)

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <dbl> <dbl>

1 Afghanistan Asia 1952 28.8 8.43 779.
2 Afghanistan Asia 1957 30.3 9.24 821.
3 Afghanistan Asia 1962 32.0 10.3 853.
4 Afghanistan Asia 1967 34.0 11.5 836.
5 Afghanistan Asia 1972 36.1 13.1 740.
6 Afghanistan Asia 1977 38.4 14.9 786.
7 Afghanistan Asia 1982 39.9 12.9 978.
8 Afghanistan Asia 1987 40.8 13.9 852.
9 Afghanistan Asia 1992 41.7 16.3 649.

10 Afghanistan Asia 1997 41.8 22.2 635.
... with 1,694 more rows

11

Note the syntax here: within mutate() we have an assignment statement, namely pop = pop / 1000000.
This tells R to calculate pop / 1000000 and assign the result to pop, in place of the original variable.

We can also use mutate() to create a new variable. The gapminder dataset doesn’t contain overall GDP,
only GDP per capita. To calculate GDP, we need to multiply gdpPercap by pop. But wait! Didn’t we just
change pop so it’s expressed in millions? No: we never stored the results of our previous command, we simply
displayed them. Just as I discussed above, unless you overwrite it, the original gapminder dataset will be
unchanged. With this in mind, we can create the gdp variable as follows:

gapminder %>% mutate(gdp = pop * gdpPercap)

A tibble: 1,704 x 7
country continent year lifeExp pop gdpPercap gdp
<fct> <fct> <int> <dbl> <int> <dbl> <dbl>

1 Afghanistan Asia 1952 28.8 8425333 779. 6567086330.
2 Afghanistan Asia 1957 30.3 9240934 821. 7585448670.
3 Afghanistan Asia 1962 32.0 10267083 853. 8758855797.
4 Afghanistan Asia 1967 34.0 11537966 836. 9648014150.
5 Afghanistan Asia 1972 36.1 13079460 740. 9678553274.
6 Afghanistan Asia 1977 38.4 14880372 786. 11697659231.
7 Afghanistan Asia 1982 39.9 12881816 978. 12598563401.
8 Afghanistan Asia 1987 40.8 13867957 852. 11820990309.
9 Afghanistan Asia 1992 41.7 16317921 649. 10595901589.

10 Afghanistan Asia 1997 41.8 22227415 635. 14121995875.
... with 1,694 more rows

Exercise #7

1. Explain why we used = rather than == in the mutate() examples above.

2. Which country in the Americas had the shortest life expectancy in months in the year 1962? Write
appropriate dplyr code using the pipe to display the information you need to answer this question.

Solution to Exercise #7

1. We used = because this is the assigment operator. In contrast == tests for equality, returning TRUE or
FALSE.

2. Bolivia had the shortest life expectancy: 521 months.

gapminder %>%
mutate(lifeExpMonths = 12 * lifeExp) %>%
filter(year == 1962, continent == 'Americas') %>%
arrange(lifeExpMonths)

A tibble: 25 x 7
country continent year lifeExp pop gdpPercap lifeExpMonths
<fct> <fct> <int> <dbl> <int> <dbl> <dbl>

1 Bolivia Americas 1962 43.4 3.59e6 2181. 521.
2 Haiti Americas 1962 43.6 3.88e6 1797. 523.
3 Guatemala Americas 1962 47.0 4.21e6 2750. 563.

12

4 Honduras Americas 1962 48.0 2.09e6 2291. 576.
5 Nicaragua Americas 1962 48.6 1.59e6 3634. 584.
6 Peru Americas 1962 49.1 1.05e7 4957. 589.
7 El Salvador Americas 1962 52.3 2.75e6 3777. 628.
8 Dominican Repu~ Americas 1962 53.5 3.45e6 1662. 642.
9 Ecuador Americas 1962 54.6 4.68e6 4086. 656.

10 Brazil Americas 1962 55.7 7.60e7 3337. 668.
... with 15 more rows

A simple scatterplot using ggplot2

Now that we know the basics of dplyr, we’ll turn our attention to graphics. R has many powerful build-in
graphics functions that may be familiar to you from Econ 103. In this class, however, we’ll use a very powerful
package for statistical visualization called ggplot2. There’s nothing more for you to instead or load, since
ggplot2 is included in the tidyverse package, which you’ve already installed and loaded. For more details
on ggplot2 see the chapter entitled “Data Visualisation” in R for Data Science.
We’ll start off by constructing a subset of the gapminder dataset that contains information from the year
2007 that we’ll use for our plots below.

gapminder_2007 <- gapminder %>% filter(year == 2007)

It takes some time to grow accustomed to ggplot2 syntax, so rather than giving you a lot of detail, we’re
going to look at a series of increasingly more complicated examples. Our first example will be a simple
scatterplot using gapminder_2007. Each point will correspond to a single country in 2007. Its x-coordinate
will be GDP per capita and its y-coordinate will be life expectancy. Here’s the code:

ggplot(gapminder_2007) + geom_point(mapping = aes(x = gdpPercap, y = lifeExp))

40

50

60

70

80

0 10000 20000 30000 40000 50000

gdpPercap

lif
eE

xp

We see that GDP per capita is a very strong predictor of life expectancy, although the relationship is
non-linear.

13

Exercise #8

1. Using my code example as a template, make a scatterplot with pop on the x-axis and lifeExp on
the y-axis using gapminder_2007. Does there appear to be a relationship between population and life
expectancy?

2. Repeat 1. with gdpPercap on the y-axis.

Solution to Exercise #8

1. There is no clear relationship between population and life expectancy based on the 2007 data:

ggplot(gapminder_2007) + geom_point(mapping = aes(x = pop, y = lifeExp))

40

50

60

70

80

0e+00 5e+08 1e+09

pop

lif
eE

xp

2. There is no clear relationship between population and GDP per capita based on the 2007 data:

ggplot(gapminder_2007) + geom_point(mapping = aes(x = pop, y = gdpPercap))

14

0

10000

20000

30000

40000

50000

0e+00 5e+08 1e+09

pop

gd
pP

er
ca

p

Plotting on the log scale

It’s fairly common to transform data onto a log scale before carrying out further analysis or plotting. If you’ve
taken Econ 104, you may already be familiar with log transformations. If not, don’t worry about it: we’ll
discuss them later in the course. For now, we’ll content ourselves with learning how to transform the axes in
a ggplot to the log base 10 scale. To transform the x-axis, it’s as easy as adding a + scale_x_log10() to
the end of our command from above:

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) +
scale_x_log10()

15

40

50

60

70

80

1000 10000

gdpPercap

lif
eE

xp

Notice how I split the code across multiple lines and ended each of the intermediate lines with the +. This
makes things much easier to read.

Exercise #9

1. Using my code example as a template, make a scatterplot with the log base 10 of pop on the x-axis and
lifeExp on the y-axis using the gapminder_2007 dataset.

2. Suppose that rather than putting the x-axis on the log scale, we wanted to put the y-axis on the log
scale. Figure out how to do this, either by clever guesswork or a google search, and then redo my
example with gdpPercap and lifeExp with gdpPercap in levels and lifeExp in logs.

3. Repeat 2. but with both axes on the log scale.

Solution to Exercise #9

1. Use the following code:

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = pop, y = lifeExp)) +
scale_x_log10()

16

40

50

60

70

80

1e+07 1e+09

pop

lif
eE

xp

2. Use the following code:

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) +
scale_y_log10()

0 10000 20000 30000 40000 50000

gdpPercap

lif
eE

xp

3. Use the following code:

17

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) +
scale_x_log10() +
scale_y_log10()

1000 10000

gdpPercap

lif
eE

xp

The color and size aesthetics

It’s time to start unraveling the somewhat mysterious-looking syntax of ggplot. To make a graph using
ggplot we use the following template:

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

replacing <DATA>, <GEOM_FUNCTION>, and <MAPPINGS> to specify what we want to plot and how it should ap-
pear. The first part is easy: we replace <DATA> with the dataset we want to plot, for example gapminder_2007
in the example from above. The second part is also fairly straightforward: we replace <GEOM_FUNCTION> with
the name of a function that specifies the kind of plot we want to make. So far we’ve only seen one example:
geom_point() which tells ggplot that we want to make a scatterplot. We’ll see more examples in a future
lab. For now, I want to focus on the somewhat more complicated-looking mapping = aes(<MAPPINGS>).

The abbreviation aes is short for aesthetic and the code mapping = aes(<MAPPINGS>) defines what is called
an aesthetic mapping. This is just a fancy way of saying that it tells R how we want our plot to look. The
information we need to put in place of <MAPPINGS> depends on what kind of plot we’re making. Thus
far we’ve only examined geom_point() which produces a scatterplot. For this kind of plot, the minimum
information we need to provide is the location of each point. For example, in our example above we wrote
aes(x = gdpPercap, y = lifeExp) to tell R that gdpPercap gives the x-axis location of each point, and
lifeExp gives the y-axis location.

When making a scatterplot with geom_point we are not limited to specifying the x and y coordinates of each
point; we can also specify the size and color of each point. This gives us a useful way of displaying more than

18

two variables in a two-dimensional plot. We do this using aes. For example, let’s use the color of each point
to indicate continent

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp, color = continent)) +
scale_x_log10()

40

50

60

70

80

1000 10000

gdpPercap

lif
eE

xp

continent

Africa

Americas

Asia

Europe

Oceania

Notice how ggplot automatically generates a helpful legend. This plot makes it easy to see at a glance that
the European countries in 2007 ten to have high GDP per capita and high life expectancy, while the African
countries have the opposite. We can also use the size of each point to encode information, e.g. population:

ggplot(data = gapminder_2007) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp, color = continent, size = pop)) +
scale_x_log10()

19

40

50

60

70

80

1000 10000

gdpPercap

lif
eE

xp

continent

Africa

Americas

Asia

Europe

Oceania

pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

Exercise #10

1. Would it make sense to set size = continent? What about setting col = pop? Explain briefly.
2. The following code is slightly different from what I’ve written above. What is different. Try running it.

What happens? Explain briefly.

ggplot(gapminder_2007) +
geom_point(aes(x = gdpPercap, y = lifeExp)) +
scale_x_log10()

3. Create a tibble called gapminder_1952 that contains data from gapminder from 1952.
4. Use gapminder_1952 from the previous part to create a scatter plot with population on the x-axis, life

expectancy on the y-axis, and continent represented by the color of the points. Plot population on the
log scale (base 10).

5. Suppose that instead of indicating continent using color, you wanted all the points in the plot from 3.
to be blue. Consult the chapter “Visualising Data” from R for Data Science to find out how to do this.

Solution to Exercise #10

1. Neither of these makes sense since continent is categorical and pop is continuous: color is useful for
categorical variables and size for continuous ones.

2. It still works! You don’t have to explicitly write data or mapping when using ggplot. I only included
these above for clarity. In the future I’ll leave them out to make my code more succinct.

ggplot(gapminder_2007) +
geom_point(aes(x = gdpPercap, y = lifeExp)) +
scale_x_log10()

20

40

50

60

70

80

1000 10000

gdpPercap

lif
eE

xp

3. Use the following code:

gapminder_1952 <- gapminder %>%
filter(year == 1952)

4. Use the following code:

ggplot(gapminder_1952) +
geom_point(aes(x = pop, y = lifeExp, color = continent)) +
scale_x_log10()

30

40

50

60

70

1e+06 1e+08

pop

lif
eE

xp

continent

Africa

Americas

Asia

Europe

Oceania

21

5. When you want color to be a variable from your dataset, put color = <VARIABLE> inside of aes; when
you simply want to set the colors of all the points, put color = '<COLOR>' outside of aes, for example

ggplot(gapminder_1952) +
geom_point(aes(x = pop, y = lifeExp), color = 'blue') +
scale_x_log10()

30

40

50

60

70

1e+06 1e+08

pop

lif
eE

xp

22

	Installing Required Packages
	The Gapminder Dataset
	Exercise #1
	Solution to Exercise # 1
	What is a tibble?
	What is dplyr?
	Filter Rows with filter
	Exercise #2
	Solution to Exercise #2
	Filtering two variables
	Exercise #3
	Solution to Exercise #3
	Sort data with arrange
	Exercise #4
	Solution to Exercise #4
	Understanding the pipe: %>%
	Exercise #5
	Solution to Exercise #5
	Chaining commands
	Exercise #6
	Solution to Exercise #6
	Change an existing variable or create a new one with mutate
	Exercise #7
	Solution to Exercise #7
	A simple scatterplot using ggplot2
	Exercise #8
	Solution to Exercise #8
	Plotting on the log scale
	Exercise #9
	Solution to Exercise #9
	The color and size aesthetics
	Exercise #10
	Solution to Exercise #10

