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1. Suppose that X is a random variable with support {1, 2} and Y is a random variable

with support {0, 1} where X and Y have the following joint distribution:

pXY (1, 0) = 0.25

pXY (1, 1) = 0.25

pXY (2, 0) = 0.25

pXY (2, 1) = 0.25

(a) (4 points) Express the joint pmf of X and Y in a 2× 2 table.

Solution:

X

1 2

Y
0 0.25 0.25

1 0.25 0.25

(b) (4 points) Using the table, calculate the marginal pmfs of X and Y .

Solution:

pX(1) = pXY (1, 0) + pXY (1, 1) = 0.25 + 0.25 = 0.5

pX(2) = pXY (2, 0) + pXY (2, 1) = 0.25 + 0.25 = 0.5

pY (0) = pXY (1, 0) + pXY (2, 0) = 0.25 + 0.25 = 0.5

pY (1) = pXY (1, 1) + pXY (2, 1) = 0.25 + 0.25 = 0.5

(c) (6 points) Calculate the conditional pmf of Y |X = 1.

Solution: The distribution of Y |X = 1 is

P (Y = 0|X = 1) =
pXY (1, 0)

pX(1)
= 0.25/0.5 = 0.5

P (Y = 1|X = 1) =
pXY (1, 1)

pX(1)
= 0.25/0.5 = 0.5

Alternatively, you could simply notice from the table that X and Y are inde-

pendent so the conditional pmfs are the same as the marginal pmfs.

(d) (6 points) What is the covariance between X and Y ?
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Solution: First, from the marginal distributions, E[X] = 1.5 and E[Y ] = 0.5.

Hence E[X]E[Y ] = 0.75. Second,

E[XY ] = (0 · 1) · 0.25 + (0 · 2) · 0.25 + (1 · 1) · 0.25 + (1 · 2)0.25

= 0.25 + 0.5 = 0.75

Finally Cov(X, Y ) = E[XY ]−E[X]E[Y ] = 0.75− 0.75 = 0. Alternatively, use

the fact that independence implies zero covariance to solve this without doing

any calculations.

2. Suppose that X1 ∼ Bernoulli(p1), X2 ∼ Bernoulli(p2) and X3 ∼ Bernoulli(p3) where

X1, X2 and X3 are mutually independent. Let Y be a random variable that takes on the

value one if and only if a majority of the random variables X1, X2, X3 take on the value

one. In any other situation Y takes on the value zero.

(a) (2 points) Are X1, X2, X3 iid? Why or why not?

Solution: Not necessarily: while the three random variables are independent,

they are only identically distributed if p1 = p2 = p3.

(b) (2 points) What kind of random variable is Y ? You don’t need to give the values

of any associated parameters: just name the random variable and explain briefly.

Solution: Since it can only take on only the values zero and one, Y is a

Bernoulli RV.

(c) (2 points) Suppose that p1 = p2 = p3 = p. In this case what kind of random

variable is X1 +X2 +X3?

Solution: In this case X1, X2, X3 ∼ iid Bernoulli(p) so their sum is, by defini-

tion, a Binomial(3, p) random variable.

(d) (4 points) Using your answer to (c), calculate P (Y = 1) for the case in which

p1 = p2 = p3 = p.

Solution: From (c), X1 +X2 +X3 is a Binomial(3, p) random variable. Hence

its pmf is

p(x) =

(
3

x

)
px(1− p)3−x
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By definition, Y = 1 when a majority of X1, X2, X3 equal one. Thus we need to

calculate the probability that the sum X1 +X2 +X3 equals either two or three.

Since these are mutually exclusive outcomes, we calculate

P (Y = 1) = P (X1 +X2 +X3 ≥ 2) = p(2) + p(3)

=

(
3

2

)
p2(1− p) +

(
3

3

)
p3

= 3p2(1− p) + p3

= 3p2 − 3p3 + p3

= 3p2 − 2p3

3. This question concerns the Beta(a, b) random variable, a continuous random variable

that we did not study in class. The Beta random variable has support [0, 1] and is

defined by two parameters a and b, both of which are greater than zero. Its pdf is given

by the following expression:

f(x) =
xa−1(1− x)b−1

B(a, b)

where B(a, b) is the so-called “Beta Function” evaluated at (a, b).

(a) (6 points) The Beta(2, 2) random variable has pdf f(x) = 6x(1− x). Calculate its

variance using the shortcut rule.

Solution: Using the shortcut rule:

E[X] = 6

∫ 1

0

(x2 − x3) dx = 6

(
x3

3
− x4

4

)∣∣∣∣1
0

= 6(1/3− 1/4) = 1/2

E[X2] = 6

∫ 1

0

(x3 − x4) dx = 6

(
x4

4
− x5

5

)∣∣∣∣1
0

= 6(1/4− 1/5) = 3/10

V ar(X) = E[X2]− (E[X])2 = 3/10− 1/4 = 1/20

(b) (2 points) In order for f(x) to be a valid pdf, what must the formula for the Beta

Function, B(a, b), be? You do not need to evaluate or simplify any integrals in your

answer: simply give an expression for B(a, b).
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Solution: The integral of pdf must equal one over the support. Thus:∫ 1

0

xa−1(1− x)b−1

B(a, b)
dx = 1

Multiplying through by B(a, b), which does not involve x,

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx

(c) (2 points) What is the pdf of the Beta(1, 1) random variable?

Solution: Substituting a = b = 1,

f(x) =
x0(1− x)0

B(1, 1)
=

1

B(1, 1)

This expression is simply a constant: it does not depend on x. Thus, the only

way for it to integrate to one over [0, 1] is for B(1, 1) to equal one. Alternatively,

we could evaluate the integral from part (a):

B(1, 1) =

∫ 1

0

1 dx = 1

We see that the Beta(1, 1) random variable is the same thing as the Uniform(0, 1)

random variable!

4. Let X ∼ N(µX , σ
2
X) independent of ε ∼ N(0, σ2

ε ) and define Y = a + bX + ε where a, b

are constants.

(a) (3 points) Calculate the mean of Y .

Solution: By the Linearity of Expectation

E[Y ] = a+ bE[X] = a+ bµX

(b) (3 points) Calculate the variance of Y .

Solution: Since X and ε are independent,

V ar(Y ) = b2V ar(X) + V ar(ε) = b2σ2
X + σ2

ε
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(c) (3 points) What kind of random variable is Y ? Be sure to give the values of any

parameters needed to define its distribution.

Solution: Linear combinations of independent normal random variables are

themselves normally distributed. Thus, using parts (a) and (b),

Y ∼ N
(
a+ bµX , b

2σ2
x + σ2

ε

)

(d) (6 points) Calculate Cov(X, Y ).

Solution:

E[XY ] = E[X(a+ bX + ε)] = E[aX] + bE[X2] + E[Xε]

= aµX + b
{
V ar(X) + (E[X])2

}
+ {Cov(X, ε) + E[X]E[ε]}

= aµX + b(σ2
X + µ2

X)

E[X]E[Y ] = µX(a+ bµX) = aµX + bµ2
X

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

= aµX + b(σ2
X + µ2

X)− (aµX + bµ2
X) = bσ2

X

5. Let X1, X2 ∼ iid with cumulative distribution function F and define X∗ = max{X1, X2}.
Let c be a constant.

(a) (2 points) In terms of F , what is P (X1 ≤ c)? What is P (X2 ≤ c)?

Solution: By the definition of a CDF and the fact that X1 and X2 are identi-

cally distributed, F (c) = P (X1 ≤ c) = P (X2 ≤ c).

(b) (3 points) In terms of F what is P (X1 ≤ c ∩X2 ≤ c)?

Solution: By independence,

P (X1 ≤ c ∩X2 ≤ c) = P (X1 ≤ c)P (X2 ≤ c) = F (c)F (c) = F 2(c)

(c) (3 points) Explain why P (X∗ ≤ c) = P (X1 ≤ c ∩X2 ≤ c).
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Solution: Since X∗ is the maximum of X1 and X2, the events X∗ ≤ c and

(X1 ≤ c) ∩ (X2 ≤ c) are logically equivalent. If both X1 and X2 are no greater

than c then their maximum is no greater than c. Further, if the maximum of

X1 and X2 is no greater c then it must be the case that both X1 and X2 are

no greater than c. Since the events are equivalent, their probabilities must be

equal: this is the logical equivalence rule from class.

(d) (2 points) Using your answer to (c), what is the CDF of X∗?

Solution: F ∗(x) = F 2(x)

(e) (5 points) Now suppose that X1, X2 ∼ iid Uniform(0, 1). Using your answer to

part (d), calculate the probability density function of X∗.

Solution: For a Uniform(0,1) random variable F (x) = x for x ∈ [0, 1] while

F (x) = 1 for x > 1 and F (x) = 0 for x < 1. Hence,

F ∗(x) = F 2(x) =


0 x < 0

x2 0 ≤ x ≤ 1

1 x > 1

Differentiating, f ∗(x) = 2x for x ∈ [0, 1], zero otherwise.

6. Suppose that X1, . . . , Xn ∼ iid with mean µ and variance σ2. This question considers

two estimators of µ: the sample mean X̄n = 1
n

∑n
i=1Xi and µ̂ = 0. To be clear: the

estimator µ̂ is a rule that ignores the sample data and simply assumes the population

mean is zero. You can think of µ̂ as a degenerate random variable: its support is {0}
and P (µ̂ = 0) = 1.

(a) (4 points) Calculate the MSE of X̄n.

Solution:

MSE(X̄n) = Bias(X̄n)2 + V ar(X̄n)

=
(
E[X̄n]− µ

)2
+ V ar

(
1

n

n∑
i=1

Xi

)
= σ2/n

(b) (5 points) Calculate the MSE of µ̂.
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Solution: Estimators are random variables under random sampling because

the data are random. Since this estimator completely ignores the data, it is a

constant, hence its variance is zero. Its bias is:

E[µ̂]− µ = 0− µ = −µ

Thus, since MSE is squared bias plus variance:

MSE(µ̂) = µ2

(c) (5 points) Now define the estimator µ̃ = ωµ̂ + (1 − ω)X̄n where ω is a constant

between zero and one. If ω = 1, then µ̃ = µ̂; if ω = 0, then µ̃ = X̄n. When

0 < ω < 1, µ̃ can be thought of as a “compromise” between X̄n and µ̂. Calculate

the MSE of µ̃.

Solution:

Bias(µ̃) = E[µ̃]− µ = E[ωµ̂+ (1− ω)X̄n]− µ
= (1− ω)µ− µ = −ωµ

V ar(µ̃) = V ar
[
ωµ̂+ (1− ω)X̄n

]
= V ar

[
ω × 0 + (1− ω)X̄n

]
= (1− ω)2V ar(X̄n) = (1− ω)2σ2/n

Therefore,

MSE(µ̃) = ω2µ2 + (1− ω)2σ2/n

(d) (5 points) Using your answer to part (c) calculate ω∗, the value of ω that minimizes

MSE(µ̃). Your answer should be given in terms of σ2, n and µ2. For full credit,

check the second order condition to make sure you have found a minimum.

Solution: The first order condition is

2ωµ2 − 2(1− ω)σ2/n = 0

ωµ2 − σ2/n+ ωσ2/n = 0

ω(µ2 + σ2/n) = σ2/n

Hence,

ω∗ =
σ2/n

µ2 + σ2/n
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The second order condition is 2µ2 + 2σ2/n > 0 which holds because σ2 > 0.

(e) (6 points) Explain how ω∗ changes with n, |µ| and σ2. Note that you can answer

this without taking any derivatives by rearranging your answer to part (d).

Solution: First, rewrite ω∗ as follows:

ω∗ =
σ2/n

µ2 + σ2/n
=

σ2

nµ2 + σ2
=

1

nµ2

σ2
+ 1

As n increases, ω∗ falls: because the variance of X̄n decreases with n we should

give X̄n more weight when n is larger. As σ2 increases, ω∗ increases: because

the variance of X̄n increases with σ2 we should give X̄n less weight when σ2 is

larger. As |µ| increases, ω∗ falls: because the bias of µ̂ increases with |µ|, we

should give X̄n more weight when |µ| is larger.

7. Suppose that X1, . . . , Xn ∼ iid N(µ, σ2). You do not have to explain your answers.

(a) (5 points) What is the distribution of
∑n

i=1Xi?

Solution: N(nµ, nσ2)

(b) (5 points) What is the distribution of X̄n = 1
n

∑n
i=1Xi?

Solution: N(µ, σ2/n)

(c) (5 points) Let Y =
∑n

i=1 (Xi − µ)2. What is the distribution of Y/σ2?

Solution: χ2(n)

(d) (5 points) Let S2 = 1
n−1

∑n
i=1(Xi− X̄)2. What is the distribution of (n− 1)S2/σ2?

Solution: χ2(n− 1)

(e) (5 points) Let

Z =
X̄n − µ
S/
√
n

where S =
√
S2 and S2 is as defined in (d). What is the distribution of Z?
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Solution: t(n− 1)

8. Using R, I generated a random sample of size 16 from a normal population with mean

µ and variance σ2. The sample mean was approximately −0.5 and the sample variance

was approximately 6.

(a) (5 points) Construct a 95% confidence interval for µ. Your answer may include

relevant R commands.

Solution: The interval should take the form:

X̄n ± qt(1− α/2, df = n− 1)× S√
n

which, in this case, gives −0.5± qt(0.975, df = 15)×
√

6/4

(b) (5 points) If I told you that I used a population variance of 4 to generate my random

sample, how would your answer to (a) change? Your final answer should not include

any R commands.

Solution: The interval takes the form X̄n±qnorm(1−α/2)×σ/
√
n. We know,

however, that qnorm(0.975)≈ 2. Thus, the interval is −0.5± 1, i.e. (−1.5, 0.5).

(c) (5 points) Based on your answer to (b), would you be surprised to learn that the

population mean was −1? Why or why not?

Solution: This would not be surprising: -1 is well within the 95% CI for µ.

(d) (5 points) Construct a 90% confidence interval for the population variance. Your

answer may include relevant R commands.

Solution: The interval should take the form[
(n− 1)S2

b
,
(n− 1)S2

a

]

a = qchisq(α/2, df = n - 1)

b = qchisq(1− α/2, df = n - 1)

In this case (n− 1)S2 = 15 ∗ 6 = 90.
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