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A Computational Details

This paper is fully replicable using freely available, open-source software. For full source
code and replication details, see https://github.com/fditraglia/fmsc. Results for the
simulation studies and empirical example were generated using R (R Core Team, 2014) and
C++ via the Rcpp (Eddelbuettel, 2013; Eddelbuettel and François, 2011) and RcppArmadillo

(Eddelbuettel and Sanderson, 2014) packages. RcppArmadillo provides an interface to the
Armadillo C++ linear algebra library (Sanderson, 2010). All figures in the paper were con-
verted to tikz using the tikzDevice package (Sharpsteen and Bracken, 2013). Confidence
interval calculations for Sections 4.4 and 5.3 rely routines from my R package fmscr, avail-
able from https://github.com/fditraglia/fmscr. The simulation-based intervals for the
empirical example from Section 6 were constructed following Algorithm 4.3 with J = 10, 000
using a mesh-adaptive search algorithm provided by the NOMAD C++ optimization package
(Abramson et al., 2013; Audet et al., 2009; Le Digabel, 2011), called from R using the crs

package (Racine and Nie, 2014). TSLS results for Table 11 were generated using version
3.1-4 of the sem package (Fox et al., 2014).

B Failure of the Identification Condition

When there are fewer moment conditions in the g-block than elements of the parameter
vector θ, i.e. when r > p, Assumption 2.4 fails: θ0 is not estimable by �θv so �τ is an infeasible
estimator of τ . A näıve approach to this problem would be to substitute another consistent
estimator of θ0 and proceed analogously. Unfortunately, this approach fails. To understand
why, consider the case in which all moment conditions are potentially invalid so that the
g–block is empty. Letting �θf denote the estimator based on the full set of moment conditions

in h,
√
nhn(�θf ) →d ΓNq(τ,Ω) where Γ = Iq−H (H �WH)−1 H �W , using an argument similar

to that in the proof of Theorem 3.1. The mean, Γτ , of the resulting limit distribution
does not equal τ , and because Γ has rank q − r we cannot pre-multiply by its inverse
to extract an estimate of τ . Intuitively, q − r over-identifying restrictions are insufficient to
estimate a q-vector: τ cannot be estimated without a minimum of r valid moment conditions.
However, the limiting distribution of

√
nhn(�θf ) partially identifies τ even when we have no

valid moment conditions at our disposal. A combination of this information with prior
restrictions on the magnitude of the components of τ allows the use of the FMSC framework
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to carry out a sensitivity analysis when r > p. For example, the worst-case estimate of
AMSE over values of τ in the identified region could still allow certain moment sets to be
ruled out. This idea shares similarities with Kraay (2012) and Conley et al. (2012), two
recent papers that suggest methods for evaluating the robustness of conclusions drawn from
IV regressions when the instruments used may be invalid.

C Trimmed MSE

Even in situations where finite sample MSE does not exist, it is still meaningful to consider
comparisons of asymptotic MSE. To make the connection between the finite-sample and
limit experiment a bit tidier in this case we can work in terms of trimmed MSE, following
Hansen (2015a). To this end, define

MSEn(�µS, ζ) = E
�
min

�
n(�µ− µ0)

2, ζ
��

AMSE(�µS) = lim
ζ→∞

lim inf
n→∞

MSEn(�µS, ζ)

where ζ is a positive constant that bounds the expectation for finite n. By Corollary 3.1√
n(�µS − µ0) →d Λ where Λ is a normally distributed random variable. Thus, by Lemma 1

of Hansen (2015a), we have AMSE(�µS) = E[Λ2]. In other words, working with a sequence
of trimmed MSE functions leaves AMSE unchanged while ensuring that finite-sample risk
is bounded. This justifies the approximation MSEn(�µS, ζ) ≈ E[Λ2] for large n and ζ. In a
simulation exercise in which ordinary MSE does not exist, for example instrumental variables
with a single instrument, one could remove the largest 1% of simulation draws in absolute
value and evaluate the performance of the FMSC against the empirical MSE calculated for
the remaining draws.

D The Case of Multiple Target Parameters

The fundamental idea behind the FMSC is to approximate finite-sample risk with asymptotic
risk under local mis-specification. Although the discussion given above is restricted to a
scalar target parameter, the same basic idea is easily extended to accomodate a vector of
target parameters. All that is required is to specify an appropriate risk function. Consider
a generic weighted quadratic risk function of the form

R(�θS,W ) = E

��
�θS − θ0

��
W

�
�θ − θ0

��

where W is a positive semi-definite matrix. The finite-sample distribution of �θ is, in general,

unknown, but by Theorem 2.2
√
n
�
�θS − θ0

�
→d US where

US = −KSΞS

�
M +

�
0
τ

��
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and M ∼ N(0,Ω) so we instead consider the asymptotic risk

AR(�θS,W ) = E [U �
SWUS] = trace

�
W 1/2KSΞS

��
0 0
0 ττ �

�
+ Ω

�
Ξ�
SK

�
SW

1/2

�

where W 1/2 is the symmetric, positive semi-definite square root of W . To construct an
asymptotically unbiased estimator of AR(�θS,W ) we substitute consistent estimators of Ω
and KS and the asymptotically unbiased estimator of �τ�τ � from Corollary 3.2 yielding

�AR
�
�θS,W

�
= trace

�
W 1/2 �KSΞS

��
0 0

0 �τ�τ � − �Ψ�Ω�Ψ

�
+ Ω

�
Ξ�
S
�K �
SW

1/2

�

which is nearly identical to the expression for the FMSC given in Equation 1. The only
difference is the presence of the weighting matrix W and the trace operator in place of
the vector of derivatives ∇θµ(�θ). When W is a diagonal matrix this difference disappears
completely as this effectively amounts to defining a target parameter that is a weighted
average of some subset of the elements of θ. In this case the FMSC can be used without
modification simply by defining the function µ appropriately.

E Low-Level Sufficient Conditions

Assumption E.1 (Sufficient Conditions for Theorem 3.2). Let {(zni, vni, �ni) : 1 ≤ i ≤
n, n = 1, 2, . . .} be a triangular array of random variables such that

(a) (zni, vni, �ni) ∼ iid and mean zero within each row of the array (i.e. for fixed n)

(b) E[zni�ni] = 0, E[znivni] = 0, and E[�nivni] = τ/
√
n for all n

(c) E[|zni|4+η] < C, E[|�ni|4+η] < C, and E[|vni|4+η] < C for some η > 0, C < ∞

(d) E[zniz
�
ni] → Q > 0, E[v2ni] → σ2

v > 0, and E[�2ni] → σ2
� > 0 as n → ∞

(e) As n → ∞, E[�2nizniz
�
ni] − E[�2ni]E[zniz

�
ni] → 0, E[�2i vniz

�
ni] − E[�2ni]E[vniz

�
ni] → 0, and

E[�2niv
2
ni]− E[�2ni]E[v2ni] → 0

(f) xni = z�niπ + vi where π �= 0, and yni = βxni + �ni

Parts (a), (b) and (d) correspond to the local mis-specification assumption, part (c) is
a set of moment restrictions, and (f) is simply the DGP. Part (e) is the homoskedasticity
assumption: an asymptotic restriction on the joint distribution of vni, �ni, and zni. This con-
dition holds automatically, given the other asssumptions, if (zni, vni, �ni) are jointly normal,
as in the simulation experiment described in the paper.

Assumption E.2 (Sufficient Conditions for Theorem 3.5.). Let {(zni,vni, �ni) : 1 ≤ i ≤
n, n = 1, 2, . . .} be a triangular array of random variables with zni = (z

(1)
ni , z

(1)
ni ) such that

(a) (zni,vni, �ni) ∼ iid within each row of the array (i.e. for fixed n)

(b) E[vniz
�
ni] = 0, E[z

(1)
ni �ni] = 0, and E[z

(2)
ni �ni] = τ/

√
n for all n
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(c) E[|zni|4+η] < C, E[|�ni|4+η] < C, and E[|vni|4+η] < C for some η > 0, C < ∞

(d) E[zniz
�
ni] → Q > 0 and E[�2nizniz

�
ni] → Ω > 0 as n → ∞

(e) xni = Π�
1z

(1)
ni + Π�

2z
(2)
ni + vni where Π1 �= 0, Π2 �= 0, and yi = x�

niβ + �ni

These conditions are similar to although more general than those contained in Assumption
E.1 as they do not impose homoskedasticity.

F A Special Case of Post-FMSC Inference

This appendix presents calculations and numerical results to supplement Section 4.4.

F.1 The Limit Experiment

The joint limit distribution for the OLS versus TSLS example from Section 3.2 is as follows



√
n
�
�βOLS − β

�

√
n
�
�βTSLS − β

�

�τ




d→ N






τ/σ2
x

0
τ


 , σ2

�




1/σ2
x 1/σ2

x 0
1/σ2

x 1/γ2 −σ2
v/γ

2

0 −σ2
v/γ

2 σ2
xσ

2
v/γ

2




 .

Now consider a slightly simplified version of the choosing instrumental variables example
from Section 3.3, namely

yni = βxni + �ni

xni = γwni + z�niπ + vni

where x is the endogenous regressor of interest, z is a vector of exogenous instruments, and
w is a single potentially endogenous instrument. Without loss of generality assume that w
and z are uncorrelated and that all random variables are mean zero. For simplicity, further
assume that the errors satisfy the same kind of asymptotic homoskedasticity condition used
in the OLS versus TSLS example so that TSLS is the efficient GMM estimator. Let the
“Full” estimator denote the TSLS estimator using w and z and the “Valid” estimator denote
the TSLS estimator using only z. Then we have,




√
n
�
�βFull − β

�

√
n
�
�βV alid − β

�

�τ




d→ N






τγ/q2F
0
τ


 , σ2

�




1/q2F 1/q2F 0
1/q2F 1/q2V −γσ2

w/q
2
V

0 −γσ2
w/q

2
V σ2

wq
2
F/q

2
V






where q2F = γ2σ2
w+q2V , q

2
V = π�Σzzπ, Σzz is the covariance matrix of the valid instruments z,

and σ2
w is the variance of the “suspect” instrument w. After some algebraic manipulations

we see that both of these examples share the same structure, namely



√
n
�
�β − β

�

√
n
�
�β − β

�

�τ




d→




U
V
T


 ∼ N






cτ
0
τ


 ,




η2 η2 0
η2 η2 + c2σ2 −cσ2

0 −cσ2 σ2




 (F.1)
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where �β denotes the low variance but possibly biased estimator, and �β denotes the higher
variance but unbiased estimator. For any example with a limit distribution that takes this
form, simple algebra shows that FMSC selection amounts to choosing �β whenever |�τ | <

√
2σ,

and choosing �β otherwise, in other words

√
n(�βFMSC − β) = 1

�
|�τ | < σ

√
2
�√

n(�β − β) + 1
�
|�τ | ≥ σ

√
2
�√

n(�β − β)

and so by the Continuous Mapping Theorem,

√
n(�βFMSC − β)

d→ 1
�
|T | < σ

√
2
�
U + 1

�
|T | ≥ σ

√
2
�
V.

Re-expressing Equation F.1 in terms of the marginal distribution of T and the conditional
distribution of U and V given T , we find that T ∼ N(τ, σ2) and

�
U
V

����� (T = t) ∼ N

��
cτ

cτ − ct

�
, η2

�
1 1
1 1

��

which is a singular distribution. While U is independent of T , but conditional on T the
random variables U and V are perfectly correlated with the same variance. Given T , the
only difference between U and V is that the mean of V is shifted by a distance that depends
on the realization t of T . Thus, the conditional distribution of V shows a random bias : on
average V has mean zero because the mean of T is τ but any particular realization t of T
will not in general equal τ . Using the form of the conditional distributions we can express
the distribution of (U, V, T )� in a more transparent form as

T = σZ1 + τ

U = ηZ2 + cτ

V = ηZ2 − cσZ1

where Z1, Z2 are independent standard normal random variables.

F.2 Numerical Results for the 2-Step Interval

For the two-step procedure I take lower and upper bounds over a collection of equal-tailed
intervals. It does not necessarily follow that the bounds over these intervals would be tighter
if each interval in the collection were constructed to be a short as possible. As we are
free when using the 2-Step interval to choose any pair (α1,α2) such that α1 + α2 = α I
experimented with three possibilities: α1 = α2 = α/2, followed by α1 = α/4,α2 = 3α/4
and α1 = 3α/4,α2 = α/4. Setting α1 = α/4 produced the shortest intervals so I discuss
only results for the middle configuration here. Additional results are available on request.
As we see from Table F.1 for the OLS versus TSLS example and Table F.2 for the choosing
IVs example, this procedure delivers on its promise that asymptotic coverage will never fall
below 1 − α but this comes at the cost of extreme conservatism and correspondingly wider
intervals.
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(a) Coverage Probability

τ
α = 0.05 0 1 2 3 4 5

0.1 97 97 97 98 98 98
π2 0.2 97 97 98 97 97 97

0.3 98 98 98 97 96 97
0.4 98 98 97 96 97 98

τ
α = 0.1 0 1 2 3 4 5

0.1 94 95 96 96 95 94
π2 0.2 95 96 96 95 94 93

0.3 96 96 95 94 92 94
0.4 96 95 94 92 94 95

τ
α = 0.2 0 1 2 3 4 5

0.1 91 92 92 91 90 90
π2 0.2 93 92 91 89 87 85

0.3 93 92 89 86 85 89
0.4 93 91 86 85 88 89

(b) Relative Width

τ
α = 0.05 0 1 2 3 4 5

0.1 114 115 117 119 123 126
π2 0.2 116 117 120 121 125 126

0.3 117 117 120 122 123 123
0.4 116 118 120 121 121 120

τ
α = 0.1 0 1 2 3 4 5

0.1 121 123 125 128 129 131
π2 0.2 122 124 126 129 130 131

0.3 123 125 126 127 128 128
0.4 123 123 124 125 125 123

τ
α = 0.2 0 1 2 3 4 5

0.1 135 139 140 140 144 145
π2 0.2 136 136 137 139 141 141

0.3 135 135 136 137 136 135
0.4 133 133 133 133 131 128

Table F.1: OLS versus TSLS Example: Asymptotic coverage and expected relative width of
two-step confidence interval with α1 = α/4,α2 = 3α/4.
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(a) Coverage Probability

τ
α = 0.05 0 1 2 3 4 5

0.1 98 98 97 96 96 97
γ2 0.2 98 98 98 97 96 96

0.3 98 98 98 97 97 96
0.4 97 97 98 98 97 97

τ
α = 0.1 0 1 2 3 4 5

0.1 96 96 94 93 93 94
γ2 0.2 96 96 95 94 93 93

0.3 96 96 95 95 93 92
0.4 95 96 96 95 94 93

τ
α = 0.2 0 1 2 3 4 5

0.1 93 91 87 85 87 88
γ2 0.2 93 92 89 86 85 87

0.3 93 92 90 88 85 85
0.4 93 92 91 89 87 85

(b) Relative Width

τ
α = 0.05 0 1 2 3 4 5

0.1 117 117 118 118 118 118
γ2 0.2 117 117 119 121 121 122

0.3 117 117 119 122 123 124
0.4 116 116 119 122 124 125

τ
α = 0.1 0 1 2 3 4 5

0.1 122 122 122 122 121 121
γ2 0.2 123 124 125 126 126 126

0.3 123 123 125 128 128 129
0.4 122 123 126 128 130 131

τ
α = 0.2 0 1 2 3 4 5

0.1 131 130 129 129 128 127
γ2 0.2 134 134 134 134 134 134

0.3 135 135 136 137 138 138
0.4 136 136 138 138 140 140

Table F.2: Choosing IVs Example: Asymptotic coverage and expected relative width of
two-step confidence interval with α1 = α/4,α2 = 3α/4.
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G Supplementary Simulation Results

This section discusses additional simulation results for the OLS versus IV example and the
choosing instrumental variables example, as a supplement to those given in Sections 5.1–5.3
of the paper.

G.1 Downward J-Test

This appendix presents simulation results for the downward J-test – an informal moment
selection method that is fairly common in applied work – for the choosing instrumental vari-
ables example from Section 5.2. In this simulation design the downward J-test amounts to
simply using the full estimator unless it is rejected by a J-test. Table G.1 compares the
RMSE of the post-FMSC estimator to that of the downward J-test with α = 0.1 (J90), and
α = 0.05 (J95). For robustness, I calculate the J-test statistic using a centered covariance
matrix estimator, as in the FMSC formulas from section 3.3. Unlike the FMSC, the down-
ward J-test is very badly behaved for small sample sizes, particularly for the smaller values
of γ. For larger sample sizes, the relative performance of the FMSC and the J-test is quite
similar to what we saw in Figure 1 for the OLS versus TSLS example: the J-test performs
best for the smallest values of ρ, the FMSC performs best for moderate values, and the two
procedures perform similarly for large values. These results are broadly similar to those
for the GMM moment selection criteria of Andrews (1999) considered in Section 5.2, which
should not come as a surprise since the J-test statistic is an ingredient in the construction
of the GMM-AIC, BIC and HQ.

G.2 Canonical Correlations Information Criterion

Because the GMM moment selection criteria suggested by Andrews (1999) consider only
instrument exogeneity, not relevance, Hall and Peixe (2003) suggest combining them with
their canonical correlations information criterion (CCIC), which aims to detect and eliminate
“redundant instruments.” Including such instruments, which add no information beyond
that already contained in the other instruments, can lead to poor finite-sample performance
in spite of the fact that the first-order limit distribution is unchanged. For the choosing
instrumental variables simulation example, presented in Section 5.2, the CCIC takes the
following simple form

CCIC(S) = n log
�
1−R2

n(S)
�
+ h(p+ |S|)κn (G.1)

where R2
n(S) is the first-stage R

2 based on instrument set S and h(p+|S|)κn is a penalty term
(Jana, 2005). Instruments are chosen to minimize this criterion. If we define h(p + |S|) =
(p + |S| − r), setting κn = log n gives the CCIC-BIC, while κn = 2.01 log log n gives the
CCIC-HQ and κn = 2 gives the CCIC-AIC. By combining the CCIC with an Andrews-
type criterion, Hall and Peixe (2003) propose to first eliminate invalid instruments and then
redundant ones. A combined GMM-BIC/CCIC-BIC criterion for the simulation example
from section 5.2 uses the valid estimator unless both the GMM-BIC and CCIC-BIC select
the full estimator. Combined HQ and AIC-type procedures can be defined analogously.
In the simulation design from this paper, however, each of these combined criteria gives
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Figure G.1: RMSE values for the post-Focused Moment Selection Criterion (FMSC) esti-
mator and the downward J-test estimator with α = 0.1 (J90) and α = 0.05 (J95) based on
20,000 simulation draws from the DGP given in Equations 25–26 using the formulas from
Sections 3.3.
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results that are practically identical to those of the valid estimator. This hold true across
all parameter values and sample sizes. Full details are available upon request.

G.3 Simulation Results for the 2-Step Confidence Interval

This appendix presents results for the 2-Step confidence interval in the simulation experiment
from Section 5.3. Tables G.1 and G.2 present coverage probabilities and average relative
width of the two-step confidence interval procedure with α1 = α/4 and α2 = 3α/4, the finite
sample analogues to Tables F.1 and F.2. Results for other configurations of α1,α2, available
upon request, result in even wider intervals.

(a) Coverage Probability

ρ
α = 0.05 0 0.1 0.2 0.3 0.4 0.5

0.1 98 99 99 98 95 90
π2 0.2 97 99 99 98 94 94

0.3 98 98 98 96 95 98
0.4 97 98 97 94 96 98

ρ
α = 0.1 0 0.1 0.2 0.3 0.4 0.5

0.1 97 97 98 97 92 88
π2 0.2 95 96 95 92 90 92

0.3 95 96 95 91 94 96
0.4 95 95 92 93 95 95

ρ
α = 0.2 0 0.1 0.2 0.3 0.4 0.5

0.1 92 93 93 92 86 83
π2 0.2 93 92 89 85 85 89

0.3 91 92 87 85 88 91
0.4 92 89 84 87 90 90

(b) Average Relative Width

ρ
α = 0.05 0 0.1 0.2 0.3 0.4 0.5

0.1 113 114 113 119 121 124
π2 0.2 115 117 120 123 125 126

0.3 117 117 121 122 123 124
0.4 117 118 120 121 121 121

ρ
α = 0.1 0 0.1 0.2 0.3 0.4 0.5

0.1 121 123 124 127 128 133
π2 0.2 123 125 126 129 131 132

0.3 122 123 126 128 128 128
0.4 122 124 124 125 125 125

ρ
α = 0.2 0 0.1 0.2 0.3 0.4 0.5

0.1 138 139 137 142 144 146
π2 0.2 136 137 138 140 142 142

0.3 135 135 136 137 137 137
0.4 133 133 133 133 133 132

Table G.1: 2-step CI, α1 = α/4,α2 = 3α/4, OLS vs IV Example, N = 100
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(a) Coverage Probability

ρ
α = 0.05 0 0.1 0.2 0.3 0.4 0.5

0.1 96 95 94 94 95 96
γ2 0.2 95 95 94 93 93 97

0.3 94 97 94 94 94 96
0.4 95 96 95 93 94 94

ρ
α = 0.1 0 0.1 0.2 0.3 0.4 0.5

0.1 92 90 90 89 93 95
γ2 0.2 92 94 91 90 92 93

0.3 93 93 93 90 90 93
0.4 90 94 93 91 87 90

ρ
α = 0.2 0 0.1 0.2 0.3 0.4 0.5

0.1 88 87 83 82 88 90
γ2 0.2 91 88 86 85 87 89

0.3 87 88 87 84 86 89
0.4 88 91 88 84 82 88

(b) Average Relative Width

ρ
α = 0.05 0 0.1 0.2 0.3 0.4 0.5

0.1 116 117 118 118 118 118
γ2 0.2 116 117 120 121 121 122

0.3 115 116 119 121 123 124
0.4 114 115 119 121 124 125

ρ
α = 0.1 0 0.1 0.2 0.3 0.4 0.5

0.1 121 121 122 122 122 122
γ2 0.2 122 123 125 126 127 125

0.3 122 123 126 127 128 129
0.4 122 123 126 128 130 131

ρ
α = 0.2 0 0.1 0.2 0.3 0.4 0.5

0.1 131 131 130 130 131 129
γ2 0.2 134 134 135 136 136 135

0.3 135 136 137 138 139 139
0.4 135 137 139 140 140 141

Table G.2: 2-step CI, α1 = α/4,α2 = 3α/4, Choosing IVs Example, N = 100

G.4 Weak Instruments

The FMSC is derived under an asymptotic sequence that assumes strong identification. But
what if this assumption fails? The following simulation results provide a partial answer to
this question by extending the RMSE comparisons from Sections 5.1 and 5.2 to the case in
which the “valid” estimator suffers from a weak instruments problem.

Figures G.2 and G.3 present further results for the OLS versus IV example from Section
5.1 with π ∈ {0.1, 0.05, 0.01}. When π = 0.01 the TSLS estimator suffers from a severe weak
instrument problem. All other parameters values are identical to those in the corresponding
figures from the body of the paper (Figures 1 and 2). We see from Figure G.2 that the
post-FMSC estimator dramatically outperforms the TSLS estimator in the presence of a
weak instrument. Indeed, the RMSE curves for the these two estimators only cross in the
bottom right panel where π = 0.1 and N = 500. Turning our attention to Figure G.3, the
minimum-AMSE averaging estimator provides a uniform improvement over the post-FMSC
estimator although the advantage is relatively small unless π = 0.1 and N = 500. Moreover,
the DHW test with α = 0.05 performs extremely well unless ρ is large. This is because, by
construction, it is more likely to choose OLS than the other methods – the correct decision
if the instrument is sufficiently weak.
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Figures G.5 and G.4 present RMSE comparisons for a slightly more general version of
the simulation experiment from Section 5.2 in which the strength of the valid instruments
can vary according to a scalar parameter π, specifically

yi = 0.5xi + �i (G.2)

xi = π(z1i + z2i + z3i) + γwi + vi (G.3)

for i = 1, 2, . . . , N where (�i, vi, wi, zi1, z2i, z3i)
� ∼ iid N(0,V) with

V =

�
V1 0
0 V2

�
, V1 =




1 (0.5− γρ) ρ
(0.5− γρ) (1− π2 − γ2) 0

ρ 0 1


 , V2 = I3/3 (G.4)

As in Section 5.2, this setup keeps the variance of x fixed at one and the endogeneity of
x, Cor(x, �), fixed at 0.5 while allowing the relevance, γ = Cor(x, w), and endogeneity,
ρ = Cor(w, �), of the instrument w to vary. The instruments z1, z2, z3 remain valid and
exogenous and the meaning of the parameters ρ and γ is unchanged. By varying π, however,
the present design allows the strength of the first-stage to vary: the first-stage R-squared
is 1 − σ2

v = π2 + γ2. Setting π sufficiently small creates a weak instrument problem for the
“valid” estimator that uses only z1, z2 and z3 as instruments. Figures G.4 and G.5 present
results for π = 0.01. The results are qualitatively similar to those of Figures 3 and 4 although
somewhat starker. When the valid estimator suffers from a weak instruments problem, the
post-FMSC estimator in general dramatically outperforms both the valid estimator and the
GMM moment selection criteria of Andrews (1999). There are only two exceptions. First
when N = 500 and γ = 0.2, the valid estimator outperforms FMSC for ρ greater than 0.25.
Second, when N = 500, GMM-BIC outperforms FMSC for the smallest values of ρ.
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Figure G.2: RMSE values for the two-stage least squares (TSLS) estimator, the ordinary
least squares (OLS) estimator, and the post-Focused Moment Selection Criterion (FMSC)
estimator based on 10,000 simulation draws from the DGP given in Equations 22–23 using
the formulas from Section 3.2.

A-13



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

N = 50, π = 0.01

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 100, π = 0.01

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 500, π = 0.01

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

N = 50, π = 0.05

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 100, π = 0.05

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 500, π = 0.05

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

N = 50, π = 0.1

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

N = 100, π = 0.1

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

N = 500, π = 0.1

ρ

R
M
S
E

FMSC
AVG
DHW90
DHW95

Figure G.3: RMSE values for the post-Focused Moment Selection Criterion (FMSC) es-
timator, Durbin-Hausman-Wu pre-test estimators with α = 0.1 (DWH90) and α = 0.05
(DHW95), and the minmum-AMSE averaging estimator, based on 10,000 simulation draws
from the DGP given in Equations 22–23 using the formulas from Sections 3.2 and 4.2.
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Figure G.4: RMSE values for the valid estimator, including only (z1, z2, z3), the full estimator,
including (z1, z2, z3, w), and the post-Focused Moment Selection Criterion (FMSC) estimator
based on 20,000 simulation draws from the DGP given in Equations G.3–G.4 with π = 0.01
using the formulas from Section 3.3.
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Figure G.5: RMSE values for the post-Focused Moment Selection Criterion (FMSC) esti-
mator and the GMM-BIC, HQ, and AIC estimators based on 20,000 simulation draws from
the DGP given in Equations G.3–G.4 with π = 0.01 using the formulas from Section 3.3.
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