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Lecture #1 – Introduction

Overview – Population vs. Sample, Probability vs. Statistics

Polling – Sampling vs. Non-sampling Error, Random Sampling

Causality – Observational vs. Experimental Data, RCTs
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Racial Discrimination in the Labor Market
Source: Bureau of Labor Statistics

Oct. 2018 Nov. 2018 Dec. 2018

White: 3.0 3.0 3.1

Black/African American: 6.2 5.8 6.2

Table: Unemployment rate in percentage points for men aged 20 and

over in the last quarter of 2018.

The unemployment rate for African Americans has historically been

much higher than for whites. What can this information by itself

tell us about racial discrimination in the labor market?
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This Course: Use Sample to Learn About Population

Population

Complete set of all items that interest investigator

Sample

Observed subset, or portion, of a population

Sample Size

# of items in the sample, typically denoted n

Examples...
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In Particular: Use Statistic to Learn about Parameter

Parameter

Numerical measure that describes specific characteristic of a

population.

Statistic

Numerical measure that describes specific characteristic of sample.

Examples...

F.J. DiTraglia, Econ 103 Lecture 1 – Slide 4



Essential Distinction You Must Remember!

Population

Numerical
Summary

Parameter

Sample

Numerical
Summary

Statistic
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This Course

1. Descriptive Statistics: summarize data

I Summary Statistics

I Graphics

2. Probability: Population → Sample

I deductive: “safe” argument

I All ravens are black. Mordecai is a raven, so Mordecai is black.

3. Inferential Statistics: Sample → Population

I inductive: “risky” argument

I I’ve only every seen black ravens, so all ravens must be black.
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Sampling and Nonsampling Error

In statistics we use samples to learn about populations, but samples

almost never be exactly like the population they are drawn from.

1. Sampling Error

I Random differences between sample and population

I Cancel out on average

I Decreases as sample size grows

2. Nonsampling Error

I Systematic differences between sample and population

I Does not cancel out on average

I Does not decrease as sample size grows
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Literary Digest – 1936 Presidential Election Poll

FDR versus Kansas Gov. Alf Landon

Huge Sample

Sent out over 10 million ballots; 2.4 million replies! (Compared to

less than 45 million votes cast in actual election)

Prediction

Landslide for Landon: Landonslide, if you will.
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Spectacularly Mistaken!

FDR versus Kansas Gov. Alf Landon

Roosevelt Landon

Literary Digest Prediction: 41% 57%

Actual Result: 61% 37%
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What Went Wrong? Non-sampling Error (aka Bias)

Source: Squire (1988)

Biased Sample

Some units more likely to be sampled than others.

I Ballots mailed those on auto reg. list and in phone books.

Non-response Bias

Even if sample is unbiased, can’t force people to reply.

I Among those who recieved a ballot, Landon supporters were

more likely to reply.

In this case, neither effect alone was enough to throw off the result

but together they did.
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Randomize to Get an Unbiased Sample

Simple Random Sample

Each member of population is chosen strictly by chance, so that:

(1) selection of one individual doesn’t influence selection of any

other, (2) each individual is just as likely to be chosen, (3) every

possible sample of size n has the same chance of selection.

What about non-response bias? – we’ll come back to this. . .
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“Negative Views of Trump’s Transition” (Jan, 2017)
Source: Pew Research Center

Ahead of Donald Trump’s scheduled press conference in

New York City on Wednesday, the public continues to

give the president-elect low marks for how he is handling

the transition process. . . The latest national survey by

Pew Research Center, conducted Jan. 4-9 among 1,502

adults, finds that 39% approve of the job President-elect

Trump has done so far explaining his policies and plans

for the future to the American people, while a larger

share (55%) say they disapprove.
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Quantifying Sampling Error
95% Confidence Interval for Poll Based on Random Sample

Margin of Error a.k.a. ME

We report P ±ME where ME ≈ 2
√
P(1− P)/n

Trump Transition Approval Rate

P = 0.39 and n = 1502 so ME ≈ 0.025. We’d report 39% plus or

minus 2.5% if the poll were based on a simple random sample. . .

But Pew Reports an ME of 2.9% which doesn’t agree with our

calculation. What’s going on here?!
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Non-response bias is a huge problem. . .
Source: Pew Research Center
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Methodology – “Negative Views of Trump’s Transition”
Source: Pew Research Center

The combined landline and cell phone sample are weighted using an

iterative technique that matches gender, age, education, race,

Hispanic origin and nativity and region to parameters from the 2015

Census Bureaus American Community Survey and population

density to parameters from the Decennial Census. The sample also

is weighted to match current patterns of telephone status (landline

only, cell phone only, or both landline and cell phone), based on

extrapolations from the 2016 National Health Interview Survey. The

weighting procedure also accounts for the fact that respondents

with both landline and cell phones have a greater probability of

being included in the combined sample and adjusts for household

size among respondents with a landline phone. The margins of error

reported and statistical tests of significance are adjusted to account

for the surveys design effect, a measure of how much efficiency is

lost from the weighting procedures.
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Simple Example of Weighting a Survey

Post-stratification

I Women make up 49.6% of the population but suppose they are less likely

to respond to your survey than men.

I If women have different opinions of Trump, this will skew the survey.

I Calculate Trump approval rate separately for men PM vs. women PW .

I Report 0.496× PW + 0.504× PM , not the raw approval rate P.

Caveats

I Post-stratification isn’t a magic bullet: you have to figure out what

factors could skew your poll to adjust for them.

I Calculating the ME is more complicated. Since this is an intro class we’ll

focus on simple random samples.
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Survey to find effect of Polio Vaccine

Ask random sample of parents if they vaccinated their kids or not

and if the kids later developed polio. Compare those who were

vaccinated to those who weren’t.

Would this procedure:

(a) Overstate effectiveness of vaccine

(b) Correctly identify effectiveness of vaccine

(c) Understate effectiveness of vaccine
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Confounding

Parents who vaccinate their kids may differ systematically from

those who don’t in other ways that impact child’s chance of

contracting polio!

Wealth is related to vaccination and whether child grows up in

a hygenic environment.

Confounder

Factor that influences both outcomes and whether subjects are

treated or not. Masks true effect of treatment.
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Experiment Using Random Assignment: Randomized

Experiment

Treatment Group Gets Vaccine, Control Group Doesn’t

Essential Point!

Random assignment neutralizes effect of all confounding factors:

since groups are initially equal, on average, any difference that

emerges must be the treatment effect.

Placebo Effect and Randomized Double Blind Experiment
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Pool of
Experimental
Subjects

Randomly divided
into two groups

Subjects Blind

Experimenters Blind

Control

Evaluation

Treatment

Evaluation
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Gold Standard: Randomized, Double-blind Experiment

Randomized blind experiments ensure that on average

the two groups are initially equal, and continue to be

treated equally. Thus a fair comparison is possible.

Randomized, double-blind experiments are considered the

“gold standard” for untangling causation.

Sugar Doesn’t Make Kids Hyper

http://www.youtube.com/watch?v=mkr9YsmrPAI
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Randomization is not always possible, practical, or ethical.

Observational Data

Data that do not come from a randomized experiment.

It much more challenging to untangle cause and effect using

observational data because of confounders. But sometimes it’s

all we have.
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Racial Bias in the Labor Market

Bertrand & Mullainathan (2004, American Economic Review)

When faced with observably similar African-American and White

applicants, do they [employers] favor the White one? Some argue

yes, citing either employer prejudice or employer perception that

race signals lower productivity. Others argue that differential

treatment by race is a relic of the past . . . Data limitations make it

difficult to empirically test these views. Since researchers possess far

less data than employers do, White and African-American workers

that appear similar to researchers may look very different to

employers. So any racial difference in labor market outcomes could

just as easily be attributed to differences that are observable to

employers but unobservable to researchers.
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Racial Bias in the Labor Market: continued . . .

Bertrand & Mullainathan (2004, American Economic Review)

To circumvent this difficulty, we conduct a field experiment . . .We

send resumes in response to help-wanted ads in Chicago and Boston

newspapers and measure call-back for interview for each sent

resume. We experimentally manipulate the perception of race via

the name of the ficticious job applicant. We randomly assign very

White-sounding names (such as Emily Walsh or Greg Baker) to half

the resumes and very African-American-soundsing names (such as

Lakisha Washington or Jamal Jones) to the other half.
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Racial Bias in the Labor Market: continued . . .

Bertrand & Mullainathan (2004, American Economic Review)

Sample White Names African-American Names

All sent resumes 9.7 6.5

Females 9.9 6.6

Males 8.9 5.8

Table: % Callback by racial soundingness of names.

Later this semester: if there were no racial bias in callbacks, what

is the chance that we would observe such large differences?
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Lecture #2 – Summary Statistics Part I

Class Survey

Types of Variables

Frequency, Relative Frequency, & Histograms

Measures of Central Tendency

Measures of Variability / Spread
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Class Survey

I Collect some data to analyze later in the semester.

I None of the questions are sensitive and your name will not be

linked to your responses. I will post an anonymized version of

the dataset on my website.

I The survey is strictly voluntary – if you don’t want to

participate, you don’t have to.
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Multiple Choice Entry – What is your biological sex?

(a) Male

(b) Female
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Multiple Choice – What is Your Eye Color?

Please enter your eye color using your remote.

(a) Black

(b) Blue

(c) Brown

(d) Green

(e) Gray

(f) Hazel

(g) Other

F.J. DiTraglia, Econ 103 Lecture 2 – Slide 4



How Right-Handed are You?

The sheet in front of you contains a handedness inventory. Please

complete it and calculate your handedness score:

Right− Left

Right + Left

When finished, enter your score using your remote.
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What is your Height in Inches?

Using your remote, please enter your height in inches, rounded to

the nearest inch:

4ft = 48in

5ft = 60in

6ft = 72in

7ft = 84in
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What is your Hand Span (in cm)?

On the sheet in front of you is a ruler. Please use it to measure the

span of your right hand in centimeters, to the nearest 1/2 cm.

Hand Span: the distance from thumb to little finger

when your fingers are spread apart

When ready, enter your measurement using your remote.
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We chose (by computer) a random number between 0 and 100.

The number selected and assigned to you is written on the slip of

paper in front of you. Please do not show your number to anyone

else or look at anyone else’s number.

Please enter your number now using your remote.
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Call your random number X. Do you think that the percentage of

countries, among all those in the United Nations, that are in Africa

is higher or lower than X?

(a) Higher

(b) Lower

Please answer using your remote.
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What is your best estimate of the percentage of countries, among

all those that are in the United Nations, that are in Africa?

Please enter your answer using your remote.
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Types of Variables

Categorical = Qualitative

Numeric value either meaningless or indicates order only

Nominal unordered: eye color, sex

Ordinal ordered: course evaluations (0 = Poor, 1 = Fair)

Numerical = Quantitative

Numerical value is meaningful

Discrete # of credits you are taking this semester

Continuous height, handspan, handedness score
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Handspan - Frequency and Relative Frequency

cm Freq. Rel. Freq.

14.0 1 0.01
17.0 4 0.05
17.5 2 0.02
18.0 5 0.06
18.5 5 0.06
19.0 6 0.07
19.5 10 0.11
20.0 10 0.11
20.5 3 0.03
21.0 8 0.09
21.5 5 0.06
22.0 9 0.10
22.5 6 0.07
23.0 6 0.07
24.0 4 0.05
24.5 3 0.03
27.0 1 0.01

n = 88 1.00
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Histogram – Density Estimate by Smoothing Barchart

Bins Freq. Rel. Freq.

[14, 16) 1 0.01
[16, 18) 6 0.07
[18, 20) 26 0.30
[20, 22) 26 0.30
[22, 24) 21 0.24
[24, 26) 7 0.08
[26, 28) 1 0.01

n = 88 1.00
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Group data into non-overlapping bins of equal width
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https://fditraglia.shinyapps.io/histogram/

The number of histogram bins controls the degree of smoothing.
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Histogram - Density Estimate by Smoothing Barchart

Why Histogram?

Summarize numerical data, especially continuous (few repeats)

Too Many Bins – Undersmoothing

No longer a summary (lose the shape of distribution)

Too Few Bins – Oversmoothing

Miss important detail

Don’t confuse with barchart!
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# Read data

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'

survey <- read.csv(data_url)

#Make plot

plot(table(survey$height), main = 'Barchart of Height (inches)',

xlab = '', ylab = 'Count')
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hist(survey$height, freq = FALSE, main = 'Histogram of Height',

xlab = 'Height (in)', ylab = 'Relative Frequency')

Histogram of Height
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Summary Statistic = Numerical Summary of Sample

Categories of Summary Statistic

1. Central Tendency: mean and median

2. Spread: range, interquartile range, variance, and std. dev.

3. Symmetry: skewness

4. Linear Dependence: covariance, correlation, and regression

Questions ask yourself about each summary statistic

1. What does it measure?

2. What are its units compared to those of the data?

3. (How) do its units change if those of the data change?
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What is an Outlier?

Outlier

A very unusual observation relative to the other observations in the

dataset (i.e. very small or very big).
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Measures of Central Tendency

Suppose we have a dataset with observations x1, x2, . . . , xn

Sample Mean

I x̄ =
1

n

n∑
i=1

xi

I Only for numeric data

I Sensitive to asymmetry and outliers

Sample Median

I Middle observation if n is odd, otherwise the mean of the two

observations closest to the middle.

I Applicable to numerical or ordinal data

I Insensitive to outliers and skewness
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Mean is Sensitive to Outliers, Median Isn’t

First Dataset: 1 2 3 4 5

Mean = 3, Median = 3

Second Dataset: 1 2 3 4 4990

Mean = 1000, Median = 3

When Does the Median Change?

Ranks would have to change so that 3 is no longer in the middle.
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Percentage of UN Countries that are in Africa

You Were a Subject in a Randomized Experiment!

I There were only two numbers in the bag: 10 and 65

I Randomly assigned to Low group (10) or High group (65)

Anchoring Heuristic (Kahneman and Tversky, 1974)

Subjects’ estimates of an unknown quantity are influenced by an

irrelevant previously supplied starting point.

Are Penn students subject to to this cognitive bias?
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Results from Anchoring Experiment (Previous Semester)

low <- subset(survey, rand.num == 10)$africa.percent

high <- subset(survey, rand.num == 65)$africa.percent

c(low = mean(low), high = mean(high))

## low high

## 17.09302 30.71739

c(low = median(low), high = median(high))

## low high

## 17 30
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Percentiles (aka Quantiles) – Generalization of Median

Percentiles (aka Quantiles)

Approx. P% of the data are at or below the Pth percentile/quantile

Quartiles

Q1 = 25th Percentile

Q2 = Median (i.e. 50th Percentile)

Q3 = 75th Percentile

There are some slightly tricky issues involved in actually calculating

quantiles, but these only make a difference for very small datasets.

We’ll always use R to calculate quantiles. . .
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quantile(survey$handspan, na.rm = TRUE)

## 0% 25% 50% 75% 100%

## 14.0 19.0 20.5 22.0 27.0

quantile(survey$handspan, 0.3, na.rm = TRUE)

## 30%

## 19.5

quantile(survey$handspan, c(0.1, 0.5, 0.9), na.rm = TRUE)

## 10% 50% 90%

## 18.0 20.5 23.0
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Boxplot: A Depiction of the “Five Number Summary”

Q1 Median Q3

MaxMin

Outlier

The boxplot command in R treats any observation more than 1.5

times the width of the box away from the box as an outlier.
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boxplot(survey$handspan, main = 'Boxplot of Handspan',

ylab = 'Handspan (cm)')
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boxplot(survey$africa.percent ~ survey$rand.num,

main = 'Boxplot for Anchoring Experiment',

ylab = 'Answer (% UN Countries from Africa)',

xlab = 'Random Number')
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Measures of Variability/Spread – 1

Range

I Range = Maximum Observation - Minimum Observation

I Very sensitive to outliers.

I Displayed in boxplot.

Interquartile Range (IQR)

I IQR= Q3 − Q1

I IQR = Range of middle 50% of the data.

I Insensitive to outliers.

I Displayed in boxplot.
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Measures of Variability/Spread – 2

Variance

I s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

I Essentially the average squared distance from the mean.

I (We’ll talk about n − 1 versus n later in the semester)

I Sensitive to both skewness and outliers.

Standard Deviation

I s =
√
s2

I Same information as variance but more convenient since it has

the same units as the data
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Measures of Spread for Handspan

diff(range(survey$handspan, na.rm = TRUE))

## [1] 13

IQR(survey$handspan, na.rm = TRUE)

## [1] 3

var(survey$handspan, na.rm = TRUE)

## [1] 4.753788

sd(survey$handspan, na.rm = TRUE)

## [1] 2.180318
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Lecture #3 – Summary Statistics Part II

Why squares in the definition of variance?

Skewness & Symmetry

Sample versus Population, Empirical Rule

Centering, Standardizing, & Z-Scores

Relating Two Variables: Cross-tabs, Covariance, & Correlation
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Why Squares?

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

What’s Wrong With This?

1

n − 1

N∑
i=1

(xi − x̄) =
1

n − 1

[
n∑

i=1

xi −
n∑

i=1

x̄

]
=

1

n − 1

[
n∑

i=1

xi − nx̄

]

=
1

n − 1

[
n∑

i=1

xi − n · 1
n

n∑
i=1

xi

]

=
1

n − 1

[
n∑

i=1

xi −
n∑

i=1

xi

]
= 0
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Skewness – A Measure of Symmetry

Skewness =
1

n

∑n
i=1(xi − x̄)3

s3

What do the values indicate?

Zero ⇒ symmetry, positive right-skewed, negative left-skewed.

Why cubed?

To get the desired sign.

Why divide by s3?

So that skewness is unitless

Rule of Thumb

Typically (but not always), right-skewed ⇒ mean > median

left-skewed ⇒ mean < median
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# Load Survey Data

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'

survey <- read.csv(data_url)

# A Function to Calculate Skewness

get_skewness <- function(x) {
x <- na.omit(x)

n <- length(x)

xbar <- mean(x)

s <- sd(x)

skewness <- sum((x - xbar)^3) / (n * s^3)

return(skewness)

}
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# Handedness is left-skewed, handspan is symmetric

c(get_skewness(survey$handedness), get_skewness(survey$handspan))

## [1] -2.21905550 0.04331997

par(mfrow = c(1, 2))

hist(survey$handedness, main = 'Handedness', xlab = 'Handedness Score')

hist(survey$handspan, main = 'Handspan', xlab = 'Handspan (cm)')
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Sample vs. Population and Parameter vs. Statistic

Sample vs. Population

For now, think of the population as a list of N objects

(x1, x2, . . . , xN) from which we draw a sample of n < N objects.

Parameter vs. Statistic

Use a sample to calculate statistics (e.g. x̄ , s2, s) that estimate

the corresponding population parameters (e.g. µ, σ2, σ).

Parameter (Population) Statistic (Sample)

Mean µ =
1

N

N∑
i=1

xi x̄ =
1

n

n∑
i=1

xi

Var. σ2 =
1

N

N∑
i=1

(xi − µ)2 s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

S.D. σ =
√
σ2 s =

√
s2
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Why Mean and Variance (and Std. Dev. )?

Empirical Rule

For large populations that are approximately bell-shaped, std. dev.

tells where most observations will be relative to the mean:

I ≈ 68% of observations are in the interval µ± σ

I ≈ 95% of observations are in the interval µ± 2σ

I Almost all of observations are in the interval µ± 3σ

This isa key reason why we will be interested in x̄ as an estimate of

µ and s as an estimate of σ.
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Which is more “extreme?”

(a) Handspan of 27cm

(b) Height of 78in
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Centering: Subtract the Mean

Handspan Height

27cm− 20.6cm = 6.4cm 78in− 67.6in = 10.4in
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Standardizing: Divide by S.D.

Handspan Height

27cm− 20.6cm = 6.4cm 78in− 67.6in = 10.4in

6.4cm/2.2cm ≈ 2.9 10.4in/4.5in ≈ 2.3

The units have disappeared!
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Z-scores: How many standard deviations from the mean?
Best for Symmetric Distribution, No Outliers (Why?)

zi =
xi − x̄

s

Unitless

Allows comparison of variables with different units.

Detecting Outliers

Measures how “extreme” one observation is relative to the others.

Linear Transformation
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What is the sample mean of the z-scores?

z̄ =
1

n

n∑
i=1

zi =
1

n

n∑
i=1

xi − x̄

s
=

1

n · s

n∑
i=1

(xi − x̄) = 0

. . . using the same argument as on Slide 2 of this lecture!
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What is the variance of the z-scores?

s2z =
1

n − 1

n∑
i=1

(zi − z̄)2 =
1

n − 1

n∑
i=1

z2i =
1

n − 1

n∑
i=1

(
xi − x̄

sx

)2

=
1

s2x

[
1

n − 1

n∑
i=1

(xi − x̄)2
]
=

s2x
s2x

= 1

So what is the standard deviation of the z-scores?
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Population Z-scores and the Empirical Rule: µ± 2σ

If µ and σ were known, we could create a population version of a

z-score. This lets us re-write the Empirical Rule as follows:

Bell-shaped population ⇒ approx. 95% of observations xi satisfy

µ− 2σ ≤ xi ≤ µ+ 2σ

−2 ≤ xi − µ

σ
≤ 2

F.J. DiTraglia, Econ 103 Lecture 3 – Slide 14



Crosstabs – Show Relationship between Categorical Vars.

table(survey$eye.color, survey$sex)

##

## Female Male

## Black 2 5

## Blue 4 6

## Brown 32 26

## Copper 0 1

## Green 1 4

## Hazel 2 2

## Maroon 0 1
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Who Supported the Vietnam War?
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Who Were the Doves?

Which group do you think was most strongly in favor of the

withdrawal of US troops from Vietnam?

(a) Adults with only a Grade School Education

(b) Adults with a High School Education

(c) Adults with a College Education

Please respond with your remote.
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Who Were the Hawks?

Which group do you think was most strongly opposed to the

withdrawal of US troops from Vietnam?

(a) Adults with only a Grade School Education

(b) Adults with a High School Education

(c) Adults with a College Education

Please respond with your remote.
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Who Really Supported the Vietnam War
Gallup Poll, January 1971
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Covariance and Correlation: Linear Dependence Measures

Two Samples of Numeric Data

x1, . . . , xn and y1, . . . , yn with means (x̄ , ȳ) and std. devs. (sx , sy )

Dependence

Do x and y both tend to be large (or small) at the same time?

Key Point

Use the idea of centering and standardizing to decide what “big”

or “small” means in this context.
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Covariance

sxy =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

I Centers each observation around its mean and multiplies.

I Zero ⇒ no linear dependence

I Positive ⇒ positive linear dependence

I Negative ⇒ negative linear dependence

I Population parameter: σxy

I Units?
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Correlation

rxy =
1

n − 1

n∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
=

sxy
sxsy

I Centers and standardizes each observation

I Bounded between -1 and 1

I Zero ⇒ no linear dependence

I Positive ⇒ positive linear dependence

I Negative ⇒ negative linear dependence

I Population parameter: ρxy

I Unitless
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Height and Handspan: Strongly Positively Associated

cov(survey$height, survey$handspan, use = 'complete.obs')

## [1] 5.910786

cor(survey$height, survey$handspan, use = 'complete.obs')

## [1] 0.6042423
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Essential Distinction: Parameter vs. Statistic
And Population vs. Sample

N individuals in the Population, n individuals in the Sample:

Parameter (Population) Statistic (Sample)

Mean µx =
1

N

N∑
i=1

xi x̄ =
1

n

n∑
i=1

xi

Var. σ2
x =

1

N

N∑
i=1

(xi − µ)2 s2x =
1

n − 1

n∑
i=1

(xi − x̄)2

S.D. σx =
√
σ2
x sx =

√
s2

Cov. σxy =

∑N
i=1(xi − µx)(yi − µy )

N
sxy =

∑n
i=1(xi − x̄)(yi − ȳ)

n − 1
Corr. ρ =

σxy

σxσy
r =

sxy
sxsy

F.J. DiTraglia, Econ 103 Lecture 3 – Slide 24



Lecture #4 – Linear Regression I

Overview / Intuition for Linear Regression

Deriving the Regression Equations

Relating Regression, Covariance and Correlation

F.J. DiTraglia, Econ 103 Lecture 4 – Slide 1



Predict Second Midterm given 81 on First
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Predict Second Midterm given 81 on First
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But if they’d only gotten 79 we’d predict higher?!
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No one who took both exams got 89 on the first!
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Regression: “Best Fitting” Line Through Cloud of Points
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Least Squares Regression – Predict Using a Line

The Prediction

Predict score ŷ = a+ bx on 2nd midterm if you scored x on 1st

How to choose (a, b)?

Linear regression chooses the slope (b) and intercept (a) that

minimize the sum of squared vertical deviations
n∑

i=1

d2
i =

n∑
i=1

(yi − a− bxi )
2

Why Squared Deviations?
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Important Point About Notation

minimize
a,b

n∑
i=1

d2
i =

n∑
i=1

(yi − a− bxi )
2

ŷ = a+ bx

I (a, b) are our choice variables

I (x1, y1), . . . , (xn, yn) are the observed data

I ŷ is our prediction for a given value of x

I Neither x nor ŷ needs to be in out dataset!
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https://fditraglia.shinyapps.io/regression/

Try choosing (a, b) to minimize the sum of squared vertical

deviations. . .
F.J. DiTraglia, Econ 103 Lecture 4 – Slide 13

https://fditraglia.shinyapps.io/regression/


Running the Regression in R

# Read data

data_url <- 'http://ditraglia.com/econ103/midterms.csv'

exams <- read.csv(data_url)

# Drop students who missed an exam

exams <- na.omit(exams)

# Run the regression and display the slope and intercept

reg <- lm(Midterm2 ~ Midterm1, data = exams)

coef(reg)

## (Intercept) Midterm1

## 32.5745441 0.6130357
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Predicting Midterm 2 Given 89 on Midterm 1

# By hand

32.5745441 + 0.6130357 * 89

## [1] 87.13472

# Using predict()

missing_student <- data.frame(Midterm1 = 89)

predict(reg, newdata = missing_student)

## 1

## 87.13472
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You Need to Know How To Derive This

Minimize the sum of squared vertical deviations from the line:

min
a,b

n∑
i=1

(yi − a− bxi )
2

How should we proceed?

(a) Differentiate with respect to x

(b) Differentiate with respect to y

(c) Differentiate with respect to x , y

(d) Differentiate with respect to a, b

(e) Can’t solve this with calculus.
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Objective Function

min
a,b

n∑
i=1

(yi − a− bxi )
2

FOC with respect to a

−2
n∑

i=1

(yi − a− bxi ) = 0

n∑
i=1

yi −
n∑

i=1

a− b
n∑

i=1

xi = 0

1

n

n∑
i=1

yi −
na

n
− b

n

n∑
i=1

xi = 0

ȳ − a− bx̄ = 0
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Regression Line Goes Through the Means!

ȳ = a + bx̄

If your score equaled the class average on Midterm #1, we predict

that your score will equal the class average on Midterm #2.
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Substitute a = ȳ − bx̄

n∑
i=1

(yi − a− bxi )
2 =

n∑
i=1

(yi − ȳ + bx̄ − bxi )
2

=
n∑

i=1

[(yi − ȳ)− b (xi − x̄)]2

FOC wrt b

− 2
n∑

i=1

[(yi − ȳ)− b (xi − x̄)] (xi − x̄) = 0

n∑
i=1

(yi − ȳ) (xi − x̄)− b
n∑

i=1

(xi − x̄)2 = 0

b =

∑n
i=1 (yi − ȳ) (xi − x̄)∑n

i=1 (xi − x̄)2
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Simple Linear Regression

Problem

min
a,b

n∑
i=1

(yi − a− bxi )
2

Solution

b =

∑n
i=1 (yi − ȳ) (xi − x̄)∑n

i=1 (xi − x̄)2

a = ȳ − bx̄
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Relating Regression to Covariance and Correlation

b =

∑n
i=1 (yi − ȳ) (xi − x̄)∑n

i=1 (xi − x̄)2
=

1
n−1

∑n
i=1 (yi − ȳ) (xi − x̄)

1
n−1

∑n
i=1 (xi − x̄)2

=
sxy
s2x

r =
sxy
sxsy

= b
sx
sy
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Comparing Regression, Correlation and Covariance

Units

Correlation is unitless, covariance and regression coefficients (a, b)

are not. (What are the units of these?)

Symmetry

Correlation and covariance are symmetric, regression isn’t.

(Switching x and y a and b: Review Exercise.)

Extension Problem

Regression with z-scores rather than raw data gives a = 0, b = rxy
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sxy = 6, sx = 5, sy = 2, x̄ = 68, ȳ = 21

What is the sample correlation between

height (x) and handspan (y)?
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sxy = 6, sx = 5, sy = 2, x̄ = 68, ȳ = 21

What is the value of b for the

regression:

ŷ = a+ bx

where x is height and y is handspan?
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sxy = 6, sx = 5, sy = 2, x̄ = 68, ȳ = 21

What is the value of a for the

regression:

ŷ = a+ bx

where x is height and y is handspan?

(prev. slide b = 0.24)
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a = ȳ − bx̄ = 21− 0.24× 68 = 4.68
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x <- seq(from = -1, to = 1, by = 0.1)

y <- x^2

cor(x,y)

## [1] 1.216307e-16

plot(x,y); abline(lm(y ~ x))
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Extremely Important Points to Remember!

I Regression, covariance, and correlation are all measures of

linear dependence.

I Linear dependence need not imply a causal relationship.

I Dependence could be non-linear: always plot your data!
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Lecture #5 – Basic Probability I

Probability as Long-run Relative Frequency

Sets, Events and Axioms of Probability

“Classical” Probability
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Our Definition of Probability for this Course

Probability = Long-run Relative Frequency

That is, relative frequencies settle down to probabilities if we carry

out an experiment over, and over, and over...
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Rolling a Fair, Six-Sided Die in R

# Function to plot relative frequencies

plot_freq <- function(x){
n <- length(x)

rel_freq <- prop.table(table(x))

plot(rel_freq, ylab = 'Relative Frequency',

xlab = bquote(n == .(n)))

}

# Roll a fair die 1 Million times

set.seed(1234567890)

dice <- sample(1:6, size = 1e6, replace = TRUE)
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plot_freq(dice[1:10])
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plot_freq(dice[1:50])
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plot_freq(dice[1:1000])
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plot_freq(dice)
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What do you think of this argument?

I The probability of flipping heads is 1/2: if we flip a coin many

times, about half of the time it will come up heads.

I The last ten throws in a row the coin has come up heads.

I The coin is bound to come up tails next time – it would be

very rare to get 11 heads in a row.

(a) Agree

(b) Disagree
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The Gambler’s Fallacy

Relative frequencies settle down to probabilities, but this does

not mean that the trials are dependent.

Dependent = “Memory” of Prev. Trials

Independent = No “Memory” of Prev. Trials
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Terminology

Random Experiment

An experiment whose outcomes are random.

Basic Outcomes

Possible outcomes (mutually exclusive) of random experiment.

Sample Space: S

Set of all basic outcomes of a random experiment.

Event: E

A subset of the Sample Space (i.e. a collection of basic outcomes).

In set notation we write E ⊆ S .
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Example

Random Experiment

Tossing a pair of dice.

Basic Outcome

An ordered pair (a, b) where a, b ∈ {1, 2, 3, 4, 5, 6}, e.g. (2, 5)

Sample Space: S

All ordered pairs (a, b) where a, b ∈ {1, 2, 3, 4, 5, 6}

Event: E = {Sum of two dice is less than 4}
{(1, 1), (1, 2), (2, 1)}
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Visual Representation

E

S

O1

O2

O3

The event E contains the basic outcomes O3 and O2 but not O1.
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Probability is Defined on Sets,

and Events are Sets

F.J. DiTraglia, Econ 103 Lecture 5 – Slide 13



Complement of an Event: Ac = not A

A

S

Figure: The complement Ac of an event A ⊆ S is the collection of all

basic outcomes from S not contained in A.
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Intersection of Events: A ∩ B = A and B

A B

S

Figure: The intersection A∩B of two events A,B ⊆ S is the collection of

all basic outcomes from S contained in both A and B
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Union of Events: A ∪ B = A or B

A B

S

Figure: The union A ∪ B of two events A,B ⊆ S is the collection of all

basic outcomes from S contained in A, B or both.
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Mutually Exclusive and Collectively Exhaustive

Mutually Exclusive Events

A collection of events E1,E2,E3, . . . is mutually exclusive if the

intersection Ei ∩ Ej of any two different events is empty.

Collectively Exhaustive Events

A collection of events E1,E2,E3, . . . is collectively exhaustive if,

taken together, they contain all of the basic outcomes in S .

Another way of saying this is that the union E1 ∪E2 ∪E3 ∪ · · · is S .
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Implications

Mutually Exclusive Events

If one of the events occurs, then none of the others did.

Collectively Exhaustive Events

One of these events must occur.
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Mutually Exclusive but not Collectively Exhaustive

A

B

S

Figure: Although A and B don’t overlap, they also don’t cover S .
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Collectively Exhaustive but not Mutually Exclusive

A B C

D

S

Figure: Together A,B,C and D cover S , but D overlaps with B and C .
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Collectively Exhaustive and Mutually Exclusive

A B C

S

Figure: A, B, and C cover S and don’t overlap.
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Axioms of Probability

We assign every event A in the sample space S a real number

P(A) called the probability of A such that:

Axiom 1 0 ≤ P(A) ≤ 1

Axiom 2 P(S) = 1

Axiom 3 If A1,A2,A3, . . . are mutually exclusive events, then

P(A1∪A2∪A3∪· · · ) = P(A1)+P(A2)+P(A3)+ . . .
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“Classical” Probability

When all of the basic outcomes are equally likely, calculating the

probability of an event is simply a matter of counting – count up

all the basic outcomes that make up the event, and divide by the

total number of basic outcomes.
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Recall from High School Math:

Multiplication Rule for Counting

n1 ways to make first decision, n2 ways to make second, . . . , nk

ways to make kth ⇒ n1 × n2 × · · · × nk total ways to decide.

Corollary – Number of Possible Orderings

k × (k − 1)× (k − 2)× · · · × 2× 1 = k!

Permutations – Order n people in k slots

Pn
k = n!

(n−k)! (Order Matters)

Combinations – Choose committee of k from group of n(n
k

)
= n!

k!(n−k)! , where 0! = 1 (Order Doesn’t Matter)

F.J. DiTraglia, Econ 103 Lecture 5 – Slide 24



Poker – Deal 5 Cards, Order Doesn’t Matter

Basic Outcomes(
52

5

)
possible hands

How Many Hands have Four Aces?

48 (# of ways to choose the single card that is not an ace)

Probability of Getting Four Aces

48/

(
52

5

)
≈ 0.00002

F.J. DiTraglia, Econ 103 Lecture 5 – Slide 25



A Fairly Ridiculous Example

Roger Federer and Novak Djokovic have agreed to play in a tennis

tournament against six Penn professors. Each player in the

tournament is randomly allocated to one of the eight rungs in the

ladder (next slide). Federer always beats Djokovic and, naturally,

either of the two pros always beats any of the professors. What is

the probability that Djokovic gets second place in the tournament?
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Winner

Semifinalist 2

Quarterfinalist 4

Rung 8

Rung 7

Quarterfinalist 3

Rung 6

Rung 5

Semifinalist 1

Quarterfinalist 2

Rung 4

Rung 3

Quarterfinalist 1

Rung 2

Rung 1
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Solution: Order Matters!

Denominator

8! basic outcomes – ways to arrange players on tournament ladder.

Numerator

Sequence of three decisions:

1. Which rung to put Federer on? (8 possibilities)

2. Which rung to put Djokovic on?

I For any given rung that Federer is on, only 4 rungs prevent

Djokovic from meeting him until the final.

3. How to arrange the professors? (6! ways)

8× 4× 6!

8!
=

8× 4

7× 8
= 4/7 ≈ 0.57
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Lecture #6 – Basic Probability II

Complement Rule, Logical Consequence Rule, Addition Rule

Conditional Probability

Independence, Multiplication Rule

Law of Total Probability
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Recall: Axioms of Probability

Let S be the sample space. With each event A ⊆ S we associate a

real number P(A) called the probability of A, satisfying the

following conditions:

Axiom 1 0 ≤ P(A) ≤ 1

Axiom 2 P(S) = 1

Axiom 3 If A1,A2,A3, . . . are mutually exclusive events, then

P(A1∪A2∪A3∪· · · ) = P(A1)+P(A2)+P(A3)+ . . .
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The Complement Rule: P(Ac) = 1− P(A)

Since A,Ac are mutually exclusive and

collectively exhaustive:

P(A ∪ Ac) = P(A) + P(Ac) = P(S) = 1

Rearranging:

P(Ac) = 1− P(A)

Ac

A

S

Figure: A ∩ Ac = ∅,
A ∪ Ac = S
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Another Important Rule – Equivalent Events

If A and B are Logically Equivalent, then P(A) = P(B).

In other words, if A and B contain exactly the same basic

outcomes, then P(A) = P(B).

Although this seems obvious it’s important to keep in mind. . .
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The Logical Consequence Rule

If B Logically Entails A, then P(B) ≤ P(A)

For example, the probability that someone comes from Texas

cannot exceed the probability that she comes from the USA.

In Set Notation

B ⊆ A ⇒ P(B) ≤ P(A)

Why is this so?

If B ⊆ A, then all the basic outcomes in B are also in A.
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Proof of Logical Consequence Rule

Since B ⊆ A, we have B = A ∩ B and

A = B ∪ (A ∩ Bc). Combining these,

A = (A ∩ B) ∪ (A ∩ Bc)

Now since (A ∩ B) ∩ (A ∩ Bc) = ∅,

P(A) = P(A ∩ B) + P(A ∩ Bc)

= P(B) + P(A ∩ Bc)

≥ P(B)

because 0 ≤ P(A ∩ Bc) ≤ 1.

A

B

S

Figure:

B = A ∩ B, and

A = B ∪ (A ∩ Bc)
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“Odd Question” # 2

Pia is thirty-one years old, single, outspoken, and smart. She was a philosophy

major. When a student, she was an ardent supporter of Native American rights,

and she picketed a department store that had no facilities for nursing mothers.

Rank the following statements in order from most probable to least probable.

(A) Pia is an active feminist.

(B) Pia is a bank teller.

(C) Pia works in a small bookstore.

(D) Pia is a bank teller and an active feminist.

(E) Pia is a bank teller and an active feminist who takes yoga classes.

(F) Pia works in a small bookstore and is an active feminist who takes yoga

classes.
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Using the Logical Consequence Rule...

(A) Pia is an active feminist.

(B) Pia is a bank teller.

(C) Pia works in a small bookstore.

(D) Pia is a bank teller and an active feminist.

(E) Pia is a bank teller and an active feminist who takes yoga classes.

(F) Pia works in a small bookstore and is an active feminist who takes yoga

classes.

Any Correct Ranking Must Satisfy:

P(A) ≥ P(D) ≥ P(E)

P(B) ≥ P(D) ≥ P(E)

P(A) ≥ P(F)

P(C) ≥ P(F)
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Throw a Fair Die Once

E = roll an even number

What are the basic outcomes?

{1, 2, 3, 4, 5, 6}

What is P(E )?

E = {2, 4, 6} and the basic outcomes are equally likely (and

mutually exclusive), so

P(E ) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2
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Throw a Fair Die Once

E = roll an even number M = roll a 1 or a prime number

What is P(E ∪M)?

Key point: E and M are not mutually exclusive!

P(E ∪M) = P({1, 2, 3, 4, 5, 6}) = 1

P(E ) = P({2, 4, 6}) = 1/2

P(M) = P({1, 2, 3, 5}) = 4/6 = 2/3

P(E ) + P(M) = 1/2 + 2/3 = 7/6 6= P(E ∪M) = 1
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The Addition Rule – Don’t Double-Count!

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

A B

S

Construct a formal proof as an optional homework problem.
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Who’s on the other side?
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Three Cards, Each with a Face on the Front and Back

1. Gaga/Gaga

2. Obama/Gaga

3. Obama/Obama

I draw a card at random and look at one side: it’s Obama.

What is the probability that the other side is also Obama?
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Let’s Try The Method of Monte Carlo...
When you don’t know how to calculate, simulate.

Procedure

1. Close your eyes and thoroughly shuffle your cards.

2. Keeping eyes closed, draw a card and place it on your desk.

3. Stand if Obama is face-up on your chosen card.

4. We’ll count those standing and call the total N

5. Of those standing, sit down if Obama is not on the back of

your chosen card.

6. We’ll count those still standing and call the total m.

Monte Carlo Approximation of Desired Probability =
m

N
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draw_simulation <- function() {
cards <- c('GG', 'OG', 'OO')

random_card <- sample(cards, size = 1)

if(random_card == 'GG') {
faces <- c('G', 'G')

} else if (random_card == 'OO') {
faces <- c('O', 'O')

} else {
faces <- c('O', 'G')

}
out <- sample(faces)

names(out) <- c('front', 'back')

return(out)

}
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set.seed(54321)

simulations <- replicate(n = 1000, draw_simulation())

simulations <- data.frame(t(simulations))

head(simulations)

## front back

## 1 O G

## 2 G G

## 3 G G

## 4 O G

## 5 G G

## 6 O O

Obama_on_front <- subset(simulations, front == 'O')

mean(Obama_on_front$back == 'O')

## [1] 0.6633065
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Choose

Card

Obama

Obama

Obama1
2

Obama1
2

1
3

Obama

Gaga

Gaga1
2

Obama1
2

1
3

Gaga

Gaga

Gaga1
2

Gaga1
2

1
3
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Conditional Probability – Reduced Sample Space
Set of relevant outcomes restricted by condition

P(A|B) = P(A ∩ B)

P(B)
, provided P(B) > 0

A B

S

Figure: B becomes the “new sample space” so we need to re-scale by

P(B) to keep probabilities between zero and one.F.J. DiTraglia, Econ 103 Lecture 6 – Slide 18



Who’s on the other side?

Let F be the event that Obama is on the front of the card of the

card we draw and B be the event that he is on the back.

P(B|F ) = P(B ∩ F )

P(F )
=

1/3

1/2
= 2/3
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Conditional Versions of Probability Axioms

1. 0 ≤ P(A|B) ≤ 1

2. P(B|B) = 1

3. If A1,A2,A3, . . . are mutually exclusive given B, then

P(A1 ∪ A2 ∪ A3 ∪ · · · |B) = P(A1|B) + P(A2|B) + P(A3|B) . . .

Conditional Versions of Other Probability Rules

I P(A|B) = 1− P(Ac |B)

I A1 logically equivalent to A2 ⇐⇒ P(A1|B) = P(A2|B)

I A1 ⊆ A2 =⇒ P(A1|B) ≤ P(A2|B)

I P(A1 ∪ A2|B) = P(A1|B) + P(A2|B)− P(A1 ∩ A2|B)

However: P(A|B) 6= P(B|A) and P(A|Bc) 6= 1− P(A|B)!
F.J. DiTraglia, Econ 103 Lecture 6 – Slide 20



Independence and The Multiplication Rule

The Multiplication Rule

Rearrange the definition of conditional probability:

P(A ∩ B) = P(A|B)P(B)

Statistical Independence

P(A ∩ B) = P(A)P(B)

By the Multiplication Rule

Independence ⇐⇒ P(A|B) = P(A)

Interpreting Independence

Knowledge that B has occurred tells nothing about whether A will.
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Will Having 5 Children Guarantee a Boy?

A couple plans to have five children. Assuming that each birth is

independent and male and female children are equally likely, what

is the probability that they have at least one boy?

By Independence and the Complement Rule,

P(no boys) = P(5 girls)

= 1/2× 1/2× 1/2× 1/2× 1/2

= 1/32

P(at least 1 boy) = 1− P(no boys)

= 1− 1/32 = 31/32 = 0.97
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The Law of Total Probability

If E1,E2, . . . ,Ek are mutually exclusive, collectively exhaustive

events and A is another event, then

P(A) = P(A|E1)P(E1) + P(A|E2)P(E2) + . . .+ P(A|Ek)P(Ek)
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Example of Law of Total Probability

Define the following events:

F = Obama on front of card

A = Draw card with two Gagas

B = Draw card with two Obamas

C = Draw card with BOTH Obama and Gaga

P(F ) = P(F |A)P(A) + P(F |B)P(B) + P(F |C )P(C )

= 0× 1/3 + 1× 1/3 + 1/2× 1/3

= 1/2
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Deriving the Law of Total Probability For k = 2

Since A ∩ B and A ∩ Bc are mutually exclusive

and their union equals A,

P(A) = P(A ∩ B) + P(A ∩ Bc)

But by the multiplication rule:

P(A ∩ B) = P(A|B)P(B)

P(A ∩ Bc) = P(A|Bc)P(Bc)

Combining,

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

B A

S

Figure:

A = (A∩B)∪(A∩Bc),

(A∩B)∩(A∩Bc) = ∅
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Lecture #7 – Basic Probability III / Discrete RVs I

Bayes’ Rule and the Base Rate Fallacy

Overview of Random Variables

Probability Mass Functions
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Four Volunteers Please!
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The Lie Detector Problem

From accounting records, we know that 10% of employees in

the store are stealing merchandise.

The managers want to fire the thieves, but their only tool in

distinguishing is a lie detector test that is 80% accurate:

Innocent ⇒ Pass test with 80% Probability

Thief ⇒ Fail test with 80% Probability

What is the probability that someone is a thief given that she

has failed the lie detector test?
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Monte Carlo Simulation – Roll a 10-sided Die Twice

Managers will split up and visit employees. Employees roll the die

twice but keep the results secret!

First Roll – Thief or not?

0 ⇒ Thief, 1− 9 ⇒ Innocent

Second Roll – Lie Detector Test

0, 1 ⇒ Incorrect Test Result, 2− 9 Correct Test Result

0 or 1 2–9

Thief Pass Fail

Innocent Fail Pass
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What percentage of those who failed the test are guilty?

# Who Failed Lie Detector Test:

# Of Thieves Among Those Who Failed:
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draw_simulation <- function() {
guilty <- FALSE

fail <- FALSE

die1 <- sample(0:9, size = 1)

die2 <- sample(0:9, size = 1)

if(die1 == 0){ # Thief

guilty <- TRUE

if(die2 >=2) fail <- TRUE

} else { # Innocent

if(die2 < 2) fail <- TRUE

}
return(c(guilty = guilty, fail = fail))

}
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set.seed(123456)

simulations <- replicate(n = 1000, draw_simulation())

simulations <- data.frame(t(simulations))

head(simulations)

## guilty fail

## 1 FALSE FALSE

## 2 FALSE FALSE

## 3 FALSE TRUE

## 4 FALSE TRUE

## 5 FALSE TRUE

## 6 FALSE FALSE

failed_test <- subset(simulations, fail)

mean(failed_test$guilty)

## [1] 0.311828
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Base Rate Fallacy – Failure to Consider Prior Information

Base Rate – Prior Information

Before the test we know that 10% of Employees are stealing.

People tend to focus on the fact that the test is 80% accurate

and ignore the fact that only 10% of the employees are theives.
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Thief (Y/N), Lie Detector (P/F)

0 1 2 3 4 5 6 7 8 9

0 YP YP YF YF YF YF YF YF YF YF

1 NF NF NP NP NP NP NP NP NP NP

2 NF NF NP NP NP NP NP NP NP NP

3 NF NF NP NP NP NP NP NP NP NP

4 NF NF NP NP NP NP NP NP NP NP

5 NF NF NP NP NP NP NP NP NP NP

6 NF NF NP NP NP NP NP NP NP NP

7 NF NF NP NP NP NP NP NP NP NP

8 NF NF NP NP NP NP NP NP NP NP

9 NF NF NP NP NP NP NP NP NP NP

Table: Each outcome in the table is equally likely. The 26 given in red

correspond to failing the test, but only 8 of these (YF) correspond to

being a thief.
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Base Rate of Thievery is 10%

Thief

Fail 1
10 × 4

5 = 4
50

4
5

Pass
1
5

1
10

Honest

Fail 9
10 × 1

5 = 9
50

1
5

Pass
4
5

9
10

Figure: Although 9
50 + 4

50 = 13
50 fail the test, only 4/50

13/50 = 4
13 ≈ 0.31 are

actually theives!
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Deriving Bayes’ Rule

Intersection is symmetric: A∩B = B ∩A so P(A∩B) = P(B ∩A)

By the definition of conditional probability,

P(A|B) = P(A ∩ B)

P(B)

And by the multiplication rule:

P(B ∩ A) = P(B|A)P(A)

Finally, combining these

P(A|B) = P(B|A)P(A)
P(B)
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Understanding Bayes’ Rule

P(A|B) = P(B|A)P(A)
P(B)

Reversing the Conditioning

Express P(A|B) in terms of P(B|A). Relative magnitudes of the

two conditional probabilities determined by the ratio P(A)/P(B).

Base Rate

P(A) is called the “base rate” or the “prior probability.”

Denominator

Typically, we calculate P(B) using the law of toal probability

F.J. DiTraglia, Econ 103 Lecture 7 – Slide 12



In General P(A|B) 6= P(B |A)

Question

Most college students are Democrats. Does it follow that most

Democrats are college students? (A = YES, B = NO)

Answer

There are many more Democracts than college students:

P(Dem) > P(Student)

so P(Student|Dem) is small even though P(Dem|Student) is large.
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Solving the Lie Detector Problem with Bayes’ Rule

T = Employee is a Thief, F = Employee Fails Lie Detector Test

P(T |F ) = P(F |T )P(T )

P(F )

P(F ) = P(F |T )P(T ) + P(F |T c)P(T c)

= 0.8× 0.1 + 0.2× 0.9

= 0.08 + 0.18 = 0.26

P(T |F ) = 0.08

0.26
=

8

26
=

4

13
≈ 0.31
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Random Variables
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Random Variables

A random variable is neither random nor a variable.

Random Variable (RV): X

A fixed function that assigns a number to each basic outcome of a

random experiment.

Realization: x

A particular numeric value that an RV could take on. We write

{X = x} to refer to the event that the RV X took on the value x .

Support Set (aka Support)

The set of all possible realizations of a RV.
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Random Variables (continued)

Notation

Capital latin letters for RVs, e.g. X ,Y ,Z , and the corresponsing

lowercase letters for their realizations, e.g. x , y , z .

Intuition

A RV is machine that spits out random numbers. The machine is

deterministic: outputs are random because inputs are random.

Why Random Variables?

Different random experiments can have the same structure: e.g.

flipping a fair coin vs. drawing a ball from an urn with 5 red and 5

blue. RVs abstract from coin vs. urn and let us study both at once.
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Example: Coin Flip Random Variable

S R

Tails 0

Heads 1

Figure: This random variable assigns numeric values to the random

experiment of flipping a fair coin once: Heads is assigned 1 and Tails 0.
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Which of these is a realization of the Coin Flip RV?

(a) Tails

(b) 2

(c) 0

(d) Heads

(e) 1/2
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What is the support set of the Coin Flip RV?

(a) {Heads,Tails}

(b) 1/2

(c) 0

(d) {0, 1}

(e) 1
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Let X denote the Coin Flip RV

What is P (X = 1)?

(a) 0

(b) 1

(c) 1/2

(d) Not enough information to determine
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Two Kinds of RVs: Discrete and Continuous

Discrete support set is discrete, e.g. {0, 1, 2},
{. . . ,−2,−1, 0, 1, 2, . . .}

Continuous support set is continuous, e.g. [−1, 1], R.

Start with the discrete case since it’s easier, but most of the ideas

we learn will carry over to the continuous case.
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Discrete Random Variables I
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Probability Mass Function (pmf)

A function that gives P(X = x) for any realization x in the support

set of a discrete RV X . We use the following notation for the pmf:

p(x) = P(X = x)

Plug in a realization x , get out a probability p(x).
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Probability Mass Function for Coin Flip RV

X =

{
0,Tails

1,Heads

p(0) = 1/2

p(1) = 1/2

p(x)

x
0 1

1/2

Figure: Plot of pmf for Coin Flip Random Variable
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Important Note about Support Sets

Whenever you write down the pmf of a RV, it is crucial to also

write down its Support Set. Recall that this is the set of all possible

realizations for a RV. Outside of the support set, all probabilities

are zero. In other words, the pmf is only defined on the support.

F.J. DiTraglia, Econ 103 Lecture 7 – Slide 26



Properties of Probability Mass Functions

If p(x) is the pmf of a random variable X , then

(i) 0 ≤ p(x) ≤ 1 for all x

(ii)
∑
all x

p(x) = 1

where “all x” is shorthand for “all x in the support of X .”
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Lecture #8 – Discrete RVs II

Cumulative Distribution Functions (CDFs)

The Bernoulli Random Variable

Definition of Expected Value

Expected Value of a Function

Linearity of Expectation
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Recall: Properties of Probability Mass Functions

If p(x) is the pmf of a random variable X , then

(i) 0 ≤ p(x) ≤ 1 for all x

(ii)
∑
all x

p(x) = 1

where “all x” is shorthand for “all x in the support of X .”
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Cumulative Distribution Function (CDF)
This Def. is the same for continuous RVs.

The CDF gives the probability that a RV X does not exceed a

specified threshold x0, as a function of x0

F (x0) = P(X ≤ x0)

Important!

The threshold x0 is allowed to be any real number. In particular, it

doesn’t have to be in the support of X !
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Discrete RVs: Sum the pmf to get the CDF

F (x0) =
∑
x≤x0

p(x)

Why?

The events {X = x} are mutually exclusive, so we sum to get the

probability of their union for all x ≤ x0:

F (x0) = P(X ≤ x0) = P

⋃
x≤x0

{X = x}

 =
∑
x≤x0

P(X = x) =
∑
x≤x0

p(x)
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Probability Mass Function

p(x)

x
0 1

1/2

p(0) = 1/2

p(1) = 1/2

Cumulative Dist. Function

F (x0)

x0

1

1
2

0 1
0

F (x0) =


0, x0 < 0
1
2 , 0 ≤ x0 < 1

1, x0 ≥ 1
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Properties of CDFs
These are also true for continuous RVs.

1. limx0→∞ F (x0) = 1

2. limx0→−∞ F (x0) = 0

3. Non-decreasing: x0 < x1 ⇒ F (x0) ≤ F (x1)

4. Right-continuous (“open” versus “closed” on prev. slide)

Since F (x0) = P(X ≤ x0), we have 0 ≤ F (x0) ≤ 1 for all x0
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Bernoulli Random Variable – Generalization of Coin Flip

Support Set

{0, 1} – 1 traditionally called “success,” 0 “failure”

Probability Mass Function

p(0) = 1− p

p(1) = p

Cumulative Distribution Function

F (x0) =


0, x0 < 0

1− p, 0 ≤ x0 < 1

1, x0 ≥ 1
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http://fditraglia.shinyapps.io/binom cdf/
Set the second slider to 1 and play around with the others.
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Average Winnings Per Trial

If the realizations of the coin-flip RV were payoffs, how much would

you expect to win per play on average in a long sequence of plays?

X =

{
$0,Tails

$1,Heads
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Expected Value (aka Expectation)

The expected value of a discrete RV X is given by

E [X ] =
∑
all x

x · p(x)

In other words, the expected value of a discrete RV is the

probability-weighted average of its realizations.

Notation

We sometimes write µ as shorthand for E [X ].
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Expected Value of Bernoulli RV

X =

{
0,Failure: 1− p

1, Success: p

∑
all x

x · p(x) = 0 · (1− p) + 1 · p = p
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Your Turn to Calculate an Expected Value

Let X be a random variable with support set {1, 2, 3} where

p(1) = p(2) = 1/3. Calculate E [X ].

E [X ] =
∑
all x

x · p(x) = 1× 1/3 + 2× 1/3 + 3× 1/3 = 2
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Random Variables and Parameters

Notation: X ∼ Bernoulli(p)

Means X is a Bernoulli RV with P(X = 1) = p and

P(X = 0) = 1− p. The tilde is read “distributes as.”

Parameter

Any constant that appears in the definition of a RV, here p.
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Constants Versus Random Variables

This is a crucial distinction that students sometimes miss:

Random Variables

I Suppose X is a RV – the values it takes on are random

I A function g(X ) of a RV is itself a RV as we’ll learn today.

Constants

I E [X ] is a constant (you should convince yourself of this)

I Realizations x are constants. What is random is which

realization the RV takes on.

I Parameters are constants (e.g. p for Bernoulli RV)

I Sample size n is a constant
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The St. Petersburg Game
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How Much Would You Pay?

How much would you be willing to pay for the right to play the

following game?

Imagine a fair coin. The coin is tossed once. If it falls

heads, you receive a prize of $2 and the game stops. If

not, it is tossed again. If it falls heads on the second

toss, you get $4 and the game stops. If not, it is tossed

again. If it falls heads on the third toss, you get $8 and

the game stops, and so on. The game stops after the

first head is thrown. If the first head is thrown on the x th

toss, the prize is $2x
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X = Trial Number of First Head

x 2x p(x) 2x · p(x)
1 2 1/2 1

2 4 1/4 1

3 8 1/8 1
...

...
...

...

n 2n 1/2n 1
...

...
...

...

E [Y ] =
∑
all x

2x · p(x) = 1 + 1 + 1 + . . . = ∞
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Functions of Random Variables

are Themselves Random

Variables
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Example: X ∼ Bernoulli(p), Y = (X + 1)2

Support Set for Y

{(0 + 1)2, (1 + 1)2} = {1, 4}

Probability Mass Function for Y

pY (y) =


1− p y = 1

p y = 4

0 otherwise

Expected Value of Y

∑
y∈{1,4}

y × pY (y) = 1× (1− p) + 4× p = 1 + 3p
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Example: X ∼ Bernoulli(p), Y = (X + 1)2

E [g(X )] = E [(X + 1)2]

∑
y∈{1,4}

y × pY (y) = 1× (1− p) + 4× p = 1 + 3p

g(E [X ]) = (E [X ] + 1)2

(E [X ] + 1)2 = (p + 1)2 = 1 + 2p + p2

In general: 1 + 3p 6= 1 + 2p + p2!
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E [g(X )] 6= g(E [X ])

(Expected value of Function 6= Function of Expected Value)
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Expectation of a Function of a Discrete RV

Let X be a random variable and g be a function. Then:

E [g(X )] =
∑
all x

g(x)p(x)

This is how we proceeded in the St. Petersburg Game Example
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Your Turn: Calculate E [X 2]

X has support {−1, 0, 1}, p(−1) = p(0) = p(1) = 1/3.

E [X 2] =
∑
all x

x2p(x) =
∑

x∈{−1,0,1}

x2p(x)

= (−1)2 · (1/3) + (0)2 · (1/3) + (1)2 · (1/3)

= 1/3 + 1/3

= 2/3 ≈ 0.67
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set.seed(794729)

sims <- sample(c(-1, 0, 1), size = 1e6, replace = TRUE,

prob = c(1/3, 1/3, 1/3))

head(sims)

## [1] 1 -1 0 0 1 1

mean(sims)

## [1] -0.001182

mean(sims^2)

## [1] 0.66682
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Linearity of Expectation
Holds for Continuous RVs as well, but proof is different.

Let X be a RV and a, b be constants. Then:

E [a+ bX ] = a+ bE [X ]

This is a Crucial Exception

In general E [g(X )] does not equal g(E [X ]). But in the special case

where g is a linear function, g(X ) = a+ bX , the two are equal.
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Example: Linearity of Expectation

Let X ∼ Bernoulli(1/3) and define Y = 3X + 2

1. What is E [X ]? E [X ] = 0× 2/3 + 1× 1/3 = 1/3

2. What is E [Y ]? E [Y ] = E [3X + 2] = 3E [X ] + 2 = 3
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Proof: Linearity of Expectation For Discrete RV

E [a+ bX ] =
∑
all x

(a+ bx)p(x)

=
∑
all x

p(x) · a+
∑
all x

p(x) · bx

= a
∑
all x

p(x) + b
∑
all x

x · p(x)

= a+ bE [X ]
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Lecture #9 – Discrete RVs III

Variance and Standard Deviation of a Random Variable

Binomial Random Variable
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Variance and Standard Deviation of a RV
The Defs are the same for continuous RVs, but the method of calculating will differ.

Variance (Var)

σ2 = Var(X ) = E
[
(X − µ)2

]
= E

[
(X − E [X ])2

]
Standard Deviation (SD)

σ =
√
σ2 = SD(X )
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Key Point

Variance and std. dev. are expectations of functions of a RV

It follows that:

1. Variance and SD are constants

2. To derive facts about them you can use the facts you know

about expected value
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How To Calculate Variance for Discrete RV?
Remember: it’s just a function of X !

Recall that µ = E [X ] =
∑
all x

xp(x)

Var(X ) = E
[
(X − µ)2

]
=
∑
all x

(x − µ)2p(x)
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Shortcut Formula For Variance

This is not the definition, it’s a shortcut for doing calculations:

Var(X ) = E
[
(X − µ)2

]
= E [X 2]− (E [X ])2

We’ll prove this in an upcoming lecture.
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Example: The Shortcut Formula

Let X ∼ Bernoulli(1/2). Calculate Var(X ).

E [X ] = 0× 1/2 + 1× 1/2 = 1/2

E [X 2] = 02 × 1/2 + 12 × 1/2 = 1/2

E [X 2]− (E [X ])2 = 1/2− (1/2)2 = 1/4
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Variance of Bernoulli RV – via the Shortcut Formula

Step 1 – E [X ]

µ = E [X ] =
∑

x∈{0,1}

p(x) · x = (1− p) · 0 + p · 1 = p

Step 2 – E [X 2]

E [X 2] =
∑

x∈{0,1}

x2p(x) = 02(1− p) + 12p = p

Step 3 – Combine with Shortcut Formula

σ2 = Var [X ] = E [X 2]− (E [X ])2 = p − p2 = p(1− p)
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Variance of a Linear Transformation

Var(a+ bX ) = E
[
{(a+ bX )− E (a+ bX )}2

]
= E

[
{(a+ bX )− (a+ bE [X ])}2

]
= E

[
(bX − bE [X ])2

]
= E [b2(X − E [X ])2]

= b2E [(X − E [X ])2]

= b2Var(X ) = b2σ2

The key point here is that variance is defined in terms of

expectation and expectation is linear.
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Variance and SD are NOT Linear

Var(a+ bX ) = b2σ2

SD(a+ bX ) = |b|σ

These should look familiar from the related results for sample

variance and std. dev. that you worked out on an earlier

problem set.
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Binomial Random Variable

Let X = the sum of n independent Bernoulli trials, each with

probability of success p. Then we say that: X ∼ Binomial(n, p)

Parameters

p = probability of “success,” n = # of trials

Support

{0, 1, 2, . . . , n}

Probability Mass Function (pmf)

p(x) =

(
n

x

)
px(1− p)n−x
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http://fditraglia.shinyapps.io/binom cdf/
Try playing around with all three sliders. If you set the second to 1 you get a Bernoulli.
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Where does the Binomial pmf come from?

Question

Suppose we flip a fair coin 3 times. What is the probability that we

get exactly 2 heads?

Answer

Three basic outcomes make up this event: {HHT ,HTH,THH},
each has probability 1/8 = 1/2× 1/2× 1/2. Basic outcomes are

mutually exclusive, so sum to get 3/8 = 0.375
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Where does the Binomial pmf come from?

Question

Suppose we flip an unfair coin 3 times, where the probability of

heads is 1/3. What is the probability that we get exactly 2 heads?

Answer

No longer true that all basic outcomes are equally likely, but those

with exactly two heads still are

P(HHT ) = (1/3)2(1− 1/3) = 2/27

P(THH) = 2/27

P(HTH) = 2/27

Summing gives 2/9 ≈ 0.22
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Where does the Binomial pmf come from?
Starting to see a pattern?

Suppose we flip an unfair coin 4 times, where the probability of

heads is 1/3. What is the probability that we get exactly 2 heads?

HHTT TTHH

HTHT THTH

HTTH THHT

Six equally likely, mutually exclusive

basic outcomes make up this event:(
4

2

)
(1/3)2(2/3)2
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R Commands for Binomial(n, p) RV

Probability Mass Function

dbinom(x, size, prob), where size is n and prob is p

Cumulative Distribution Function

pbinom(q, size, prob), where q is x0, size is n and prob is p

Make Random Draws

rbinom(n, size, prob), where n is the number of draws, size

is n and prob is p
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x <- 0:10

px <- dbinom(x, size = 10, prob = 0.3)

x0 <- seq(from = -2, to = 12, by = 0.01)

Fx <- pbinom(x0, size = 10, prob = 0.3)

par(mfrow = c(1, 2))

plot(x, px, type = 'h', ylab = 'p(x)', main = 'Binom(10, 0.3) pmf')

plot(x0, Fx, type = 'l', ylab = 'F(x)', main = 'Binom(10, 0.3) CDF')
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set.seed(5545)

sims <- rbinom(100, size = 10, prob = 0.3)

par(mfrow = c(1, 2))

rel_freq <- prop.table(table(sims))

plot(rel_freq, main = '100 Binom(10, 0.3) sims',

ylab = 'Relative Frequency')

plot(x, px, type = 'h', ylab = 'p(x)', main = 'Binomial(10, 0.3) pmf')
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Lecture #10 – Discrete RVs IV

Joint vs. Marginal Probability Mass Functions

Conditional Probability Mass Function & Independence

Expectation of a Function of Two Discrete RVs, Covariance

Linearity of Expectation Reprise, Properties of Binomial RV
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Multiple RVs at once - Definition of Joint PMF

Let X and Y be discrete random variables. The joint probability

mass function pXY (x , y) gives the probability of each pair of

realizations (x , y) in the support:

pXY (x , y) = P(X = x ∩ Y = y)
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Example: Joint PMF in Tabular Form

Y

1 2 3

X

0 1/8 0 0

1 0 1/4 1/8

2 0 1/4 1/8

3 1/8 0 0

F.J. DiTraglia, Econ 103 Lecture 10 – Slide 3



Plot of Joint PMF
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What is pXY (1, 2)?

Y

1 2 3

X

0 1/8 0 0

1 0 1/4 1/8

2 0 1/4 1/8

3 1/8 0 0

pXY (1, 2) = P(X = 1 ∩ Y = 2) = 1/4

pXY (2, 1) = P(X = 2 ∩ Y = 1) = 0
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Properties of Joint PMF

1. 0 ≤ pXY (x , y) ≤ 1 for any pair (x , y)

2. The sum of pXY (x , y) over all pairs (x , y) in the support is 1:

∑
x

∑
y

p(x , y) = 1
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Joint versus Marginal PMFs

Joint PMF

pXY (x , y) = P(X = x ∩ Y = y)

Marginal PMFs

pX (x) = P(X = x)

pY (y) = P(Y = y)

You can’t calculate a joint pmf from marginals alone but you can

calculate marginals from the joint!
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Marginals from Joint

pX (x) =
∑
all y

pXY (x , y)

pY (y) =
∑
all x

pXY (x , y)

Why?

pY (y) = P(Y = y) = P

 ⋃
all x

{X = x ∩ Y = y}


=

∑
all x

P(X = x ∩ Y = y) =
∑
all x

pXY (x , y)
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To get the marginals sum “into the margins” of the table.

Y

1 2 3

X

0 1/8 0 0 1/8

1 0 1/4 1/8 3/8

2 0 1/4 1/8 3/8

3 1/8 0 0 1/8

1

pX (0) = 1/8 + 0 + 0 = 1/8

pX (1) = 0 + 1/4 + 1/8 = 3/8

pX (2) = 0 + 1/4 + 1/8 = 3/8

pX (3) = 1/8 + 0 + 0 = 1/8F.J. DiTraglia, Econ 103 Lecture 10 – Slide 9



What is pY (2)?

Y

1 2 3

X

0 1/8 0 0

1 0 1/4 1/8

2 0 1/4 1/8

3 1/8 0 0

1/4 1/2 1/4 1

pY (1) = 1/8 + 0 + 0 + 1/8 = 1/4

pY (2) = 0 + 1/4 + 1/4 + 0 = 1/2

pY (3) = 0 + 1/8 + 1/8 + 0 = 1/4
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Definition of Conditional PMF
How does the distribution of y change with x?

pY |X (y |x) = P(Y = y |X = x) =
P(Y = y ∩ X = x)

P(X = x)
=

pXY (x , y)

pX (x)
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Conditional PMF of Y given X = 2

Y

1 2 3

X

0 1/8 0 0 1/8

1 0 1/4 1/8 3/8

2 0 1/4 1/8 3/8

3 1/8 0 0 1/8

pY |X (1|2) =
pXY (2, 1)

pX (2)
=

0

3/8
= 0

pY |X (2|2) =
pXY (2, 2)

pX (2)
=

1/4

3/8
= 2/3

pY |X (3|2) =
pXY (2, 3)

pX (2)
=

1/8

3/8
= 1/3
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What is pX |Y (1|2)?

Y

1 2 3

X

0 1/8 0 0

1 0 1/4 1/8

2 0 1/4 1/8

3 1/8 0 0

1/4 1/2 1/4

pX |Y (1|2) =
pXY (1, 2)

pY (2)
=

1/4

1/2
= 1/2

Similarly:

pX |Y (0|2) = 0, pX |Y (2|2) = 1/2, pX |Y (3|2) = 0
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Independent RVs: Joint Equals Product of Marginals

Definition

Two discrete RVs are independent if and only if

pXY (x , y) = pX (x)pY (y)

for all pairs (x , y) in the support.

Equivalent Definition

pY |X (y |x) = pY (y) and pX |Y (x |y) = pX (x)

for all pairs (x , y) in the support.
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Are X and Y Independent?

(A = YES, B = NO)

Y

1 2 3

X

0 1/8 0 0 1/8

1 0 1/4 1/8 3/8

2 0 1/4 1/8 3/8

3 1/8 0 0 1/8

1/4 1/2 1/4

pXY (2, 1) = 0

pX (2)× pY (1) = (3/8)× (1/4) 6= 0

Therefore X and Y are not independent.
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Expectation of Function of Two Discrete RVs

E [g(X ,Y )] =
∑
x

∑
y

g(x , y)pXY (x , y)
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Some Extremely Important Examples
Same For Continuous Random Variables

Let µX = E [X ], µY = E [Y ]

Covariance

σXY = Cov(X ,Y ) = E [(X − µX )(Y − µY )]

Correlation

ρXY = Corr(X ,Y ) =
σXY
σXσY
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Shortcut Formula for Covariance

Much easier for calculating:

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ]

I’ll mention this again in a few slides. . .
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Calculating Cov(X ,Y )

Y

1 2 3

X

0 1/8 0 0 1/8

1 0 1/4 1/8 3/8

2 0 1/4 1/8 3/8

3 1/8 0 0 1/8

1/4 1/2 1/4

E [X ] = 3/8 + 2× 3/8 + 3× 1/8 = 3/2

E [Y ] = 1/4 + 2× 1/2 + 3× 1/4 = 2

E [XY ] = 1/4× (2 + 4) + 1/8× (3 + 6 + 3)

= 3

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ]

= 3− 3/2× 2 = 0

Corr(X ,Y ) = Cov(X ,Y )/ [SD(X )SD(Y )] = 0

Hence, zero covariance (correlation) does not imply independence!
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Zero Covariance versus Independence

While zero covariance (correlation) does not imply independence,

independence does imply zero covariance (correlation).

You will prove this in an extension problem. . .
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Linearity of Expectation, Again
Holds for Continuous RVs as well, but different proof.

In general E [g(X ,Y )] 6= g(E [X ],E [Y ]). But if g is linear, then:

E [aX + bY + c] = aE [X ] + bE [Y ] + c

where X ,Y are random variables and a, b, c are constants.

There’s an optional proof on the course website.
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Application: Proof of Shortcut Formula for Variance

By the Linearity of Expectation,

Var(X ) = E [(X − µ)2] = E [X 2 − 2µX + µ2]

= E [X 2]− 2µE [X ] + µ2

= E [X 2]− 2µ2 + µ2

= E [X 2]− µ2
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Expected Value of Sum = Sum of Expected Values

Repeatedly applying the linearity of expectation,

E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn]

regardless of how the RVs X1, . . . ,Xn are related to each other. In

particular it doesn’t matter if they’re dependent or independent.
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Independent and Identically Distributed (iid) RVs

Example

X1,X2, . . .Xn ∼ iid Bernoulli(p)

Independent

Realization of one of the RVs gives no information about the

others.

Identically Distributed

Each Xi is the same kind of RV, with the same values for any

parameters. (Hence same pmf, cdf, mean, variance, etc.)
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Recall: Binomial(n, p) Random Variable

Definition

Sum of n independent Bernoulli RVs, each with probability of

“success,” i.e. 1, equal to p

Using Our New Notation

Let X1,X2, . . . ,Xn ∼ iid Bernoulli(p), Y = X1 + X2 + . . .+ Xn.

Then Y ∼ Binomial(n, p).
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Expected Value of Binomial RV

Use the fact that a Binomial(n, p) RV is defined as the sum of n iid

Bernoulli(p) Random Variables and the Linearity of Expectation:

E [Y ] = E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn]

= p + p + . . .+ p

= np
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Variance of a Sum 6= Sum of Variances!

Var(aX + bY ) = E
[
{(aX + bY )− E [aX + bY ]}2

]
...

= a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

You’ll fill in the missing steps as an extension problem. . .

Since σXY = ρσXσY , this is sometimes written as:

Var(aX + bY ) = a2σ2
X + b2σ2

Y + 2abρσXσY
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Independence ⇒ Var(X + Y ) = Var(X ) + Var(Y )

X and Y independent ⇒ Cov(X ,Y ) = 0. Hence:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

= Var(X ) + Var(Y )

Also true for three or more RVs

If X1,X2, . . . ,Xn are independent, then

Var(X1 + X2 + . . .Xn) = Var(X1) + Var(X2) + . . .+ Var(Xn)
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Crucial Distinction

Expected Value

Always true that

E [X1 + X2 + . . .+ Xn] = E [X1] + E [X2] + . . .+ E [Xn]

Variance

Not true in general that

Var [X1 + X2 + . . .+ Xn] = Var [X1] + Var [X2] + . . .+ Var [Xn]

except in the special case where X1, . . .Xn are independent (or at

least uncorrelated).
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Variance of Binomial Random Variable

Definition from Sequence of Bernoulli Trials

If X1,X2, . . . ,Xn ∼ iid Bernoulli(p) then

Y = X1 + X2 + . . .+ Xn ∼ Binomial(n, p)

Using Independence

Var [Y ] = Var [X1 + X2 + . . .+ Xn]

= Var [X1] + Var [X2] + . . .+ Var [Xn]

= p(1− p) + p(1− p) + . . .+ p(1− p)

= np(1− p)

F.J. DiTraglia, Econ 103 Lecture 10 – Slide 30



Lecture #11 – Continuous RVs I

Introduction: Probability as Area

Probability Density Function (PDF)

Relating the PDF to the CDF

Calculating the Probability of an Interval

Calculating Expected Value for Continuous RVs
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Continuous RVs – What Changes?

1. Probability Density Functions replace Probability Mass

Functions

2. Integrals Replace Sums

Everything Else is Essentially Unchanged!
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What is the probability of “Yellow?”
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From Twister to Density – Probability as Area
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For continuous RVs, probability is defined as area under a curve.

Zero area means zero probability!
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Probability Density Function (PDF)

For a continuous random variable X ,

P(a ≤ X ≤ b) =

∫ b

a
f (x) dx

where f (x) is the probability density function for X .

Extremely Important

For any realization x , P(X = x) = 0 since
∫ a
a f (x)dx = 0. In other

words, zero area means zero probability!
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For a Continuous RV, Zero Probability 6= Impossible

It is crucial to specify the support set of a continuous RV:

I Any x outside the support set of X is impossible.

I Any x in the support set of X is a possible outcome even

though P(X = x) = 0 for all x .

There is no way around this slightly awkward situation: it is a

consequence of defining probability as the area under a curve.
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Properties of PDFs

1. f (x) ≥ 0 for all x in the support of X and zero otherwise.

2.
∫∞
−∞ f (x) dx = 1

Warning: f (x) is not a probability

Can have f (x) > 1 for some x as long as
∫∞
−∞ f (x)dx = 1.

Relating the CDF to the PDF

F (x0) ≡ P(X ≤ x0) =

∫ x0

−∞
f (x) dx

F.J. DiTraglia, Econ 103 Lecture 11 – Slide 7



Example: Suppose X has Support Set [0, 1]

Let f (x) = 6x(1− x) for x ∈ [0, 1] and zero otherwise.

curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)')

abline(h = 1, lty = 2)
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Example: Suppose X has Support Set [0, 1]

Let f (x) = 6x(1− x) for x ∈ [0, 1] and zero otherwise.

Is f a valid PDF?

1. Is f (x) ≥ 0 for x ∈ [0, 1] and zero otherwise?

2. Does the total area under f equal one?

∫ ∞

−∞
f (x)dx =

∫ 1

0
6x(1− x)dx = 6

∫ 1

0
(x − x2)dx

= 6

(
x2

2
− x3

3

)∣∣∣∣1
0

= 1

So yes, f is a valid PDF X
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Integrating a Function in R

pdf <- function(x) {
6 * x * (1 - x)

}

integrate(pdf, lower = 0, upper = 1)

## 1 with absolute error < 1.1e-14

You can use this to check your work!
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Example: f (x) = 6x(1− x) for x ∈ [0, 1], zero otherwise.

What is the CDF of X?

F (x0) ≡ P(X ≤ x0) =

∫ x0

−∞
f (x) dx =

∫ x0

0
6x(1− x) dx

= 6

(
x2

2
− x3

3

)∣∣∣∣x0
0

= 3x20 − 2x30

F (x0) =


0, x0 < 0

3x20 − 2x30 , 0 ≤ x0 ≤ 1

1, x0 > 1
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par(mfrow = c(1,2))

curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)')

curve(3 * x^2 - 2 * x^3, from = 0, to = 1, ylab = 'F(x)')
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par(mfrow = c(1,1))
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Relationship between PDF and CDF

Integrate PDF to get CDF

F (x0) = P(X ≤ x0) =

∫ x0

−∞
f (x) dx

Differentiate CDF to get PDF

f (x) =
d

dx
F (x)

This is just the First Fundamental Theorem of Calculus.
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Example: f (x) = 6x(1− x) for x ∈ [0, 1], zero otherwise.

Differentiate CDF to get PDF

f (x) =
d

dx
F (x) =

d

dx

(
3x2 − 2x3

)
= 6x − 6x2

= 6x(1− x)
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Key Idea: Probability of an Interval for a Continuous RV

P(a ≤ X ≤ b) =

∫ b

a
f (x) dx = F (b)− F (a)

This is just the Second Fundamental Theorem of Calculus.
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Example: f (x) = 6x(1− x) for x ∈ [0, 1], zero otherwise.

Two equivalent ways of calculating P(0.2 ≤ X ≤ 0.6)

cdf <- function(x0) {
3 * x0^2 - 2 * x0^3

}
cdf(0.6) - cdf(0.2)

## [1] 0.544

integrate(pdf, lower = 0.2, upper = 0.6)

## 0.544 with absolute error < 6e-15
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Example: f (x) = 6x(1− x) for x ∈ [0, 1], zero otherwise.
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0.544

P(0.2 ≤ X ≤ 0.6) = 0.544
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Expected Value for Continuous RVs

E [X ] =

∫ ∞

−∞
xf (x) dx

E [g(X )] =

∫ ∞

−∞
g(x)f (x) dx

Integrals Replace Sums!
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What about all those rules for expected value?

I The only difference between expectation for continuous versus

discrete is how we do the calculation.

I Sum for discrete; integral for continuous.

I All properties of expected value continue to hold!

I Includes linearity, shortcut for variance, etc.
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Variance of Continuous RV

Var(X ) =

∫ ∞

−∞
(x − µ)2f (x) dx

where

µ = E [X ] =

∫ ∞

−∞
xf (x) dx

Shortcut formula still holds for continuous RVs!

Var(X ) = E [X 2]− (E [X ])2
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Example: f (x) = 6x(1− x) for x ∈ [0, 1], zero otherwise.

E [X ] =

∫ ∞

−∞
xf (x) dx =

∫ 1

0

x · 6x(1− x) dx = 6

(
x3

3
− x4

4

)∣∣∣∣1
0

=
1

2

E [X 2] =

∫ ∞

−∞
x2f (x) dx =

∫ 1

0

x2 · 6x(1− x) = 6

(
x4

4
dx − x5

5

)∣∣∣∣1
0

=
3

10

Var(X ) = E [X 2]− (E [X ])2 =
3

10
−
(
1

2

)2

= 1/20

Complete the algebra at home and check using integrate in R.
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Simulating a Beta(2, 2) Random Variable

Our example from above is a special case of the Beta distribution.

The command rbeta(n, 2, 2) makes n draws for this RV. These

simulations agree with our calculations from above:

set.seed(12345)

sims <- rbeta(10000, 2, 2)

mean(sims)

## [1] 0.5007002

var(sims)

## [1] 0.05012776
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Simulating a Beta(2, 2) Random Variable

mean(sims^2)

## [1] 0.3008234

hist(sims, freq = FALSE)

Histogram of sims

sims
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The Uniform Random Variable

Several of your review questions along with one of your extension

questions will involve the so-called Uniform Random Variable:

Uniform(0,1) Random Variable

f (x) = 1 for x ∈ [0, 1], zero otherwise.

Uniform(a,b) Random Variable

f (x) = 1/(b − a) for x ∈ [a, b], zero otherwise.

Simulating from a Uniform RV

runif(n, a, b) makes n draws from a Uniform(a, b) RV.
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Simulating Uniform Random Variables

sims1 <- runif(10000, 0, 1)

sims2 <- runif(10000, -1, 2)

par(mfrow = c(1, 2))

hist(sims1, freq = FALSE)

hist(sims2, freq = FALSE)

Histogram of sims1
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par(mfrow = c(1,1))
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We don’t have time to cover these in Econ 103:

Joint Density

P(a ≤ X ≤ b ∩ c ≤ Y ≤ d) =

∫ d

c

∫ b

a
f (x , y) dxdy

Marginal Densities

fX (x) =
∫∞
−∞ f (x , y) dy , fY (y) =

∫∞
−∞ f (x , y) dx

Independence in Terms of Joint and Marginal Densities

fXY (x , y) = fX (x)fY (y)

Conditional Density

fY |X = fXY (x , y)/fX (x)
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So where does that leave us?

What We’ve Accomplished

We’ve covered all the basic properties of RVs on this Handout .

Where are we headed next?

Next up is the most important RV of all: the normal RV. After

that it’s time to do some statistics!

How should you be studying?

If you master the material on RVs (both continuous and discrete)

and in particular the normal RV the rest of the semester will seem

easy. If you don’t, you’re in for a rough time. . .
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Lecture #12 – Continuous RVs II: The Normal RV

The Standard Normal RV

Linear Combinations and the N(µ, σ2) RV

Transforming to a Standard Normal

Percentiles/Quantiles for Continuous RVs

Symmetric Intervals for the N(0, 1) RV
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Available on Etsy, Made using R!

Figure: Standard Normal RV (PDF)
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Standard Normal RV: PDF at left, CDF at right
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I Notation: X ∼ N(0, 1)

I Support Set = (−∞,∞)

I PDF symmetric about 0, bell-shaped

I E [X ] = 0, Var [X ] = 1

I For Econ 103, don’t need formula for PDF.

I No closed-form expression for CDF.
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https://fditraglia.shinyapps.io/normal cdf/
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R Commands for the Standard Normal RV

PDF f (x) dnorm(x)

CDF F (x) pnorm(x)

Make n Random Draws rnorm(n)

Mnemonic

I norm = “Normal”

I d = “density”

I p = “probability”

I r = “random”
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par(mfrow = c(1, 2))

curve(dnorm(x), -4, 4, main = 'N(0,1) PDF')

curve(pnorm(x), -4, 4, main = 'N(0,1) CDF')
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par(mfrow = c(1, 1))
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set.seed(1234)

normal_sims <- rnorm(10000)

mean(normal_sims)

## [1] 0.006115893

var(normal_sims)

## [1] 0.9752143
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hist(normal_sims, freq = FALSE)

Histogram of normal_sims
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Y ∼ N(µ, σ2) Random Variable

Linear Function of N(0, 1)

Let X ∼ N(0, 1) and define Y = µ+ σX where µ, σ are constants.

Properties of N(µ, σ2)

I Parameters: µ, σ2.

I Support Set = (−∞,∞)

I PDF symmetric about µ, bell-shaped.

I Special case: N(0, 1) has µ = 0 and σ2 = 1.

What are the mean and variance of a N(µ, σ2)? How do we know?
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Expected Value: µ shifts PDF
all of these have σ = 1
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Figure: Blue µ = −1, Black µ = 0, Red µ = 1
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Standard Deviation: σ scales PDF
all of these have µ = 0
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Figure: Blue σ2 = 4, Black σ2 = 1, Red σ2 = 1/4
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Linear Function of Normal RV is a Normal RV
Let a, b be constants with b 6= 0

X ∼ N(µ, σ2) =⇒ (a+ bX ) ∼ N(a+ bµ, b2σ2)

Key Point

Linear transformation of a normal RV is also a normal RV!
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Example

Suppose X ∼ N(µ, σ2) and let Z = (X − µ)/σ. What is the

distribution of Z?

(a) N(µ, σ2)

(b) N(µ, σ)

(c) N(0, σ2)

(d) N(0, σ)

(e) N(0, 1)
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Linear Combinations of Multiple Independent Normals
Let a, b, c be constants and at least one of a, b nonzero.

X ∼ N(µx , σ
2
x) is independent of Y ∼ N(µy , σ

2
y ) then

aX + bY + c ∼ N(aµx + bµy + c , a2σ2
x + b2σ2

y )

Key Points

I Result assumes independence

I Extends to more than two Normal RVs
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Suppose X1,X2,∼ iid N(µ, σ2)

Let X̄ = (X1 + X2)/2. What is the distribution of X̄?

(a) N(µ, σ2/2)

(b) N(0, 1)

(c) N(µ, σ2)

(d) N(µ, 2σ2)

(e) N(2µ, 2σ2)
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The “Empirical Rule” Gives Probabilities for a Normal RV!

Empirical Rule

Approximately 68% of observations within µ± σ

Approximately 95% of observations within µ± 2σ

Nearly all observations within µ± 3σ

If X ∼ N(µ, σ2), then:

P(µ− σ ≤ X ≤ µ+ σ) ≈ 0.683

P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.954

P(µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.997
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For a continuous RV, P(a ≤ X ≤ b) =

∫ b

a
f (x) dx = F (b)− F (a)

pnorm(1) - pnorm(-1) # Approx. 68% Prob. in (-1,1)

## [1] 0.6826895

pnorm(2) - pnorm(-2) # Approx. 95% Prob. in (-2,2)

## [1] 0.9544997

pnorm(3) - pnorm(-3) # > 99% Prob. in (-3,3)

## [1] 0.9973002
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pnorm(1)≈ 0.84
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pnorm(1) - pnorm(-1)≈ 0.84− 0.16
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pnorm(1) - pnorm(-1)≈ 0.68
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Middle 68% of N(0, 1) ⇒ approx. (−1, 1)
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Transforming to a Standard Normal: Example #1

Suppose X ∼ N(µ = 1, σ2 = 4). What is P(−1 ≤ X ≤ 3)?

Key Point

If X ∼ N(µ, σ2) then X−µ
σ ∼ N(0, 1).

P(−1 ≤ X ≤ 3) = P(−2 ≤ X − 1 ≤ 2)

= P

(
−1 ≤ X − 1

2
≤ 1

)
= pnorm(1) - pnorm(-1)

≈ 0.68
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Transforming to a Standard Normal: Example #2

Suppose X ∼ N(3, 16). What is P(X ≥ 10)?

Key Point

If X ∼ N(µ, σ2) then X−µ
σ ∼ N(0, 1).

P(X ≥ 10) = 1− P(X ≤ 10)

= 1− P(X − 3 ≤ 7)

= 1− P

(
X − 3

4
≤ 7

4

)
= 1 - pnorm(7/4) ≈ 0.04
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Quantile Function of a Continuous RV
Quantiles are also known as Percentiles

CDF F (x0)

I F (x0) ≡ P(X ≤ x0) =

∫ x0

−∞
f (x) dx

I Input threshold x0, get probability that X ≤ x0.

Quantile Function Q(p)

I Q(p) = F−1(p)

I Input probability p, get threshold x0 such that P(X ≤ x0) = p.

I In other words: p =

∫ x0

−∞
f (x) dx
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The Median of a Continuous RV

Median = Q(0.5)

Median is the threshold x0

such that P(X ≤ x0) = 0.5.

Median of N(µ, σ2) RV

Normal RV is symmetric

about µ so its median is µ. −4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4
x

f(
x)

Figure: Median of N(0, 1) is zero.
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R Commands for the Standard Normal RV

PDF f (x) dnorm(x)

CDF F (x) pnorm(x)

Quantile Function Q(p) qnorm(p)

Make n Random Draws rnorm(n)

Mnemonic

I norm = “Normal”

I d = “density”

I p = “probability”

I r = “random.”

I q = “quantile”
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−4 −2 0 2 4
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0

0.
1
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2
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3

0.
4

x

f(
x)

qnorm(0.9) # 90th Percentile of Standard Normal

## [1] 1.281552

pnorm(1.281552) # Check our answer using the CDF

## [1] 0.9000001
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

50% Probability in Blue; 50% Probability in Red

Boundaries of blue region are (−c , c)
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

Symmetric Interval: each red region has 25% probability

Boundaries of blue region are (−c , c)
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

Let’s find the right-hand boundary: c
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

25% Probability to the right of c

Hence, 75% to the left of c
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

For what c is 75% of the probability to the left of c?
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

qnorm(0.75) ≈ 0.67

Therefore c = 0.67!
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If X ∼ N(0, 1), for what c is P(−c ≤ X ≤ c) = 0.5?

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

Checking our work: pnorm(0.67) - pnorm(-0.67) ≈ 0.5 X
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Lecture #13 – Sampling Distributions and Estimation I

Candy Weighing Experiment

Random Sampling Redux

Unbiasedness of Sample Mean

Standard Error of the Mean

Some More Intuition for Sampling Distributions

Estimator versus Estimate
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Weighing a Random Sample

Bag Contains 100 Candies

Estimate total weight of candies by weighing a random sample of

size 5 and multiplying the result by 20.

Your Chance to Win

The bag of candies and a digital scale will make their way around

the room during the lecture. Each student gets a chance to draw 5

candies and weigh them.

Student with closest estimate wins the bag of candy!
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Weighing a Random Sample

Procedure

When the bag and scale reach you, do the following:

1. Fold the top of the bag over and shake to randomize.

2. Randomly draw 5 candies without replacement.

3. Weigh your sample and record the result in grams along with

your name on the sign-up sheet.

4. Replace your sample and shake again to re-randomize.

5. Pass bag and scale to next person.
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Sampling and Estimation

Questions to Answer

1. How accurately do sample statistics estimate population

parameters?

2. How can we quantify the uncertainty in our estimates?

3. What’s so good about random sampling?
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Random Sample

Verbal Definition from Lecture #1

Each member of population is chosen strictly by chance, so that:

(1) selection of one individual doesn’t influence selection of any

other, (2) each individual is just as likely to be chosen, (3) every

possible sample of size n has the same chance of selection.

Mathematical Definition

X1,X2, . . . ,Xn ∼ iid f (x) if continuous

X1,X2, . . . ,Xn ∼ iid p(x) if discrete
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Random Sample Means Sample With Replacement

I Sampling without replacement creates dependence between

samples (Extension Problem #11).

I But if the population is large relative to the sample, this

dependence is negligible: candy experiment isn’t bogus!
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Example: Sampling from Econ 103 Class List

I Pretend the students in this class are a population of interest.

I What is the population mean height?

I In reality I know this since I know all of your heights!

I Suppose I didn’t: I could take a random sample of n students

and use the sample mean to estimate the population mean.

I I know all of your heights, so I can simulate this in R.

Use this idea to explore the properties of random sampling. . .
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Example: Sampling from the Econ 103 Class List

survey <- read.csv('http://ditraglia.com/econ103/old_survey.csv')

height <- na.omit(survey$height)

hist(height, freq = FALSE, xlab = '',

main = 'Population Dist. of Height (inches)')

Population Dist. of Height (inches)

D
en

si
ty

60 65 70 75

0.
00

0.
04

0.
08
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# What is the population mean?

mean(height)

## [1] 67.54545

# Draw a random sample of n = 5 and compute the sample mean

set.seed(3827)

random_sample <- sample(height, 5, replace = TRUE)

random_sample

## [1] 65 75 69 67 69

mean(random_sample)

## [1] 69
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Sampling Distribution of X̄n =
1
n

∑n
i=1 Xi

Choose 5 Students from Class List with Replacement

�
�

�
��	

Sample 1

?

x̄1

?

Sample 2

?

x̄2

...

...

@
@

@
@@R

Sample M

?

x̄M

Repeat M times → get M different sample means

Sampling Dist: relative frequencies of the x̄i when M = ∞
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set.seed(2985)

# Function: take a random sample of size n, compute sample mean

draw_xbar <- function(n) {
random_sample <- sample(height, size = n, replace = TRUE)

mean(random_sample)

}
# Calculate the mean of 10000 random samples with n = 5

M <- 10000

xbar_5 <- replicate(M, draw_xbar(5))

# Compare simulated sample means to population mean: 67.5454 in.

head(xbar_5)

## [1] 65.0 64.6 69.6 68.6 64.6 65.8
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# Compare popn. dist. of height to histogram of the simulated x-bars

par(mfrow = c(1,2))

hist(height, freq = FALSE, main = 'Population')

hist(xbar_5, freq = FALSE, main = 'Sampling Dist. of Xbar (n = 5)')

Population

height
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08

Sampling Dist. of Xbar (n = 5)

xbar_5
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0.

00
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10
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20

par(mfrow = c(1,1))
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# Population mean height

mean(height)

## [1] 67.54545

# Mean of sampling dist. of x-bar (n = 5)

mean(xbar_5)

## [1] 67.55678

# Population variance

var(height)

## [1] 19.74504

# Variance of sampling dist of x-bar (n = 5)

var(xbar_5)

## [1] 3.780202
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Histograms of sampling distribution of sample mean X̄n

Random Sampling With Replacement, 10000 Reps. Each

Mean = 67.6, Var = 3.6

n = 5

62 66 70 74

0
10

00
Mean = 67.5, Var = 1.8

n = 10

64 66 68 70 72

0
60

0
14

00

Mean = 67.5, Var = 0.8

n = 20

64 66 68 70

0
10

00

Mean = 67.5, Var = 0.2

n = 50

66.0 67.0 68.0 69.0

0
10

00
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Population Distribution vs. Sampling Distribution of X̄n

Popn. Mean = 67.5, Popn. Var. = 19.7

Height in Inches

H
is

to
gr

am
 D

en
si

ty

60 65 70 75

0.
00
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02

0.
04

0.
06

0.
08

Sampling Dist. of X̄n

n Mean Variance

5 67.6 3.6

10 67.5 1.8

20 67.5 0.8

50 67.5 0.2

Things to Notice:

1. Sampling dist. “correct on average”

2. Sampling variability decreases with n

3. Sampling dist. bell-shaped even though population isn’t!
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Mean of Sampling Distribution of X̄n

X1, . . . ,Xn ∼ iid with mean µ

E [X̄n] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi ] =
1

n

n∑
i=1

µ =
nµ

n
= µ

Hence, sample mean is “correct on average.” The formal term for

this is unbiased.
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Variance of Sampling Distribution of X̄n

X1, . . . ,Xn ∼ iid with mean µ and variance σ2

Var [X̄n] = Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var(Xi )

=
1

n2

n∑
i=1

σ2 =
nσ2

n2
=

σ2

n

The sampling variance of X̄n decreases linearly with sample size.
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Standard Error

Std. Dev. of a sampling distribution is called a standard error.

Standard Error of the Sample Mean

SE (X̄n) =
√
Var

(
X̄n

)
=
√
σ2/n = σ/

√
n
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Step 1: Population as RV rather than List of Objects

Old Way

In the 2016 election, 65,853,625 out of

137,100,229 voters voted for Hillary Clinton

New Way

Bernoulli(p = 0.48) RV

Old Way

List of heights for 97 million US adult males

with mean 69 in and std. dev. 6 in

New Way

N(µ = 69, σ2 = 36) RV

Second example assumes distribution of height is bell-shaped.
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Step 2: iid RVs Represent Random Sampling from Popn.

Hillary Voters Example

Poll random sample of 1000 people who voted in 2016:

X1, . . . ,X1000 ∼ iid Bernoulli(p = 0.48)

Height Example

Measure the heights of random sample of 50 US males:

Y1, . . . ,Y50 ∼ iid N(µ = 69, σ2 = 36)

Key Question

What do the properties of the population imply about the

properties of the sample?
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The rest of the probabilities. . .

Suppose that exactly half of US voters plan to vote for Hillary

Clinton and we poll a random sample of 4 voters.

P (Exactly 0 Hillary Voters in the Sample) = 0.0625

P (Exactly 1 Hillary Voters in the Sample) = 0.25

P (Exactly 2 Hillary Voters in the Sample) = 0.375

P (Exactly 3 Hillary Voters in the Sample) = 0.25

P (Exactly 4 Hillary Voters in the Sample) = 0.0625

You should be able to work these out yourself. If not, review the

lecture slides on the Binomial RV.
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Population Size is Irrelevant Under Random Sampling

Crucial Point

None of the preceding calculations involved the population size: I

didn’t even tell you what it was! We’ll never talk about population

size again in this course.

Why?

Draw with replacement =⇒ only the sample size and the

proportion of Hillary supporters in the population matter.
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(Sample) Statistic

Any function of the data alone, e.g. sample mean x̄ = 1
n

∑n
i=1 xi .

Used to estimate a population parameter: e.g. x̄ estimates of µ.
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Step 3: Random Sampling ⇒ Sample Statistics are RVs

This is the crucial point of the course: if we draw a random

sample, the dataset we get is random. Since a statistic is a

function of the data, it is a random variable!
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Sampling Distribution

Under random sampling, a statistic is a RV so it has a PDF if

continuous or PMF if discrete: this is its sampling distribution.

Sampling Dist. of Sample Mean in Polling Example

p(0) = 0.0625

p(0.25) = 0.25

p(0.5) = 0.375

p(0.75) = 0.25

p(1) = 0.0625
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Contradiction? No, but we need better terminology. . .

I Under random sampling, a statistic is a RV

I Given dataset is fixed so statistic is a constant number

I Distinguish between: Estimator vs. Estimate

Estimator

Description of a general procedure.

Estimate

Particular result obtained from applying the procedure.
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X̄n is an Estimator = Procedure = Random Variable

1. Take a random sample: X1, . . . ,Xn

2. Average what you get: X̄n = 1
n

∑n
i=1 Xi

x̄ is an Estimate = Result of Procedure = Constant

I Result of taking a random sample was the dataset: x1, . . . , xn

I Result of averaging the observed data was x̄ = 1
n

∑n
i=1 xi

Sampling Distribution of X̄n

Thought experiment: suppose I were to repeat the procedure of

taking the mean of a random sample over and over forever. What

relative frequencies would I get for the sample means?
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Lecture #14 – Sampling Distributions and Estimation II

Bias of an Estimator

Why divide by n − 1 in sample variance?

Biased Sampling and the Candy-Weighing Experiment

Efficiency: Choosing between Unbiased Estimators

Mean-Squared Error: Choosing Between Biased Estimators

Consistency and the Law of Large Numbers
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Unbiased means “Right on Average”

Bias of an Estimator

Let θ̂n be a sample estimator of a population parameter θ0. The

bias of θ̂n is E [θ̂n]− θ0.

Unbiased Estimator

A sample estimator θ̂n of a population parameter θ0 is called

unbiased if E [θ̂n] = θ0
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Why (n − 1) for sample variance?

We will show that having n − 1 in the denominator ensures:

E [S2] = E

[
1

n − 1

n∑
i=1

(
Xi − X̄

)2]
= σ2

under random sampling.
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Why (n − 1) for sample variance?

Step #1 – Steps similar to Extension Problem #3 give:

n∑
i=1

(
Xi − X̄

)2
=

[
n∑

i=1

(Xi − µ)2
]
− n(X̄ − µ)2
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Why (n − 1) for sample variance?

Step # 2 – Take Expectations of Step # 1:

E

[
n∑

i=1

(
Xi − X̄

)2]
= E

[{
n∑

i=1

(Xi − µ)2
}

− n(X̄ − µ)2

]

= E

[
n∑

i=1

(Xi − µ)2
]
− E

[
n(X̄ − µ)2

]
=

n∑
i=1

E
[
(Xi − µ)2

]
− n E

[
(X̄ − µ)2

]
Where we have used the linearity of expectation.
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Why (n − 1) for sample variance?

Step # 3 – Use assumption of random sampling:

X1, . . . ,Xn ∼ iid with mean µ and variance σ2

E

[
n∑

i=1

(
Xi − X̄

)2]
=

n∑
i=1

E
[
(Xi − µ)2

]
− n E

[
(X̄ − µ)2

]
=

n∑
i=1

Var(Xi )− n E
[
(X̄ − E [X̄ ])2

]
=

n∑
i=1

Var(Xi )− n Var(X̄ ) = nσ2 − σ2

= (n − 1)σ2

Since E [X̄ ] = µ and Var(X̄ ) = σ2/n under random sampling.
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Why (n − 1) for sample variance?

Finally – Divide Step # 3 by (n − 1):

E [S2] = E

[
1

n − 1

n∑
i=1

(
Xi − X̄

)2]
=

(n − 1)σ2

n − 1
= σ2

Hence, having (n − 1) in the denominator ensures that the sample

variance is “correct on average,” that is unbiased.
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A Different Estimator of the Population Variance

σ̂2 =
1

n

n∑
i=1

(
Xi − X̄

)2

E [σ̂2] = E

[
1

n

n∑
i=1

(
Xi − X̄

)2]
=

1

n
E

[
n∑

i=1

(
Xi − X̄

)2]
=

(n − 1)σ2

n

Bias of σ̂2

E [σ̂2]− σ2 =
(n − 1)σ2

n
− σ2 =

(n − 1)σ2

n
− nσ2

n
= −σ2/n
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How Large is the Average Family?

How many brothers and sisters are in your family,

including yourself?
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What’s Going On Here?

Twenty years ago the average number of children per family was

about 2.0. But our average was much higher!

Biased Sample!

I Zero children ⇒ didn’t send any to college

I Sampling by children so large families oversampled
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Candy Weighing: 80 Estimates, Each With n = 5

θ̂ = 20× (X1 + . . .+ X5)

Summary of Sampling Dist.

Overestimates 63

Exactly Correct 0

Underestimates 17

E [θ̂] 1194 grams

SD(θ̂) 206 grams

Actual Mass: θ0 =1004 grams

Histogram

Est. Weight of All Candies (grams)
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What was in the bag?

100 Candies Total:

I 20 Fun Size Snickers Bars (large)

I 30 Reese’s Miniatures (medium)

I 50 Tootsie Roll “Midgees” (small)

So What Happened?

Not a random sample! The Snickers bars were oversampled.

Could we have avoided this? How?
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Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2. True or False:

X1 is an unbiased estimator of µ

(a) True

(b) False

TRUE!
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How to choose between two unbiased estimators?

Suppose X1,X2, . . .Xn ∼ iid with mean µ and variance σ2

From Last Lecture:

E [X̄n] = µ, Var(X̄n) = σ2/n

Compared To:

E [X1] = µ, Var(X1) = σ2

Both X̄n and X1 are unbiased estimators of µ, but X̄n has a lower

variance!
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Efficiency - Compare Unbiased Estimators by Variance

Let θ̂1 and θ̂2 be unbiased estimators of θ0. We say that θ̂1 is more

efficient than θ̂2 if Var(θ̂1) < Var(θ̂2).
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Bias and Variance are Both Bad Things

Low Bias, Low Variance Low Bias, High Variance

High Bias, Low Variance High Bias, High Variance
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Mean-Squared Error: Trading Bias Against Variance

I Unbiased estimator with a huge variance is bad.

I Highly biased estimator with a low variance is bad.

I Often there is a “tradeoff” between bias and variance:

I Low bias estimators often have high variance.

I Low variance estimators often have high bias.

Mean-Squared Error (MSE):

Compare estimators accounting for both bias and variance:

MSE (θ̂) = Bias(θ̂)2 + Var(θ̂)

Root Mean-Squared Error (RMSE):
√
MSE
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Calculate MSE for Candy Experiment

Histogram

Est. Weight of All Candies (grams)

F
re

qu
en

cy

800 1000 1200 1400 1600

0
5

10
15

E [θ̂] 1194 grams

θ0 1004 grams

SD(θ̂) 206 grams

Bias = 1194 grams− 1004 grams

= 190 grams

MSE = Bias2 + Variance

= (1902 + 2062) grams2

= 7.8536× 104 grams2

RMSE =
√
MSE = 280 grams
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Finite Sample versus Asymptotic Properties of Estimators

Finite Sample Properties

For fixed sample size n what are the properties of the sampling

distribution of θ̂n? (E.g. bias and variance.)

Asymptotic Properties

What happens to the sampling distribution of θ̂n as the sample size

n gets larger and larger?

1. Law of Large Numbers (today)

2. Central Limit Theorem (Lecture 16)
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Consistency

Definition

We say that an estimator θ̂n is consistent for a parameter θ0 if

limn→∞MSE(θ̂n) = 0, in other words, if both the bias and variance

of θ̂n disappear as the sample size grows.

Intuitively, this means θ̂n becomes “less random” as the sample

size increases, eventually converging to a constant: θ0.
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Law of Large Numbers

Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2. Then the sample

mean X̄n = 1
n

∑n
i=1 Xi is consistent for the population mean µ.

How do we know this?

From our last lecture:

E [X̄n] = µ, Var(X̄n) = σ2/n

and hence:

MSE(X̄n) = Bias(X̄n)
2 + Var(X̄n)

=
(
E [X̄n]− µ

)2
+ Var(X̄n)

= 0 + σ2/n → 0
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set.seed(12345)

n <- 10000

x <- rnorm(n, mean = 0, sd = 10)

xbar_n <- cumsum(x) / (1:n)

plot(xbar_n, type = 'l', xlab = 'n', ylab = 'Sample Mean')
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Lecture #15 – Confidence Intervals I

Confidence Interval for Mean of Normal Population (σ2 Known)

Interpreting a Confidence Interval

Margin of Error and Width
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Today – Simplest Example of a Confidence Interval

I Suppose the population is N(µ, σ2)

I We know σ2 but not µ

I Draw random sample X1,X2, . . . ,Xn ∼ iid N(µ, σ2)

I Observe value of sample mean x̄n (e.g. 69 inches)

I What is a plausible range for µ?

I How confident are we? Can we make this precise?

Next time we’ll look at more realistic and interesting examples. . .
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Suppose X1,X2, . . . ,Xn ∼ iid N(µ, σ2). What is the sampling

distribution of
√
n(X̄n − µ)/σ?

(a) N(µ, σ2)

(b) N(0, 1)

(c) N(0, σ)

(d) N(µ, 1)

(e) Not enough information to determine.
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X1,X2, . . . ,Xn ∼ iid N(µ, σ2)

√
n(X̄n − µ)/σ =

X̄n − µ

σ/
√
n

=
X̄n − E [X̄n]

SD(X̄n)
∼ N(0, 1)

Remember that we call the standard deviation of a sampling

distribution the standard error, written SE , so

X̄n − µ

SE (X̄n)
∼ N(0, 1)
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What happens if I rearrange?

P

(
−2 ≤ X̄n − µ

SE (X̄n)
≤ 2

)
= 0.95

P
(
−2 · SE ≤ X̄n − µ ≤ 2 · SE

)
= 0.95

P
(
−2 · SE − X̄n ≤ −µ ≤ 2 · SE − X̄n

)
= 0.95

P
(
X̄n − 2 · SE ≤ µ ≤ X̄n + 2 · SE

)
= 0.95
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Confidence Intervals

Confidence Interval (CI)

Range (A,B) constructed from the sample data with specified

probability of containing a population parameter:

P(A ≤ θ0 ≤ B) = 1− α

Confidence Level

The specified probability, typically denoted 1− α, is called the

confidence level. For example, if α = 0.05 then the confidence

level is 0.95 or 95%.
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Confidence Interval for Mean of Normal Population
Population Variance Known

The interval X̄n ± 2σ/
√
n has approximately 95% probability of

containing the population mean µ, provided that:

X1,X2, . . . ,Xn ∼ iid N(µ, σ2)

But how are we supposed to interpret this?
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Confidence Interval is a Random Variable!

1. X1, . . . ,Xn are RVs ⇒ X̄n is a RV (repeated sampling)

2. µ, σ and n are constants

3. Confidence Interval X̄n ± 2σ/
√
n is also a RV!
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Meaning of Confidence Interval

Formal Meaning

If we sampled many times we’d get many different sample means,

each leading to a different confidence interval. Approximately 95%

of these intervals will contain µ.

Rough Intuition

What values of µ are consistent with the data?
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CI for Population Mean: Repeated Sampling

X1,X2, . . . ,Xn ∼ iid N(µ, σ2)

�
�

�
��	

Sample 1

?

x̄1

?

x̄1 ± 2σ/
√
n

?

Sample 2

?

x̄2

?

x̄2 ± 2σ/
√
n

...

...

@
@

@
@@R

Sample M

?

x̄M

?

x̄M ± 2σ/
√
n

Repeat M times → get M different intervals

Large M ⇒ Approx. 95% of these Intervals Contain µ
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Simulation Example: X1, . . . ,X5 ∼ iid N(0, 1), M = 20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Xn

Figure: Twenty confidence intervals of the form X̄n ± 2σ/
√
n where

n = 5, σ2 = 1 and the true population mean is 0.
F.J. DiTraglia, Econ 103 Lecture 15 – Slide 11



Meaning of Confidence Interval for θ0

P(A ≤ θ0 ≤ B) = 1− α

Each time we sample we’ll get a different confidence interval,

corresponding to different realizations of the random variables A

and B. If we sample many times, approximately 100× (1− α)% of

these intervals will contain the population parameter θ0.
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Confidence Intervals: Some Terminology

Margin of Error

When a CI takes the form θ̂ ±ME , ME is the Margin of Error.

Lower and Upper Confidence Limits

The lower endpoint of a CI is the lower confidence limit (LCL),

while the upper endpoint is the upper confidence limit (UCL).

Width of a Confidence Interval

The distance |UCL− LCL| is called the width of a CI. This means

exactly what it says.
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What is the Margin of Error

In the preceding example of a 95% confidence interval for the

mean of a normal population when the population variance is

known, which of these is the margin of error?

(a) σ/
√
n

(b) X̄n

(c) σ

(d) 2σ/
√
n

(e) 1/
√
n

2σ/
√
n, since the CI is X̄n ± 2σ/

√
n
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What is the Width?

In the preceding example of a 95% confidence interval for the

mean of a normal population when the population variance is

known, which of these is the width of the interval?

(a) σ/
√
n

(b) 2σ/
√
n

(c) 3σ/
√
n

(d) 4σ/
√
n

(e) 5σ/
√
n

4σ/
√
n, since the CI is X̄n ± 2σ/

√
n
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Example: Calculate the Margin of Error

X1, . . . ,X100 ∼ iid N(µ, 1) but we don’t know µ.

Want to create a 95% confidence interval for µ.

What is the margin of error?

The confidence interval is X̄n ± 2σ/
√
n so

ME = 2σ/
√
n = 2 · 1/

√
100 = 2/10 = 0.2
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Example: Calculate the Lower Confidence Limit

X1, . . . ,X100 ∼ N(µ, 1) but we don’t know µ.

Want to create a 95% confidence interval for µ.

We found that ME = 0.2. The sample mean x̄ = 4.9. What is the

lower confidence limit?

LCL = x̄ −ME = 4.9− 0.2 = 4.7
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Example: Similarly for the Upper Confidence Limit. . .

X1, . . . ,X100 ∼ N(µ, 1) but we don’t know µ.

Want to create a 95% confidence interval for µ.

We found that ME = 0.2. The sample mean x̄ = 4.9. What is the

upper confidence limit?

UCL = x̄ +ME = 4.9 + 0.2 = 5.1
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Example: 95% CI for Normal Mean, Popn. Var. Known

X1, . . . ,X100 ∼ N(µ, 1) but we don’t know µ.

95% CI for µ = [4.7, 5.1]

What values of µ are plausible?

The data actually came from a N(5, 1) Distribution.
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Want to be more certain? Use higher confidence level.

What value of c should we use to get a 100×(1− α)% CI for µ?

P

(
−c ≤ X̄n − µ

σ/
√
n

≤ c

)
= 1− α

P
(
X̄n − cσ/

√
n ≤ µ ≤ X̄n + cσ/

√
n
)

= 1− α

Take c = qnorm(1− α/2)

X̄n ± qnorm(1− α/2)× σ/
√
n
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What Affects the Margin of Error?

X̄n ± qnorm(1− α/2)× σ/
√
n

Sample Size n

ME decreases with n: bigger sample =⇒ tighter interval

Population Std. Dev. σ

ME increases with σ: more variable population =⇒ wider interval

Confidence Level 1− α

ME increases with 1− α: higher conf. level =⇒ wider interval

Conf. Level 90% 95% 99%

α 0.1 0.05 0.01

qnorm(1− α/2) 1.64 1.96 2.56
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Lecture #16 – Confidence Intervals II

Comparing intervals with different confidence levels

What if the population is normal but σ is unknown?

What if the population isn’t normal? – The Central Limit Theorem

CI for a Proportion Using the Central Limit Theorem
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X̄n − 3SE X̄n + 3SE

99.7%

X̄n − 2SE X̄n + 2SE

95%

X̄n − SE X̄n + SE

68%

X̄n

Figure: Each CI gives a range of “plausible” values for the population mean µ,
centered at the sample mean X̄n. Values near the middle are “more plausible”
in the sense that a small reduction in confidence level gives a much shorter
interval centered in the same place. This is because the sample mean is
unlikely to take on values far from the population mean in repeated sampling.
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Assume that: X1, . . . ,Xn ∼ iid N(µ, σ2)

σ Known

P

[
−qnorm(1− α/2) ≤ X̄n − µ

σ/
√
n

≤ qnorm(1− α/2)

]
= 1− α

=⇒ Confidence Interval: X̄n ± qnorm(1− α/2)× σ/
√
n

σ Unknown

Idea: estimate σ with S . Unfortunately:

X̄n − µ

S/
√
n

IS NOT A NORMAL RV!
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50000 Simulation replications: X1, . . . ,X5 ∼ iid N(µ, σ2)

−4 −2 0 2 4
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0.
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0.
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n(x − µ) σ

Middle 95%

−4 −2 0 2 4
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0

0.
1

0.
2

0.
3

0.
4

n(x − µ) S

Middle 95%

Figure: In each plot the red curve is the pdf of the standard normal RV.

At left: the sampling distribution of
√
5(X̄5 − µ)/σ is standard normal.

At right: the sampling distribution of
√
5(X̄5 − µ)/S clearly isn’t!
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Student-t Random Variable

If X1, . . . ,Xn ∼ iid N(µ, σ2), then

X̄n − µ

S/
√
n

∼ t(n − 1)

I Parameter: ν = n − 1 “degrees of freedom”

I Support = (−∞,∞)

I Symmetric around zero, but mean and variance may not exist!

I Degrees of freedom ν control “thickness of tails”

I As ν → ∞, t → Standard Normal.
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Student-t PDFs

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

ν = ∞
ν = 3
ν = 1
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Who was “Student?”
“Guinnessometrics: The Economic Foundation of Student’s t”

“Student” is the pseudonym used in 19 of 21

published articles by William Sealy Gosset, who

was a chemist, brewer, inventor, and self-trained

statistician, agronomer, and designer of

experiments ... [Gosset] worked his entire adult

life ... as an experimental brewer for one

employer: Arthur Guinness, Son & Company,

Ltd., Dublin, St. Jamess Gate. Gosset was a

master brewer and rose in fact to the top of the

top of the brewing industry: Head Brewer of

Guinness.
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CI for Mean of Normal Distribution, Popn. Var. Unknown

Same argument as we used when the variance was known, except

with t(n − 1) rather than standard normal distribution:

P

(
−c ≤ X̄n − µ

S/
√
n

≤ c

)
= 1− α

P

(
X̄n − c

S√
n
≤ µ ≤ X̄n + c

S√
n

)
= 1− α

c = qt(1− α/2, df = n − 1)

X̄n ± qt(1− α/2, df = n − 1)
S√
n
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Comparison of CIs for Mean of Normal Distribution
100× (1− α)% Confidence Level

X1, . . . ,Xn ∼ iid N(µ, σ2)

Known Population Std. Dev. (σ)

X̄n ± qnorm(1− α/2)
σ√
n

Unknown Population Std. Dev. (σ)

X̄n ± qt(1− α/2, df = n − 1)
S√
n
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Comparison of Normal and t CIs

Table: Values of qt(1− α/2, df = n − 1) for various choices of n and α.

n 1 5 10 30 100 ∞
α = 0.10 6.31 2.02 1.81 1.70 1.66 1.64

α = 0.05 12.71 2.57 2.23 2.04 1.98 1.96

α = 0.01 63.66 4.03 3.17 2.75 2.63 2.58

As n → ∞, t(n − 1) → N(0, 1)

In a sense, using the t-distribution involves making a “small-sample

correction.” In other words, it is only when n is fairly small that

this makes a practical difference for our confidence intervals.
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Am I Taller Than The Average American Male?

Source: Centers for Disease Control (pg. 16)

Sample Mean 69 inches

Sample Std. Dev. 6 inches

Sample Size 5647

My Height 73 inches

ŜE(X̄n) = s/
√
n

= 6/
√
5647

≈ 0.08

Assuming the population is normal,

X̄n ± qt(1− α/2, df = n − 1) ŜE (X̄n)

What is the approximate value of

qt(1-0.05/2, df = 5646)?

For large n, t(n − 1) ≈ N(0, 1), so the

answer is approximately 2

What is the ME for the 95% CI?

ME ≈ 0.16 =⇒ 69± 0.16
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The Central Limit Theorem

Suppose that X1, . . . ,Xn are a random sample from a some

population that is not necessarily normal and has an unknown

mean µ. Then, provided that n is sufficiently large,

X̄n − µ

S/
√
n

≈ N(0, 1)

We will use this fact to create approximate CIs for population

mean even if we know nothing about the population.
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Example: Uniform(0,1) Population, n = 20
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Example: χ2(5) Population, n = 20
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Example: Bernoulli(0.3) Population, n = 20
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Are US Voters Really That Ignorant?
Pew: “What Voters Know About Campaign 2012”

The Data

Of 771 registered voters polled, only 39% correctly identified John

Roberts as the current chief justice of the US Supreme Court.

Research Question

Is the majority of voters unaware that John Roberts is the current

chief justice, or is this just sampling variation?

Assume Random Sampling...
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Confidence Interval for a Proportion

What is the appropriate probability model for the sample?

X1, . . . ,Xn ∼ iid Bernoulli(p), 1 = Know Roberts is Chief Justice

What is the parameter of interest?

p = Proportion of voters in the population who know Roberts is

Chief Justice.

What is our estimator?

Sample Proportion: p̂ = (
∑n

i=1 Xi )/n
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Sample Proportion is the Sample Mean!

Let X1, . . . ,Xn ∼ iid Bernoulli(p). Since p̂ =
1

n

n∑
i=1

Xi = X̄n,

E [p̂] = E (X̄n) = E [Xi ] = p

Var(p̂) = Var(X̄n) = Var(Xi )/n

SE (p̂) =
√
Var(p̂) =

√
p(1− p)

n

ŜE (p̂) =

√
p̂(1− p̂)

n
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Central Limit Theorem Applied to Sample Proportion

Central Limit Theorem: Intuition

Sample means are approximately normally distributed provided the

sample size is large even if the population is non-normal.

CLT For Sample Mean

X̄n − µ

S/
√
n

≈ N(0, 1)

CLT for Sample Proportion

p̂ − p√
p̂(1−p̂)

n

≈ N(0, 1)

In this example, the population is Bernoulli(p) rather than normal.

The sample mean is p̂ and the population mean is p.
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Approximate 95% CI for Population Proportion

p̂ − p√
p̂(1−p̂)

n

≈ N(0, 1)

P

−2 ≤ p̂ − p√
p̂(1−p̂)

n

≤ 2

 ≈ 0.95

P

(
p̂ − 2

√
p̂(1− p̂)

n
≤ p ≤ p̂ + 2

√
p̂(1− p̂)

n

)
≈ 0.95
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100× (1− α) CI for Population Proportion (p)

X1, . . . ,Xn ∼ iid Bernoulli(p)

p̂ ± qnorm(1− α/2)

√
p̂(1− p̂)

n

Approximation based on the CLT. Works well provided n is large

and p isn’t too close to zero or one.
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Example: Bernoulli(0.9) Population, n = 20
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Example: Bernoulli(0.9) Population, n = 100
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Approximate 95% CI for Population Proportion

39% of 771 Voters Polled Correctly Identified Chief Justice Roberts

ŜE (p̂) =

√
p̂(1− p̂)

n
=

√
(0.39)(0.61)

771
≈ 0.018

What is the ME for an approximate 95% confidence interval?

ME ≈ 2× ŜE (X̄n) ≈ 0.04

What can we conclude?

Approximate 95% CI: (0.35, 0.43)
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Lecture #17 – Confidence Intervals III

Sampling Dist. of (X̄ − Ȳ ) – Normal Populations, Variances Known

CI for Difference of Population Means Using CLT

CI for Difference of Population Proportions Using CLT

Matched Pairs versus Independent Samples
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Sampling Dist. of (X̄n − Ȳm) – Normal Popns. Vars. Known

Suppose X1, . . . ,Xn ∼ iid N(µx , σ
2
x) indep. of Y1, . . . ,Ym ∼ iid N(µy , σ

2
y )

SE (X̄n − Ȳm) =

√
σ2
x

n
+

σ2
y

m(
X̄n − Ȳm

)
− (µx − µy )

SE (X̄n − Ȳm)
∼ N(0, 1)

You should be able to prove this using what we’ve learned about RVs.
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CI for (µX − µY ) – Indep. Normal Popns. σ2
X , σ

2
Y Known

(X̄n − Ȳm)± qnorm(1− α/2) SE (X̄n − Ȳm)

SE (X̄n − Ȳm) =

√
σ2
x

n
+

σ2
y

m
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CI for Difference of Population Means Using CLT

Setup: Independent Random Samples

X1, . . . ,Xn ∼ iid with unknown mean µX & unknown variance σ2
X

Y1, . . . ,Ym ∼ iid with unknown mean µY & unknown variance σ2
Y

where each sample is independent of the other

We Do Not Assume the Populations are Normal!
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Difference of Sample Means X̄n − Ȳm and the CLT

What We Have

Approx. sampling dist. for individual sample means from CLT:

X̄n ≈ N
(
µX , S

2
X/n

)
, Ȳm ≈ N

(
µY , S

2
Y /m

)
What We Want

Sampling Distribution of the difference X̄n − Ȳm

Use Independence of the Two Samples

X̄n − Ȳm ≈ N

(
µX − µY ,

S2
X

n
+

S2
Y

m

)
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CI for Difference of Pop. Means (Independent Samples)

X1, . . . ,Xn ∼ iid with mean µX and variance σ2
X

Y1, . . . ,Ym ∼ iid with mean µY and variance σ2
Y

where each sample is independent of the other

(
X̄n − Ȳm

)
± qnorm(1− α/2) ŜE (X̄n − Ȳm)

ŜE (X̄n − Ȳm) =

√
S2
X

n
+

S2
Y

m

Approximation based on the CLT. Works well provided n,m large.
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The Anchoring Experiment

At the beginning of the semester you were each shown a “random

number.” In fact the numbers weren’t random: there was a “Hi”

group that was shown 65 and a “Lo” group that was shown 10.

You were randomly assigned to one of these two groups and shown

your “random” number. You were then asked what proportion of

UN member states are located in Africa.
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Load Data for Anchoring Experiment

data_url <- "http://www.ditraglia.com/econ103/survey-spring-2019.csv"

survey <- read.csv(data_url)

anchoring <- survey[,c("rand.num", "africa.percent")]

head(anchoring)

## rand.num africa.percent

## 1 10 9

## 2 65 27

## 3 65 20

## 4 10 35

## 5 10 15

## 6 10 24
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Boxplot of Anchoring Experiment

boxplot(africa.percent ~ rand.num, data = anchoring)

●

●

●

10 65

0
20

40
60

80
10

0
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Anchoring Experiment

Observational or Experimental Data?
Randomized Experiment drew from a bag of “random” numbers

Are the two samples independent?
Yes: I told you not to show your number to any other students or consult
with them in any way.

What is the Research Question?
Does “anchoring” cause of bias in decision-making?
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Past Semester’s Anchoring Experiment

10 65
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“Lo” Group – Shown 10

m = 43

ȳ = 17.1

s2y = 86

“Hi” Group – Shown 65

n = 46

x̄ = 30.7

s2x = 253
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ME for approx. 95% for Difference of Means

“Lo” Group

ȳ = 17.1

m = 43

s2y = 86

“Hi” Group

x̄ = 30.7

n = 46

s2x = 253

X̄n − Ȳm = 30.7− 17.1 = 13.6

ŜE (X̄Hi − ȲLo) =
√
253/46 + 86/43 ≈ 2.7 ⇒ ME ≈ 5.4

Approximate 95% CI (8.2, 19) What can we conclude?
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Confidence Interval for a Difference of Proportions via CLT

What is the appropriate probability model for the sample?

X1, . . . ,Xn ∼ iid Bernoulli(p) independently of

Y1, . . . ,Ym ∼ iid Bernoulli(q)

What is the parameter of interest?

The difference of population proportions p − q

What is our estimator?

The difference of sample proportions: p̂ − q̂ where:

p̂ =
1

n

n∑
i=1

Xi q̂ =
1

m

m∑
i=1

Yi
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Difference of Sample Proportions p̂ − q̂ and the CLT

What We Have

Approx. sampling dist. for individual sample proportions from CLT:

p̂ ≈ N

(
p,

p̂(1− p̂)

n

)
, q̂ ≈ N

(
q,

q̂(1− q̂)

m

)

What We Want

Sampling Distribution of the difference p̂ − q̂

Use Independence of the Two Samples

p̂ − q̂ ≈ N

(
p − q,

p̂(1− p̂)

n
+

q̂(1− q̂)

m

)
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Approximate CI for Difference of Popn. Proportions (p− q)

X1, . . . ,Xn ∼ iid Bernoulli(p)

Y1, . . . ,Ym ∼ iid Bernoulli(q)

where each sample is independent of the other

(p̂ − q̂)± qnorm(1− α/2) ŜE (p̂ − q̂)

ŜE (p̂ − q̂) =

√
p̂(1− p̂)

n
+

q̂(1− q̂)

m

Approximation based on the CLT. Works well provided n,m large

and p, q aren’t too close to zero or one.
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Are Republicans Better Informed Than Democrats?
Pew: “What Voters Know About Campaign 2012”

Of the 239 Republicans surveyed, 47% correctly identified John

Roberts as the current chief justice. Only 31% of the 238

Democrats surveyed correctly identified him. Is this difference

meaningful or just sampling variation?

Again, assume random sampling.
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ME for approx. 95% for Difference of Proportions

47% of 239 Republicans vs. 31% of 238 Democrats identified Roberts

Republicans

p̂ = 0.47

n = 239

ŜE(p̂) =

√
p̂(1− p̂)

n
≈ 0.032

Democrats

q̂ = 0.31

m = 238

ŜE(q̂) =

√
q̂(1− q̂)

m
≈ 0.030

Difference: (Republicans - Democrats)

p̂ − q̂ = 0.47− 0.31 = 0.16

ŜE(p̂ − q̂) =

√
ŜE(p̂)2 + ŜE(q̂)2 ≈ 0.044 =⇒ ME ≈ 0.09

Approximate 95% CI (0.07, 0.25) What can we conclude?
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Which is the Harder Exam?

Here are the scores from two midterms:

Student Exam 1 Exam 2 Difference

1 57.1 60.7 3.6

2 77.1 77.9 0.7

3 83.6 93.6 10.0
...

...
...

...

69 75.0 74.3 −0.7

70 96.4 86.4 −10.0

71 78.6 82.9 4.3

Sample Mean: 79.6 81.4 1.8

Is it true that students score, on average, better on Exam 2 or is

this just sampling variation?
F.J. DiTraglia, Econ 103 Lecture 17 – Slide 18



Are the two samples independent?

Suppose we treat the scores on the first midterm as one sample

and the scores on the second as another. Are these samples

independent?

(a) Yes

(b) No

(c) Not Sure
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Matched Pairs Data – Dependent Samples

The samples are dependent: each includes the same students:

Student Exam 1 Exam 2 Difference

1 57.1 60.7 3.6
...

...
...

...

71 78.6 82.9 4.3

Sample Mean: 79.6 81.4 1.8

Sample Corr. 0.54

This is really a one-sample problem if we consider the difference

between each student’s score on Exam 2 and Exam 1. This setup

is referred to as matched pairs data.
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Solving this as a One-Sample Problem

Let Di = Xi − Yi be the difference of student i ’s exam scores.

I calculated the following in R:

D̄n =
1

n

n∑
i=1

Di ≈ 1.8

S2
D =

1

n − 1

n∑
i=1

(Di − D̄)2 ≈ 124

ŜE (D̄n) = (SD/
√
n) ≈

√
124/71 ≈ 1.3

Approximate 95% CI Based on the CLT:

1.8± 2.6 = (−0.8, 4.4) What is our conclusion?
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How do Independent Samples & Matched Pairs Differ?

Mean of Differences = Difference of Means

D̄n ≡ 1
n

∑
i=1Di = X̄n − Ȳn

But Correlation Affects the Variance

S2
D ≡ 1

n−1

∑n
i=1(Di − D̄n)

2 = S2
X + S2

Y − 2SXSY rXY

rXY > 0 =⇒ S2
D < S2

X + S2
Y

rXY = 0 =⇒ S2
D = S2

X + S2
Y

rXY < 0 =⇒ S2
D > S2

X + S2
Y
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Mean of Differences equals Difference of Means

Student Exam 1 Exam 2 Difference

1 57.1 60.7 3.6
...

...
...

...

71 78.6 82.9 4.3

Sample Mean: 79.6 81.4 1.8

D̄n = 1.8

X̄n − Ȳn = 81.4− 79.6 = 1.8 X
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Calculating S2
D from S2

X , S
2
Y and rXY

Student Exam 1 Exam 2 Difference

1 57.1 60.7 3.6
...

...
...

...

71 78.6 82.9 4.3

Sample Var. 117 151 124

Sample Corr. 0.54

117 + 151− 2× 0.54×
√
117× 151 ≈ 124 X

This agrees with our calculations based on the differences.
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The “Wrong CI” (Assuming Independence)

Student Exam 1 Exam 2 Difference

Sample Size 71 71 71

Sample Mean 79.6 81.4 1.8

Sample Var. 117 151 124

Sample Corr. 0.54

Wrong Interval – Assumes Independence

1.8± 2×
√
117/71 + 151/71 =⇒ (−2.1, 5.7)

Correct Interval – Matched Pairs

1.8± 2×
√

124/71 =⇒ (−0.8, 4.4)

Top CI is too wide: since exam scores are positively correlated the
variance of the differences is less than the sum of the variances.
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CIs for a Difference of Means – Two Cases

Independent Samples

Two independent samples: X1, . . . ,Xn and Y1, . . . ,Ym.

Matched Pairs

Matched pairs (X1,Y1), . . . , (Xn,Yn) where Xi is not independent

of Yi but each pair (Xi ,Yi ) is independent of the other pairs.

Crucial Points

I Learn to recognize matched pairs and independent samples

setups since the CIs are different!

I Two equivalent ways to construct matched pairs CI:

1. Method 1: use sample mean and std. dev. of Di = Xi − Yi

2. Method 2: use X̄n, Ȳn, along with SX , SY and rXY
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Lecture #18 – Hypothesis Testing I

The Pepsi Challenge

Analogy between Hypothesis Testing and a Criminal Trial

Steps in a Hypothesis Test
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The Pepsi Challenge

Our expert claims to be able to tell the difference between Coke

and Pepsi. Let’s put this to the test!

I Eight cups of soda

I Four contain Coke

I Four contain Pepsi

I The cups are randomly arranged

I How can we use this experiment to tell if our expert can really

tell the difference?
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The Results:

# of Cokes Correctly Identified:

What do you think? Can our expert really tell the difference?

(a) Yes

(b) No
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If you just guess randomly, what is the probability of identifying all

four cups of Coke correctly?

I
(8
4

)
= 70 ways to choose four of the eight cups.

I If guessing randomly, each of these is equally likely

I Only one of the 70 possibilities corresponds to correctly

identifying all four cups of Coke.

I Thus, the probability is 1/70 ≈ 0.014
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Probabilities if Guessing Randomly

# Correct 0 1 2 3 4

Prob. 1/70 16/70 36/70 16/70 1/70
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# Correct 0 1 2 3 4

Prob. 1/70 16/70 36/70 16/70 1/70

If you’re just guessing, what is the probability of identifying at

least three Cokes correctly?

I Probabilities of mutually exclusive events sum.

I P(all four correct) = 1/70

I P(exactly 3 correct )= 16/70

I P(at least three correct) = 17/70 ≈ 0.24
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The Pepsi Challenge

I Even if you’re just guessing randomly, the probability of

correctly identifying three or more Cokes is around 24%

I In contrast, the probability of identifying all four Cokes

correctly is only around 1.4% if you’re guessing randomly.

I We should probably require the expert to get them all right. . .

I What if the expert gets them all wrong? This also has

probability 1.4% if you’re guessing randomly. . .

That was a hypothesis test! We’ll go through the details in a

moment, but first an analogy. . .
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Criminal Trial

I The person on trial is either innocent

or guilty (but not both!)

I “Innocent Until Proven Guilty”

I Only convict if evidence is “beyond a

reasonable doubt”

I Not Guilty rather than Innocent

I Acquit 6= Innocent

I Two Kinds of Errors:

I Convict the innocent

I Acquit the guilty

I Convicting the innocent is a worse

error. Want this to be rare even if it

means acquitting the guilty.

Hypothesis Testing

I Either the null hypothesis H0 or the

alternative H1 hypothesis is true.

I Assume H0 to start

I Only reject H0 in favor of H1 if there

is strong evidence.

I Fail to reject rather than Accept H0

I (Fail to reject H0) 6= (H0 True)

I Two Kinds of Errors:

I Reject true H0 (Type I)

I Don’t reject false H0 (Type II)

I Type I errors (reject true H0) are

worse: make them rare even if that

means more Type II errors.

F.J. DiTraglia, Econ 103 Lecture 18 – Slide 8



How is the Pepsi Challenge a Hypothesis Test?

Null Hypothesis H0

Can’t tell the difference between Coke and Pepsi: just guessing.

Alternative Hypothesis H1

Able to tell which ones are Coke and which are Pepsi.

Type I Error – Reject H0 even though it’s true

Decide expert can tell the difference when she’s really just guessing.

Type II Error – Fail to reject H0 even though it’s false

Decide expert just guessing when she really can tell the difference.
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How do we carry out a hypothesis test?

Step 1 – Specify H0 and H1

I Pepsi Challenge: H0 – our “expert” is guessing randomly

I Pepsi Challenge: H1 – our “expert” can tell which is Coke

Step 2 – Choose a Test Statistic Tn

I Tn uses sample data to measure the plausibility of H0 vs. H1

I Pepsi Challenge: Tn = Number of Cokes correctly identified

I Lots of Cokes correct ⇒ implausible that you’re just guessing
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Step 3 – Calculate Distribution of Tn under H0

I Under the null = Under H0 = Assuming H0 is true

I To carry out our test, need sampling dist. of Tn under H0

I H0 must be “specific enough” that we can do the calculation.

I Pepsi Challenge:

# Correct 0 1 2 3 4

Prob. 1/70 16/70 36/70 16/70 1/70
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Step 4 – Choose a Critical Value c

# Correct 0 1 2 3 4

Prob. 1/70 16/70 36/70 16/70 1/70

I Pepsi Challenge: correctly identify many cokes ⇒ implausible you’re

guessing at random.

I Decision Rule: reject H0 if Tn > c , where c is the critical value.

I Choose c to ensure P(Type I Error) is small. But how small?

I Significance level α = max. prob. of Type I error we will allow

I Choose c so that if H0 is true P(Tn > c) ≤ α

I Pepsi Challenge: if you are guessing randomly, then

I P(Tn > 3) = 1/70 ≈ 0.014

I P(Tn > 2) = 16/70 + 1/70 ≈ 0.23
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How do we carry out a hypothesis test?

# Correct 0 1 2 3 4

Prob. 1/70 16/70 36/70 16/70 1/70

Step 1 – Specify Null Hypothesis H0 and alternative Hypothesis H1

Step 2 – Choose Test Statistic Tn

Step 3 – Calculate sampling dist of Tn under H0

Step 4 – Choose Critical Value c

Step 5 – Look at the data: if Tn > c, reject H0.

Pepsi Challenge

If α = 0.05 we need c = 3 so that P(Tn > 3) ≤ α under H0.

Based on the results for our expert, would we reject H0?

F.J. DiTraglia, Econ 103 Lecture 18 – Slide 13



Lecture #19 – Hypothesis Testing II

Test for the mean of a normal population (variance known)

Relationship Between Confidence Intervals and Hypothesis Tests

P-values
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A Simple Example

Suppose X1, . . . ,X100 ∼ iid N(µ, σ2 = 9) and we want to test

H0 : µ = 2

H1 : µ 6= 2

Step 1 – Specify Null Hypothesis H0 and alternative Hypothesis H1 X

Step 2 – Choose Test Statistic Tn

If X̄ is far from 2 then µ = 2 is implausible. Why?
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Suppose X1, . . . ,X100 ∼ iid N(2, σ2 = 9). What is the sampling

distribution of X̄?

(a) N(0, 1)

(b) t(99)

(c) N(2, 0.3)

(d) N(2, 1)

(e) N(2, 0.09)

F.J. DiTraglia, Econ 103 Lecture 19 – Slide 3



If X̄n is far from 2, then µ = 2 is implausible

Since X1, . . . ,X100 ∼ iid N(µ, 9), if µ = 2 then X̄ ∼ N(2, 0.09)

P(a ≤ X̄ ≤ b) = P

(
a− 2

3/10
≤ X̄ − 2

3/10
≤ b − 2

3/10

)
= P

(
a− 2

0.3
≤ Z ≤ b − 2

0.3

)
where Z ∼ N(0, 1) so we see that if H0 : µ = 2 is true then

P(1.7 ≤ X̄ ≤ 2.3) = P(−1 ≤ Z ≤ 1) ≈ 0.68

P(1.4 ≤ X̄ ≤ 2.6) = P(−2 ≤ Z ≤ 2) ≈ 0.95

P(1.1 ≤ X̄ ≤ 2.9) = P(−3 ≤ Z ≤ 3) > 0.99
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Step 2 – Choose Test Statistic Tn

I Reject H0 : µ = 2 if the sample mean is far from 2.

I ⇒ Tn should depend on the distance from X̄ to 2, i.e. |X̄ − 2|.

I We can make our subsequent calculations much easier if we

choose a scale for Tn that is convenient under H0. . .

µ = 2 ⇒ X̄ − 2 ∼ N(0, 0.09)

X̄ − 2

0.3
∼ N(0, 1)

So we will set Tn =

∣∣∣∣ X̄ − 2

0.3

∣∣∣∣
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A Simple Example: X1, . . . ,X100 ∼ iid N(µ, σ2 = 9)

Step 1 – H0 : µ = 2, H1 : µ 6= 2 X

Step 2 – Tn =

∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ X
Step 3 – If µ = 2 then

(
X̄ − 2

0.3

)
∼ N(0, 1) X

Step 4 – Choose Critical Value c

(i) Specify significance level α.

(ii) Choose c so that P(Tn > c) = α under H0 : µ = 2.
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Choose c so that P(Tn > c) = α under H0

Tn =

∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ and µ = 2 =⇒ X̄ − 2

0.3
∼ N(0, 1)

P

(∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ > c

)
= α

1− P

(∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ ≤ c

)
= α

P

(∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ ≤ c

)
= 1− α

P

(
−c ≤ X̄ − 2

0.3
≤ c

)
= 1− α

Hence: c = qnorm(1− α/2) which should look familiar!
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A Simple Example: X1, . . . ,X100 ∼ iid N(µ, σ2 = 9)

Step 1 – H0 : µ = 2, H1 : µ 6= 2 X

Step 2 – Tn =

∣∣∣∣ X̄ − 2

0.3

∣∣∣∣ X
Step 3 – If µ = 2 then

(
X̄ − 2

0.3

)
∼ N(0, 1) X

Step 4 – c = qnorm(1− α/2) X

Step 5 – Look at the data: if Tn > c, reject H0

I Suppose I choose α = 0.05. Then c ≈ 2.

I I observe a sample of 100 observations. Suppose x̄ = 1.34

Tn =

∣∣∣∣ x̄ − 2

0.3

∣∣∣∣ = ∣∣∣∣1.34− 2

0.3

∣∣∣∣ = 2.2

I Since Tn > c , I reject H0 : µ = 2.

F.J. DiTraglia, Econ 103 Lecture 19 – Slide 8



Reporting the Results of a Test

Our Example: X1, . . . ,X100 ∼ iid N(µ, 9)

I H0 : µ = 2 vs. H1 : µ 6= 2

I Tn = |(X̄n − 2)/0.3|

I α = 0.05 =⇒ c ≈ 2

Suppose x̄ = 1.34

Then Tn = 2.2. Since this is greater than c for α = 0.05, we reject

H0 : µ = 2 at the 5% significance level.

Suppose instead that x̄ = 1.82

Then Tn = 0.6. Since this is less than c for α = 0.05, we fail to

reject H0 : µ = 2 at the 5% signifcance level.
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General Version of Preceding Example

X1, . . . ,Xn ∼ iid N(µ, σ2) with σ2 known and we want to test:

H0 : µ = µ0

H1 : µ 6= µ0

where µ0 is some specified value for the population mean.

I |X̄n − µ0| tells how far sample mean is from µ0.

I Reject H0 : µ = µ0 if sample mean is far from µ0.

I Under H0 : µ = µ0,
X̄n − µ0

σ/
√
n

∼ N(0, 1).

I Test statistic Tn =

∣∣∣∣ X̄n − µ0

σ/
√
n

∣∣∣∣
I Reject H0 : µ = µ0 if Tn > qnorm(1− α/2)
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Suppose X1, . . . ,X64 ∼ iid N(µ, σ2 = 25) and we want to test

H0 : µ = 0 vs. H1 : µ 6= 0 with α = 0.32. If we observe x̄ = 0.5

what is our decision?

(a) Reject H0

(b) Fail to Reject H0

(c) Not enough information to determine.

Tn =
∣∣∣0.5−0

5/8

∣∣∣ = 0.5× 8/5 = 0.8, qnorm(1− 0.32/2) ≈ 1

Fail to reject H0
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What is this test telling us to do?

Return to the example where H0 : µ = 2 vs. H1 : µ 6= 2 and

X1, . . . ,X100 ∼ iid N(µ, 9) with α = 0.05:

Reject H0 if

∣∣∣∣ X̄n − 2

0.3

∣∣∣∣ > 2

Reject H0 if |X̄n − 2| > 0.6

Reject H0 if (X̄n < 1.4) or (X̄n > 2.6)

Reject H0 : µ = 2 if X̄n is far from 2. How far? Depends on choice

of α along with sample size and population variance.
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This looks suspiciously similar to a confidence interval. . .

X1, . . . ,Xn ∼ iid N(µ, σ2) where σ2 is known

Tn =

∣∣∣∣ X̄n − µ0

σ/
√
n

∣∣∣∣ , c = qnorm(1− α/2), Reject H0 : µ = µ0 if Tn > c

Another way of saying this is don’t reject H0 if:

(Tn ≤ c) ⇐⇒
(∣∣∣∣ X̄n − µ0

σ/
√
n

∣∣∣∣ ≤ c

)
⇐⇒

(
−c ≤ X̄n − µ0

σ/
√
n

≤ c

)
⇐⇒

(
X̄n − c × σ√

n
≤ µ0 ≤ X̄n + c × σ√

n

)
In other words, don’t reject H0 : µ = µ0 at significance level α if µ0 lies

inside the 100× (1− α)% confidence interval for µ.
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CIs and Hypothesis Tests are Intimately Related

Our Simple Example

X1, . . . ,X100 ∼ iid N(µ, σ2 = 9) and observe x̄ = 1.34

Test H0 : µ = 2 vs. H1 : µ 6= 2 with α = 0.05

Tn = 2.2, c = qnorm(1− 0.05/2) ≈ 2. Since Tn > c we reject.

95% Confidence Interval for µ

1.34± 2× 3/10 i.e. 1.34± 0.6 or equivalently (0.74, 1.94)

Another way to carry out the test. . .

Since 2 lies outside the 95% confidence interval for µ, if our

significance level is α = 0.05 we reject H0 : µ = 2.
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X1, . . .X100 ∼ iid N(µX , 9) and Y1, . . . ,Y100 ∼ iid N(µY , 9)

Two researchers: H0 : µ = 2 vs. H1 : µ 6= 2 with α = 0.05

Researcher 1

I x̄ = 1.34

I Tn = 2.2 > 2

I Reject H0 : µX = 2

Researcher 2

I ȳ = 11.3

I Tn = 31 > 2

I Reject H0 : µY = 2

Both researchers would report “reject H0 at the 5% level” but

Researcher 2 found much stronger evidence against H0. . .
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What if we had chosen a different significance level α?

Tn = 2.2, c = qnorm(1− α/2), Reject H0 : µ = 2 if Tn > c

α = 0.32 ⇒ c = qnorm(1− 0.32/2) ≈ 0.99 Reject

α = 0.10 ⇒ c = qnorm(1− 0.10/2) ≈ 1.64 Reject

α = 0.05 ⇒ c = qnorm(1− 0.05/2) ≈ 1.96 Reject

α = 0.04 ⇒ c = qnorm(1− 0.04/2) ≈ 2.05 Reject

α = 0.03 ⇒ c = qnorm(1− 0.03/2) ≈ 2.17 Reject

α = 0.02 ⇒ c = qnorm(1− 0.02/2) ≈ 2.33 Fail to Reject

α = 0.01 ⇒ c = qnorm(1− 0.01/2) ≈ 2.58 Fail to Reject
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Result of Test Depends on Choice of α!

α = 0.32 ⇒ Reject

α = 0.10 ⇒ Reject

α = 0.05 ⇒ Reject

α = 0.04 ⇒ Reject

α = 0.03 ⇒ Reject

α = 0.02 ⇒ Fail to Reject

α = 0.01 ⇒ Fail to Reject

I If you reject H0 at a given choice

of α, you would also have rejected

at any larger choice of α.

I If you fail to reject H0 at a given

choice of α, you would also have

failed to reject at any smaller

choice of α.

Question

If α is large enough we will reject; if α is small enough, we won’t.

Where is the dividing line between reject and fail to reject?
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P-Value: Dividing Line Between Reject and Fail to Reject

Tn = 2.2, c = qnorm(1− α/2), Reject H0 : µ = 2 if Tn > c

Question

Given that we observed a test statistic of 2.2, what choice of α

would put us just at the cusp of rejecting H0?

Answer

Whichever α makes c = 2.2! At this α we just barely fail to reject.

F.J. DiTraglia, Econ 103 Lecture 19 – Slide 18



Calculating the P-value

Definition of a P-value

Significance level α such that the critical value c exactly equals the

observed value of the test statistic. Equivalently: α that lies

exactly on boundary between Reject and Fail to Reject.

Our Example

The observed value of the test statistic is 2.2 and the critical value

is qnorm(1− α/2), so we need to solve:

2.2 = qnorm(1− α/2)

pnorm(2.2) = pnorm (qnorm (1− α/2))

pnorm(2.2) = 1− α/2

α = 2× [1− pnorm(2.2)] ≈ 0.028
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How to use a p-value?

Alternative to Steps 4–5

Rather than choosing α, computing critical value c and reporting

“Reject” or “Fail to Reject” at 100× α% level, just report p-value.

Example From Previous Slide

P-value for our test of H0 : µ = 2 against H1 : µ 6= 2 was ≈ 0.028

Using P-value to Test H0

Using the p-value we can test H0 for any α without doing any new

calculations! For p-value < α reject; for p-value ≥ α fail to reject.

Strength of Evidence Against H0

P-value measures strength of evidence against the null. Smaller p-value

= stronger evidence against H0. P-value does not measure size of effect.
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Lecture #20 – Hypothesis Testing III

One-Sided Tests

Two-Sample Test For Difference of Means

Matched Pairs Test for Difference of Means
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One-sided Test: Different Decision Rule

Same Example as Last Time

X1, . . . ,X100 ∼ iid N(µ, 9) and H0 : µ = 2.

Three possible alternatives:

Two-sided

H1 : µ 6= 2

One-sided (<)

H1 : µ < 2

One-sided (>)

H1 : µ > 2

Three corresponding decision rules:

I Two-sided: reject µ = 2 whenever |X̄n − 2| is too large.

I One-sided (<): only reject µ = 2 if X̄n is far below 2.

I One-sided (>): only reject µ = 2 if X̄n is far above 2.
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One-sided (>) Example: X1, . . . ,X100 ∼ iid N(µ, 9)

Null and Alternative

Test H0 : µ = 2 against H0 : µ > 2 with α = 0.05.

Test Statistic

Drop absolute value for one-sided test: Tn =
X̄n − 2

0.3

Decision Rule

Reject H0 : µ = 2 if test statistic is large and positive: Tn > c

Critical Value

Choose c so that P(type I error) = P(Tn > c |µ = 2) = 0.05

Under H0, Tn ∼ N(0, 1)

If Z ∼ N(0, 1) what value of c ensures P(Z > c) = 0.05?
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One-sided (<) Example: X1, . . . ,X100 ∼ iid N(µ, 9)

Null and Alternative

Test H0 : µ = 2 against H1 : µ < 2 with α = 0.05.

Test Statistic

Drop absolute value for one-sided test: Tn =
X̄n − 2

0.3

Decision Rule

Reject H0 : µ = 2 if test statistic is large and negative: Tn < c

Critical Value

Choose c so that P(type I error) = P(Tn < c |µ = 2) = 0.05

Under H0, Tn ∼ N(0, 1)

If Z ∼ N(0, 1) what value of c ensures P(Z < c) = 0.05?
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Critical Values – Two-sided vs. One-sided Tests: α = 0.05
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Two-Sided

Splits α = 0.05 between two tails: c = qnorm(1− 0.05/2) ≈ 1.96

One-Sided

One tail: c = qnorm(0.05) ≈ −1.64 for (<); qnorm(0.95) ≈ 1.64 for (>)
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Example: X1, . . . ,X100 ∼ iid N(µ, 9), α = 0.05

Suppose x̄ = 1.5 =⇒ (x̄ − 2)/0.3 ≈ −1.67

Two-sided

H1 : µ 6= 2

Reject if |Tn| > 1.96

Tn = 1.67

Fail to reject

One-sided (<)

H1 : µ < 2

Reject if Tn < −1.64

Tn = −1.67

Reject

One-sided (>)

H1 : µ > 2

Reject if Tn > 1.64

Tn = −1.67

Fail to reject

I If One-sided (<) rejects, then one-sided (>) doesn’t and vice-versa.

I Two-sided and one-sided sometimes agree but sometimes disagree.

I One-sided test is “less stringent.”
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Testing H0 : µ = µ0 when X1, . . . ,Xn ∼ iid N(µ, σ2)

Two-Sided

Reject H0 whenever

∣∣∣∣ X̄n − µ0

σ/
√
n

∣∣∣∣ > qnorm(1− α/2)

One-Sided (<)

Reject H0 whenever
X̄n − µ0

σ/
√
n

< qnorm(α)

One-Sided (>)

Reject H0 whenever
X̄n − µ0

σ/
√
n

> qnorm(1− α)
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One-sided P-value

I Only makes sense to calculate one-sided p-value when sign of test

stat. agrees with alternative:

I Preceding example: Tn = −1.67

I Calculate p-value for test vs. H1 : µ < 2 but not H1 : µ > 2

I Just as in two-sided test, p-value equals value of α for which c

exactly equals the observed test statistic:

I c = qnorm(α) for (<)

I c = qnorm(1− α) for (>)

I Example: −1.67 = qnorm(α) ⇐⇒ α = 0.047

I Use and report one-sided p-value in same way as two-sided p-value
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Comparing One-sided and Two-sided Tests

I Two-sided test is the default.

I Don’t use one-sided unless you have a good reason!

I Relationship between CI and test only holds for two-sided.

I Why and when should we consider a one-sided test?

I Suppose we know a priori that µ < 2 is crazy/uninteresting

I Test of H0 : µ = 2 against H1 : µ > 2 with significance level α

has lower type II error rate than test against H1 : µ 6= 2.

I If you use a one-sided test you must choose (>) or (<) before

looking at the data. Otherwise the results are invalid.
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The Anchoring Experiment
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The Anchoring Experiment

Shown a “random” number and then asked what proportion of UN

member states are located in Africa.

“Hi” Group – Shown 65 (nHi = 46)

Sample Mean: 30.7, Sample Variance: 253

“Lo” Group – Shown 10 (nLo = 43)

Sample Mean: 17.1, Sample Variance: 86

Proceed via the CLT...
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In words, what is our null hypothesis?

(a) There is a positive anchoring effect: seeing a higher random

number makes people report a higher answer.

(b) There is a negative anchoring effect: seeing a lower random

number makes people report a lower answer.

(c) There is an anchoring effect: it could be positive or negative.

(d) There is no anchoring effect: people aren’t influenced by

seeing a random number before answering.

F.J. DiTraglia, Econ 103 Lecture 20 – Slide 12



In symbols, what is our null hypothesis?

(a) µLo < µHi

(b) µLo = µHi

(c) µLo > µHi

(d) µLo 6= µHi

µLo = µHi is equivalent to µHi − µLo = 0!
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Anchoring Experiment

Under the null, what should we expect to be true about the values

taken on by X̄Lo and X̄Hi?

(a) They should be similar in value.

(b) X̄Lo should be the smaller of the two.

(c) X̄Hi should be the smaller of the two.

(d) They should be different. We don’t know which will be larger.
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What is our Test Statistic?

Sampling Distribution

(
X̄Hi − X̄Lo

)
− (µHi − µLo)√

S2
Hi

nHi
+

S2
Lo

nLo

≈ N(0, 1)

Test Statistic: Impose the Null

Under H0 : µLo = µHi

Tn =
X̄Hi − X̄Lo√

S2
Hi

nHi
+

S2
Lo

nLo

≈ N(0, 1)
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What is our Test Statistic?
X̄Hi = 30.7, s2Hi = 253, nHi = 46

X̄Lo = 17.1, s2Lo = 86, nLo = 43

Under H0 : µLo = µHi

Tn =
X̄Hi − X̄Lo√

S2
Hi

nHi
+

S2
Lo

nLo

≈ N(0, 1)

Plugging in Our Data

Tn =
X̄Hi − X̄Lo√

S2
Hi

nHi
+

S2
Lo

nLo

≈ 5
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Anchoring Experiment Example

Approximately what critical value should we use to test

H0 : µLo = µHi against the two-sided alternative at the 5%

significance level?

α 0.10 0.05 0.01

qnorm(1− α) 1.28 1.64 2.33

qnorm(1− α/2) 1.64 1.96 2.58

... Approximately 2
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Anchoring Experiment Example

Which of these commands would give us the p-value of our test of

H0 : µLo = µHi against H1 : µLo < µHi at significance level α?

(a) qnorm(1− α)

(b) qnorm(1− α/2)

(c) 1 - pnorm(5)

(d) 2 * (1 - pnorm(5))
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P-values for H0 : µLo = µHi

We plug in the value of the test statistic that we observed: 5

Against H1 : µLo < µHi

1 - pnorm(5) < 0.0000

Against H1 : µLo 6= µHi

2 * (1 - pnorm(5)) < 0.0000

If the null is true (the two population means are equal) it would be

extremely unlikely to observe a test statistic as large as this!

What should we conclude?
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Which Exam is Harder?

Student Exam 1 Exam 2 Difference

1 57.1 60.7 3.6
...

...
...

...

71 78.6 82.9 4.3

Sample Mean: 79.6 81.4 1.8

Sample Var. 117 151 124

Sample Corr. 0.54

Again, we’ll use the CLT.
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One-Sample Hypothesis Test Using Differences

Let Di = Xi − Yi be (Midterm 2 Score - Midterm 1 Score) for student i

Null Hypothesis

H0 : µ1 = µ2, i.e. both exams were of the same difficulty

Two-Sided Alternative

H1 : µ1 6= µ2, i.e. one exam was harder than the other

One-Sided Alternative

H1 : µ2 > µ1, i.e. the second exam was easier
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Decision Rules

Let Di = Xi − Yi be (Midterm 2 Score - Midterm 1 Score) for student i

Test Statistic

D̄n

ŜE (D̄n)
=

1.8√
124/71

≈ 1.36

Two-Sided Alternative

Reject H0 : µ1 = µ2 in favor of H1 : µ1 6= µ2 if |D̄n| is sufficiently large.

One-Sided Alternative

Reject H0 : µ1 = µ2 in favor of H1 : µ2 > µ1 if D̄n is sufficiently large.
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Reject against Two-sided Alternative with α = 0.1?

D̄n

ŜE (D̄n)
=

1.8√
124/71

≈ 1.36

α 0.10 0.05 0.01

qnorm(1− α) 1.28 1.64 2.33

qnorm(1− α/2) 1.64 1.96 2.58

(a) Reject

(b) Fail to Reject

(c) Not Sure
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Reject against One-sided Alternative with α = 0.1?

D̄n

ŜE (D̄n)
=

1.8√
124/71

≈ 1.36

α 0.10 0.05 0.01

qnorm(1− α) 1.28 1.64 2.33

qnorm(1− α/2) 1.64 1.96 2.58

(a) Reject

(b) Fail to Reject

(c) Not Sure
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P-Values for the Test of H0 : µ1 = µ2

D̄n

ŜE (D̄n)
=

1.8√
124/71

≈ 1.36

One-Sided H1 : µ2 > µ1

1 - pnorm(1.36) = pnorm(-1.36) ≈ 0.09

Two-Sided H1 : µ1 6= µ2

2 * (1 - pnorm(1.36)) = 2 * pnorm(-1.36) ≈ 0.18
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Lecture #21 – Testing/CI Roundup

One-sample Test for Proportion

Test for Difference of Proportions

Statistical vs. Practical Significance

Data-Dredging
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Tests for Proportions

Basic Idea

The population can’t be normal (it’s Bernoulli) so we use the CLT

to get approximate sampling distributions (c.f. Lecture 18).

There’s a small twist!

Bernoulli has a single unknown parameter (p) so SE (p̂) is known

under H0: don’t have to estimate it. (C.f. Review Question #194)
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Tests for Proportions: One-Sample Example

From Pew Polling Data

54% of a random sample of 771 registered voters correctly

identified 2012 presidential candidate Mitt Romney as Pro-Life.

Sampling Model

X1, . . . ,Xn ∼ iid Bernoulli(p)

Sample Statistic

Sample Proportion: p̂ =
1

n

n∑
i=1

Xi

Suppose I wanted to test H0 : p = 0.5
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Tests for Proportions: One Sample Example

Under H0 : p = 0.5 what is the standard error of p̂?

(a) 1

(b)
√

p̂(1− p̂)/n

(c) σ/
√
n

(d) 1/(2
√
n)

(e) p(1− p)

p = 0.5 =⇒
√

0.5(1− 0.5)/n = 1/(2
√
n)

Under the null we know the SE! Don’t have to estimate it!
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One-Sample Test for a Population Proportion

Sampling Model

X1, . . . ,Xn ∼ iid Bernoulli(p)

Null Hypothesis

H0 : p = Known Constant p0

Test Statistic

Tn =
p̂ − p0√

p0(1− p0)/n
≈ N(0, 1) under H0 provided n is large
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One-Sample Example H0 : p = 0.5

54% of a random sample of 771 registered voters knew Mitt Romney is Pro-Life.

Tn =
p̂ − p0√
p0(1− p0)

n

= 2
√
771(0.54− 0.5)

= 0.08×
√
771 ≈ 2.2

One-Sided p-value

1 - pnorm(2.2) ≈ 0.014

Two-Sided p-value

2 * (1 - pnorm(2.2)) ≈ 0.028
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Tests for Proportions: Two-Sample Example

From Pew Polling Data

53% of a random sample of 238 Democrats correctly identified

Mitt Romney as Pro-Life versus 61% of 239 Republicans.

Sampling Model

Republicans: X1, . . . ,Xn ∼ iid Bernoulli(p) independent of

Democrats: Y1, . . . ,Ym ∼ iid Bernoulli(q)

Sample Statistics

Sample Proportions: p̂ =
1

n

n∑
i=1

Xi , q̂ =
1

m

m∑
i=1

Yi

Suppose I wanted to test H0 : p = q
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A More Efficient Estimator of the SE Under H0

Don’t Forget!

Standard Error (SE) means “std. dev. of sampling distribution” so

you should know how to prove that that:

SE (p̂ − q̂) =

√
p(1− p)

n
+

q(1− q)

m

Under H0 : p = q

Don’t know values of p and q: only that they are equal.
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Pooled SE Estimator is More Efficient Under H0

Unpooled SE

ŜE =

√
p̂(1− p̂)

n
+

q̂(1− q̂)

m
Pooled SE

ŜEPooled =

√
π̂(1− π̂)

(
1

n
+

1

m

)
where π̂ =

np̂ +mq̂

n +m

Why Pool?

I Under H0, p = q. Call their common value “π”

I More accurate to estimate 1 parameter (π) with a big sample

(n +m) vs. 2 parameters (p, q) with smaller samples (n, m).
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Two-Sample Test for Proportions

Sampling Model

X1, . . . ,Xn ∼ iid Bernoulli(p) indep. of Y1, . . . ,Ym ∼ iid Bernoulli(q)

Sample Statistics

Sample Proportions: p̂ =
1

n

n∑
i=1

Xi , q̂ =
1

m

m∑
i=1

Yi

Null Hypothesis

H0 : p = q ⇐ i.e. p − q = 0

Pooled Estimator of SE under H0

π̂ =
np̂ +mq̂

n +m
, ŜEPooled =

√
π̂(1− π̂) (1/n + 1/m)

Test Statistic

Tn =
p̂ − q̂

ŜEPooled

≈ N(0, 1) under H0 provided n and m are large
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Two-Sample Example H0 : p = q

53% of 238 Democrats knew Romney is Pro-Life vs. 61% of 239 Republicans

π̂ =
np̂ +mq̂

n +m
=

239× 0.61 + 238× 0.53

239 + 238
≈ 0.57

ŜEPooled =
√
π̂(1− π̂) (1/n + 1/m) =

√
0.57× 0.43(1/239 + 1/238)

≈ 0.045

Tn =
p̂ − q̂

ŜEPooled

=
0.61− 0.53

0.045
≈ 1.78

One-Sided P-Value

1 - pnorm(1.78)≈ 0.04

Two-Sided P-Value

2 * (1 - pnorm(1.78))≈ 0.08

F.J. DiTraglia, Econ 103 Lecture 21 – Slide 11



Terminology: Statistical Significance

Definition

If we reject H0 in a test with significance level α, then we say that

the results are “statistically significant at the α% level.

Example: Anchoring Experiment

In a two-sided test, we found a difference betwen the “Hi” and

“Lo” groups that was statistically significant at the 5% level.

Example: Previous Slide

In a two-sided test, we found a difference between the share of

Republicans and Democrats who knew that Romney is pro-life that

was statistically significant at the 10% level.
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Statistical Significance 6= Practical Importance

Problem

People confuse “significance” in the statistical sense with the

everyday English word meaning “important.”

Statistically Significant Does Not Mean Important

I A difference can be unimportant but statistically significant.

I A difference can be important but statistically insignificant.

A p-value measures the strength of evidence against H0; it does

not measure the size of an effect!
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Statistically Significant but Not Practically Important

I flipped a coin 10 million times (in R) and got 4990615 heads.

Test of H0 : p = 0.5 against H1 : p 6= 0.5

T =
p̂ − 0.5√

0.5(1− 0.5)/n
≈ −5.9 =⇒ p-value ≈ 0.000000003

Approximate 95% Confidence Interval

p̂ ± qnorm(1− 0.05/2)

√
p̂(1− p̂)

n
=⇒ (0.4988, 0.4994)

Actual p was 0.499
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Practically Important But Not Statistically Significant

Vickers: “What is a P-value Anyway?” (p. 62)

Just before I started writing this book, a study was published

reporting about a 10% lower rate of breast cancer in women who

were advised to eat less fat. If this indeed the true difference, low

fat diets could reduce the incidence of breast cancer by tens of

thousands of women each year – astonishing health benefit for

something as simple and inexpensive as cutting down on fatty

foods. The p-value for the difference in cancer rates was 0.07 and

here is the key point: this was widely misinterpreted as indicating

that low fat diets don’t work. For example, the New York Times

editorial page trumpeted that “low fat diets flub a test” and

claimed that the study provided “strong evidence that the war

against all fats was mostly in vain.” However failure to prove that a

treatment is effective is not the same as proving it ineffective.
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Data-Dredging and the Replication Crisis

Reading Assignment

On Piazza: “The Economist - Trouble in the Lab.”

Basic Idea

I Journals usually publish only “statistically significant” results.

I You test a large number of null hypotheses with α = 0.05.

I Suppose all of these nulls are actually TRUE.

I You’ll reject 5% of the time: each rejection is a Type I error.

I Cheating in academia: carry out lots of ridiculous hypothesis

tests and only report the “statistically significant” results.
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Green Jelly Beans Cause Acne!
xkcd #882

Figure: Reading this comic strip is part of your homework!

And now a simulation example of Data Dredging using R. . .
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# Function to calculate the p-value for a two-sided

#test for difference of means

get_p_value <- function(x, y) {
xbar <- mean(x)

ybar <- mean(y)

n <- length(x)

m <- length(y)

s_x <- sd(x)

s_y <- sd(y)

SE <- sqrt(s_x^2 / n + s_y^2 / m)

test_stat <- abs(xbar - ybar) / SE

return(2 * (1 - pnorm(test_stat)))

}
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# Test get_p_value using the anchoring experiment

# example from our previous lecture

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'

survey <- read.csv(data_url)

anchoring <- survey[, c('rand.num', 'africa.percent')]

rand_num <- na.omit(anchoring$rand.num)

africa_percent <- na.omit(anchoring$africa.percent)

x <- subset(africa_percent, rand_num == 65)

y <- subset(africa_percent, rand_num == 10)

get_p_value(x, y)

## [1] 6.682931e-07
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# Use *real* student test scores as the outcome

data_url <- 'http://ditraglia.com/econ103/midterms.csv'

midterms <- read.csv(data_url)

scores <- na.omit(midterms$Midterm1)

n_students <- length(scores)

# Generate fake "grouping variables" (0/1) indep. of scores

set.seed(987654321)

n_fake <- 500

# Empty matrix to store grouping variables:

fake <- matrix(NA, nrow = n_students, ncol = n_fake)

for(i in 1:n_fake) {
fake[, i] <- rbinom(n_students, size = 1, prob = 0.5)

}
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# Use each grouping variable to split students into x and y

# and calculate p-value for test of difference of means

p_values <- rep(NA, n_fake) # empty vector to store results

for(i in 1:n_fake) {
group_indicator <- fake[,i]

x <- subset(scores, group_indicator == 1)

y <- subset(scores, group_indicator == 0)

p_values[i] <- get_p_value(x, y)

}
# How many of the tests were statistically significant?

sum(p_values < 0.05)

## [1] 20
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# Grouping variable with the lowest p-value

group_indicator <- fake[, which.min(p_values)]

x <- subset(scores, group_indicator == 1)

y <- subset(scores, group_indicator == 0)

# These results look convincing, but are spurious!

mean(x) - mean(y)

## [1] -7.974127

sqrt(var(x) / length(x) + var(y) / length(y))

## [1] 2.240852
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Lecture #22 – Regression II

The Population Regression Model

Inference for Regression

Inference for Regression: Predicting Height

Residual Standard Deviation and R2

Multiple Regression
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Beyond Regression as a Data Summary

Based on a sample of Econ 103 students, we made the following graph of

handspan against height, and fitted a linear regression:
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The estimated slope was about 1.4 inches/cm and the estimated

intercept was about 40 inches.

What if anything does this tell us about the relationship between height

and handspan in the population?
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The Population Regression Model

Question

If we want to predict Y using X in the population using a line,

how should we choose the slope and intercept?

Optimization Problem

Choose β0, β1 to minimize E [(Y − β0 − β1X )2]

Solution

β1 =
Cov(X ,Y )

Var(X )
, β0 = E [Y ]− β1E [X ]

. . . you will derive this as an extension problem.
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The Regression Error Term: ε

Definition

ε ≡ Y − β0 − β1X (Hence: Y = β0 + β1X + ε)

Interpretation

ε is the part of Y that isn’t predicted by X

Properties

I E [ε] = 0

I Cov(X , ε) = 0

I Var(ε) = Var(Y )− Cov(X ,Y )2/Var(X )

. . . using the expressions for β0 and β1 from the previous slide.

F.J. DiTraglia, Econ 103 Lecture 22 – Slide 4



The Population Regression Coefficients: β0, β1

Recall

Y = β0 + β1X + ε, β1 =
Cov(X ,Y )

Var(X )
, β0 = E [Y ]− β1E [X ]

Interpretation

I β0, β1 are population parameters: unknown constants

I If X = 0, we predict Y = β0.

I If two people differ by one unit in X , we predict that they will

differ by β1 units in Y .

The only problem is, we don’t know β0, β1...
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Estimating β0, β1

Random Sample

Observe (Y1,X1), . . . , (Yn,Xn) ∼ iid with Yi = β0 + β1Xi + εi .

Estimators of β0, β1

β̂1 =
SXY
S2
X

=

∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2
, β̂0 = Ȳn − β̂1X̄n

Under random sampling, the estimators (β̂0, β̂1) have sampling

distributions. . .
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Sampling Uncertainty: Pretend the Class is our Population
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Figure: Estimated Slope = 1.4, Estimated Intercept = 40
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Sampling Distribution of Regression Coefficients β̂0 and β̂1

Choose 25 Students from Class List with Replacement

�
�

�
��	

Sample 1

?

β̂
(1)
0 , β̂

(1)
1

?
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?
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(2)
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(2)
1

...

...

@
@

@
@@R

Sample 1000

?

β̂
(1000)
0 , β̂

(1000)
1

Repeat 1000 times → get 1000 different pairs of estimates

Sampling Distribution: long-run relative frequencies
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1000 Replications, n = 25
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Population: Intercept = 40, Slope = 1.4

Intercept Estimates
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Based on 1000 Replications, n = 25
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Inference for Linear Regression

Central Limit Theorem

β̂ − β

ŜE (β̂)
≈ N(0, 1)

How to calculate ŜE?

R will do this for us, but we won’t cover the details in Econ 103.

You’ll have to wait for Econ 104!
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How to get R to display standard errors?

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'

survey <- read.csv(data_url)

survey <- na.omit(survey)

reg1 <- lm(height ~ handspan, data = survey)

reg1 # Gives estimates but not SE

##

## Call:

## lm(formula = height ~ handspan, data = survey)

##

## Coefficients:

## (Intercept) handspan

## 39.596 1.356
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summary gives too much information. . .

summary(reg1)

##

## Call:

## lm(formula = height ~ handspan, data = survey)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10.0680 -2.4238 0.2204 2.7073 7.9657

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 39.5962 3.9596 10.000 1.26e-15 ***

## handspan 1.3558 0.1898 7.143 4.20e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.556 on 78 degrees of freedom

## Multiple R-squared: 0.3955,Adjusted R-squared: 0.3877

## F-statistic: 51.03 on 1 and 78 DF, p-value: 4.201e-10
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display, from my website, cuts the less important info. . .

source('http://ditraglia.com/econ103/display.R')

display(reg1)

## lm(formula = height ~ handspan, data = survey)

## coef.est coef.se

## (Intercept) 39.60 3.96

## handspan 1.36 0.19

## ---

## n = 80, k = 2

## residual sd = 3.56, R-Squared = 0.40

We will learn what everything in this table means. . .
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Regression with only an intercept: sample mean
See Review Problem #46

reg2 <- lm(height ~ 1, data = survey)

display(reg2)

## lm(formula = height ~ 1, data = survey)

## coef.est coef.se

## (Intercept) 67.74 0.51

## ---

## n = 80, k = 1

## residual sd = 4.54, R-Squared = 0.00
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Dummy Variable (aka Binary Variable)

A predictor variable that takes on only two values: 0 or 1. Used to

represent two categories, e.g. Male/Female.
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Regression with intercept & dummy variable: Male/Female

reg3 <- lm(height ~ sex, data = survey)

display(reg3)

## lm(formula = height ~ sex, data = survey)

## coef.est coef.se

## (Intercept) 64.46 0.56

## sexMale 6.10 0.76

## ---

## n = 80, k = 2

## residual sd = 3.38, R-Squared = 0.45
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Height & Handspan Regression

display(reg1)

## lm(formula = height ~ handspan, data = survey)

## coef.est coef.se

## (Intercept) 39.60 3.96

## handspan 1.36 0.19

## ---

## n = 80, k = 2

## residual sd = 3.56, R-Squared = 0.40

What are n, k, residual sd and R-Squared?
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Fitted Values and Residuals

Fitted Value ŷi

Predicted y -value for person i given her x-variables using

estimated regression coefficients: ŷi = β̂0 + β̂1xi

Residual ε̂i

Person i’s vertical deviation from regression line: ε̂i = yi − ŷi .

The residuals are stand-ins for the unobserved errors εi .
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Residual Standard Deviation: σ̂

I Idea: use residuals ε̂i to estimate σ

σ̂ =

√∑n
i=1 ε̂

2
i

n − k

I Measures avg. distance of yi from regression line.

I E.g. if Y is points scored on a test and σ̂ = 16, the regression

predicts to an accuracy of about 16 points.

I Same units as Y (Exam practice: verify this)

I Denominator (n − k) = (# Datapoints - # of X variables)
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R2: Proportion of Var(Y ) “Explained” by the Regression

R2 = 1−
∑n

i=1 ε̂
2
i∑n

i=1(yi − ȳ)2
≈ 1− σ̂2

s2y

I Unitless, between 0 and 1

I Higher value =⇒ greater proportion of variance “explained”

I Harder to interpret than σ̂

I Special Case:

I In a regression with a single X -variable (“simple” regression)

can show that R2 = r2xy hence the name “R-squared”
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display(reg1)

## lm(formula = height ~ handspan, data = survey)

## coef.est coef.se

## (Intercept) 39.60 3.96

## handspan 1.36 0.19

## ---

## n = 80, k = 2

## residual sd = 3.56, R-Squared = 0.40

cor(survey$height, survey$handspan)^2

## [1] 0.3954669

sqrt(sum(reg1$residuals^2) / (80 - 2))

## [1] 3.555941
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Which Gives Better Predictions: Sex or Handspan?

## lm(formula = height ~ handspan, data = survey)

## coef.est coef.se

## (Intercept) 39.60 3.96

## handspan 1.36 0.19

## ---

## n = 80, k = 2

## residual sd = 3.56, R-Squared = 0.40

## lm(formula = height ~ sex, data = survey)

## coef.est coef.se

## (Intercept) 64.46 0.56

## sexMale 6.10 0.76

## ---

## n = 80, k = 2

## residual sd = 3.38, R-Squared = 0.45
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Simple vs. Multiple Regression

Terminology

Y is the “outcome” and X is the “predictor.”

Simple Regression

One predictor variable: Yi = β0 + β1Xi + εi

Multiple Regression

More than one predictor variable:

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi

F.J. DiTraglia, Econ 103 Lecture 22 – Slide 24



Multiple Regression

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi

Ceteris Paribus Interpretation

If two individuals differ by one unit in Xj but have the same values

for all other predictors, we predict they will differ by βj units in Y .

Estimating β0, β1, . . . , βk

The formulas require matrix algebra: R will do it for us.

Inference for Multiple Regression
β̂j − βj

ŜE (β̂j)
≈ N(0, 1) if n is large. R will calculate the SE for us.
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Multiple Regression Example: Sex and Handspan

reg4 <- lm(height ~ sex + handspan, data = survey)

display(reg4)

## lm(formula = height ~ sex + handspan, data = survey)

## coef.est coef.se

## (Intercept) 49.95 4.16

## sexMale 4.18 0.89

## handspan 0.75 0.21

## ---

## n = 80, k = 3

## residual sd = 3.16, R-Squared = 0.53
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