
Mis-classified, Binary, Endogenous Regressors:

Identification and Inference∗

Francis J. DiTraglia1 and Camilo Garćıa-Jimeno1,2
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Abstract

This paper studies identification and inference for the effect of a mis-classified,
binary, endogenous regressor when a discrete-valued instrumental variable is available.
We begin by showing that the only existing point identification result for this model
is incorrect. We go on to derive the sharp identified set under mean independence
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identify the effect of interest. This motivates us to consider alternative and slightly
stronger assumptions: we show that adding second and third moment independence
assumptions suffices to identify the model. We then turn our attention to inference.
We show that both our model, and related models from the literature that assume
regressor exogeneity, suffer from weak identification when the effect of interest is small.
To address this difficulty, we exploit the inequality restrictions that emerge from our
derivation of the sharp identified set under mean independence only. These restrictions
remain informative irrespective of the strength of identification. Combining these with
the moment equalities that emerge from our identification result, we propose a robust
inference procedure using tools from the moment inequality literature. Our method
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Honoré, Arthur Lewbel, Chuck Manski, Sophocles Mavroeidis, Francesca Molinari, Yuya Takahashi, and
seminar participants at Cambridge, CEMFI, Chicago Booth, Manchester, Northwestern, Oxford, Penn State,
Princeton, UCL, the 2016 Greater New York Area Econometrics Colloquium, Camp Econometrics IX, and the
2017 North American Summer Meeting of the Econometric Society for valuable comments and suggestions.
This document supersedes an earlier version entitled “On Mis-measured Binary Regressors: New Results
and Some Comments on the Literature.”

1



1 Introduction

Measurement error and endogeneity are pervasive features of economic data. Conveniently,

a valid instrumental variable corrects for both problems when the measurement error is

classical, i.e. uncorrelated with the true value of the regressor. Many regressors of interest in

applied work, however, are binary and thus cannot be subject to classical measurement error.1

When faced with non-classical measurement error, the instrumental variables estimator can

be severely biased. In this paper, we study an additively separable model of the form

y = c(x) + β(x)T ∗ + ε (1)

where ε is a mean-zero error term, T ∗ is a binary, potentially endogenous regressor of in-

terest, and x is a vector of exogenous controls.2 Our question is whether, and if so under

what conditions, a discrete instrumental variable z suffices to non-parametrically identify

the causal effect β(x) of T ∗, when we observe not T ∗ but a mis-classified binary surrogate

T .

We proceed under the assumption of non-differential measurement error. This condition

has been widely used in the existing literature and imposes that T provides no additional

information beyond that contained in (T ∗,x). Even in this fairly standard setting, identifi-

cation remains an open question: we begin by showing that the only existing identification

result for this model is incorrect. We then go on to derive the sharp identified set under the

standard first-moment assumptions from the related literature. We show that regardless of

the number of values that z takes on, the model is not point identified. This motivates us to

consider alternative, and slightly stronger assumptions. We show that, given a binary instru-

ment, the addition of a second moment independence assumption suffices to identify a model

with one-sided mis-classification. Adding a second moment restriction on the measurement

error along with a third moment independence assumption for the instrument suffices to

identify the model in general. This result likewise requires only a binary z.

We then turn our attention to inference, showing that both our model and related mod-

els from the literature suffer from a weak identification problem. In essence, binary mis-

classification creates a mixture model and to correct the bias in the instrumental variables

estimator, we must estimate the mixing probabilities. But when β(x) is small the “mixture

modes” are nearly indistinguishable, making it impossible to reliably estimate these proba-

1The only way to mis-classify a true one is downwards, as a zero, while the only way to mis-classify a
true zero is upwards, as a one. This creates negative dependence between the true value of the regressor and
the error.

2Because T ∗ is binary, there is no loss of generality from writing the model in this form rather than the
more familiar y = h(T ∗,x) + ε. Simply define β(x) = h(1,x)− h(0,x) and c(x) = h(0,x).
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bilities. To address this difficulty, we exploit the inequality moment restrictions that emerge

from our derivation of the sharp identified set. These restrictions remain informative even

when β(x) is small or zero. Combining them with the moment equalities that emerge from

our identification result, we propose an identification robust procedure for uniformly valid

inference using tools from the moment inequality literature. Our procedure is computation-

ally attractive and performs well in simulations. Moreover, it can be used both in our model

and related models from the literature that assume an exogenous T ∗.

Our work relates to a large literature studying departures from the textbook linear, clas-

sical measurement error setting. One strand of this literature considers relaxing the assump-

tion of linearity while maintaining that of classical measurement error. Schennach (2004),

for example, uses repeated measures of each mis-measured regressor to obtain identification,

while Schennach (2007) uses an instrumental variable. More recently, Song et al. (2015) rely

on a repeated measure of the mis-measured regressor and the existence of a set of additional

regressors, conditional upon which the regressor of interest is unrelated to the unobservables,

to obtain identification. For comprehensive reviews of the challenges of addressing measure-

ment error in non-linear models, see Chen et al. (2011) and Schennach (2013). Another

strand of the literature considers relaxing the assumption of classical measurement error, by

allowing the measurement error to be related to the true value of the unobserved regressor.

Chen et al. (2005) obtain identification in a general class of moment condition models with

mis-measured data by relying on the existence of an auxiliary dataset from which they can

estimate the measurement error process. In contrast, Hu and Shennach (2008) and Song

(2015) rely on an instrumental variable and an additional conditional location assumption

on the measurement error distribution. More recently, Hu et al. (2015) use a continuous

instrument to identify the ratio of partial effects of two continuous regressors, one measured

with error, in a linear single index model. Unfortunately, these approaches cannot be applied

to the case of a mis-measured binary regressor.

A number of papers have studied models with an exogenous binary regressor subject to

non-differential measurement error. One group of papers asks what can be learned without

recourse to an instrumental variable. An early contribution by Aigner (1973) characterizes

the asymptotic bias of OLS in this setting, and proposes a correction using outside infor-

mation on the mis-classification process. Related work by Bollinger (1996) provides partial

identification bounds. More recently, Chen et al. (2008a) use higher moment assumptions

to obtain identification in a linear model, and Chen et al. (2008b) extend these results to

the non-parametric setting. van Hasselt and Bollinger (2012) and Bollinger and van Hasselt

(2015) provide additional partial identification results. For results on the partial identifica-

tion of discrete probability distributions under mis-classification, see Molinari (2008).
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Continuing under the assumption of exogeneity and non-differential measurement error,

another group of papers relies on the availability of either an instrumental variable or a

second measure of T ∗. Black et al. (2000) and Kane et al. (1999) consider a linear model and

show that when two alternative measures T1 and T2 of T ∗ are available, a non-linear GMM

estimator can be used to recover the effect of interest. Subsequently, Frazis and Loewenstein

(2003) note that an instrumental variable can take the place of one of the measures. Mahajan

(2006) extends the results of Black et al. (2000) and Kane et al. (1999) to a more general

setting using a binary instrument in place of one of the treatment measures, establishing non-

parametric identification of the conditional mean function. When T ∗ is in fact exogenous,

this coincides with the causal effect. Hu (2008) derives related results when the mis-classified

discrete regressor may take on more than two values. Lewbel (2007) provides an identification

result for the same model as Mahajan (2006) under different assumptions. In particular, his

“instrument-like variable” need not satisfy the usual exclusion restriction so long as it does

not interact with T ∗ and takes on three or more values.

Much less is known about the case in which a binary, or discrete, regressor is not only

mis-classified but endogenous. The first paper to provide a formal result for this case is Ma-

hajan (2006). He extends his main result to the case of an endogenous treatment, providing

an explicit proof of identification under the usual IV assumption in a model with additively

separable errors. As we show below, however, this result is false.3 Several more recent pa-

pers also consider the case of a mis-classified, endogenous, binary regressor. Kreider et al.

(2012), partially identify the effects of food stamps on health outcomes of children under

weak measurement error assumptions by relying on auxiliary data. Similarly, Battistin et al.

(2014) study the returns to schooling in a setting with multiple mis-reported measures of

educational qualifications. Unlike these two papers, our approach does not depend on the

availability of auxiliary data. In a different vein, Shiu (2015) uses an exclusion restriction

for the participation equation and an additional valid instrument to identify the effect of a

discrete, mis-classified endogenous regressor in a semi-parametric selection model. Similarly,

Nguimkeu et al. (2016) use exclusion restrictions for both the participation equation and

measurement error equation to identify a parametric model with endogenous participation

and one-sided endogenous mis-reporting. Unlike those of the preceding two papers, our re-

sults rely neither on parametric assumptions nor additional exclusion restrictions. Other

than Mahajan (2006), the paper most closely related to our own is that of Ura (2015), who

derives partial identification results for a local average treatment effect without assuming

non-differential measurement error. Unlike Ura (2015) we study an additively separable

model under non-differential measurement error and derive both partial and point identifi-

3Appendix B provides a detailed explanation of the error in Mahajan’s proof.
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cation results.

Our work also relates to a large literature on inference using inequality moment condi-

tions. In particular, we adopt the generalized moment selection (GMS) approach of Andrews

and Soares (2010) to construct a procedure for identification-robust inference that combines

the moment equalities from our point identification results with inequalities from our partial

identification results. Although the equalities alone globally identify our model, the inequal-

ities turn out to be extremely valuable in settings where β(x) may be small. Although our

specific approach differs from theirs, the idea of including moment inequalities in a model

that is already point identified by a collection of moment equalities relates to work by Moon

and Schorfheide (2009). While the weak identification problem that we point out and ad-

dress here also emerges in several closely related models, e.g. (Mahajan, 2006) and Frazis and

Loewenstein (2003), we are unaware of any other work from the literature that acknowledges

or addresses it. As shown in Appendix C, our inference procedure can be applied to the case

of an exogenous regressor with only minor modifications.

The remainder of the paper is organized as follows. Section 2.1 describes our model and

assumptions, Section 2.2 relates our results to existing work, and Sections 2.3–2.4 present our

identification results. Section 3.1 points out the special inferential difficulties that arise in

models with mis-classification while Section 3.2 gives a high-level overview of our proposed

inference procedure. Full details of the procedure follow in Sections 3.3–3.5. Section 4

presents simulation results, and Section 5 concludes. Proofs appear in Appendix A, and we

give a detailed explanation of the error in Mahajan (2006) in Appendix B.

2 Identification Results

2.1 Baseline Assumptions

As defined in the preceding section, our model is y = c(x) + β(x)T ∗ + ε, where ε is a mean-

zero error term, and the parameter of interest is β(x) – the effect of an unobserved, binary,

endogenous regressor T ∗. Suppose we observe a valid and relevant binary instrument z. In

the discussion following Corollary 2.3 below, we explain how these results generalize to the

case of an arbitrary discrete-valued instrument. We assume that the model and instrument

satisfy the following conditions:

Assumption 2.1.

(i) y = c(x) + β(x)T ∗ + ε where T ∗ ∈ {0, 1} and E[ε] = 0;

(ii) z ∈ {0, 1}, where 0 < P(z = 1|x) < 1, and P(T ∗ = 1|x, z = 1) 6= P(T ∗ = 1|x, z = 0);
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(iii) E[ε|x, z] = 0.

Assumptions 2.1(ii) and (iii) are the standard instrument relevance and mean indepen-

dence assumptions.4 If T ∗ were observed, Assumption 2.1 would suffice to identify β(x).

Unfortunately we observe not T ∗ but a mis-classified binary surrogate T . Define the follow-

ing mis-classification probabilities:

α0(x, z) = P (T = 1|T ∗ = 0,x, z) , α1(x, z) = P (T = 0|T ∗ = 1,x, z) . (2)

Following the existing literature for the case of an exogenous regressor (Black et al., 2000;

Frazis and Loewenstein, 2003; Kane et al., 1999; Lewbel, 2007; Mahajan, 2006), we impose

the following conditions on the mis-classification process.

Assumption 2.2.

(i) α0(x, z) = α0(x), α1(x, z) = α1(x)

(ii) α0(x) + α1(x) < 1

(iii) E[ε|x, z, T ∗, T ] = E[ε|x, z, T ∗]

Assumption 2.2 (i) states that the mis-classification probabilities do not depend on z. As

we maintain this assumption throughout, we drop the dependence of α0 and α1 on z and

write α0(x) and α1(x). Assumption 2.2 (ii) restricts the extent of mis-classification and is

equivalent to requiring that T and T ∗ be positively correlated. Assumption 2.2 (iii) is often

referred to as “non-differential measurement error.” Intuitively, it maintains that T provides

no additional information about ε, and hence y, given knowledge of (T ∗, z,x).

2.2 Point Identification Results from the Literature

Existing results from the literature – see for example Frazis and Loewenstein (2003) and Ma-

hajan (2006) – establish that β(x) is point identified if Assumptions 2.1–2.2 are augmented

to include the following condition:

Assumption 2.3 (Joint Exogeneity). E[ε|x, z, T ∗] = 0.

Assumption 2.3 strengthens the mean independence condition from Assumption 2.1 (iii)

to hold jointly for T ∗ and z. By iterated expectations, this implies that T ∗ is exogenous,

4Assumption 2.1 (ii) states that z is a relevant instrument for the unobserved regressor T ∗. Under
Assumption 2.2, however, this is equivalent to assuming that z is a relevant instrument for the observed
regressor T by Lemma 2.1 below.
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i.e. E[ε|x, T ∗] = 0. If T ∗ is endogenous, Assumption 2.3 clearly fails. Mahajan (2006)

argues, however, that the following restriction, along with our Assumptions 2.1–2.2, suffices

to identify β(x) when T ∗ may be endogenous:

Assumption 2.4 (Mahajan (2006) Equation 11). E[ε|x, z, T ∗, T ] = E[ε|x, T ∗].

Assumption 2.4 does not require E[ε|x, T ∗] to be zero, but maintains that it does not

vary with z. We show in Appendix B, however, that under Assumptions 2.1–2.2, Assumption

2.4 can only hold if T ∗ is exogenous. If z is a valid instrument and T ∗ is endogenous, then

Assumption 2.4 implies that there is no first-stage relationship between z and T ∗. As such,

identification in the case where T ∗ is endogenous is an open question.

2.3 Partial Identification

In this section we derive the sharp identified set under Assumptions 2.1–2.2 and show that

β(x) is not point identified. To simplify the notation, define the following shorthand for the

unobserved and observed first stage probabilities

p∗k(x) = P(T ∗ = 1|x, z = k) (3)

pk(x) = P(T = 1|x, z = k). (4)

We first state two lemmas that have appeared in various guises throughout the literature.

These will be used repeatedly below.

Lemma 2.1. Under Assumption 2.2 (i),

[1− α0(x)− α1(x)] p
∗
k(x) = pk(x)− α0(x)

[1− α0(x)− α1(x)] [1− p∗k(x)] = 1− pk(x)− α1(x)

where the first-stage probabilities p∗k(x) and pk(x) are as defined in Equations 3–4.

Lemma 2.2. Under Assumptions 2.1 and 2.2 (i)–(ii),

β(x)Cov(z, T |x) = [1− α0(x)− α1(x)]Cov(y, z|x)

Lemma 2.1 relates the observed first-stage probabilities pk(x) to their unobserved counter-

parts p∗k(x) in terms of the mis-classification probabilities α0(x) and α1(x). By Assumption

2.2 (ii), 1−α0(x)−α1(x) > 0 so that Lemma 2.1 provides non-trivial bounds for α0(x) and

α1(x) in terms of the observed first-stage probabilities. Lemma 2.2 relates the instrumen-

tal variables (IV) estimand, Cov(y, z|x)/Cov(z, T |x), to the mis-classification probabilities.
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Since 1−α0(x)−α1(x) > 0, IV is biased upwards in the presence of mis-classification. Com-

bining the two lemmas yields a well-known bound, namely that β(x) lies between the reduced

form and IV estimators. Our first result shows that without Assumption 2.2 (non-differential

measurement error) these bounds are sharp.

Theorem 2.1. Under Assumptions 2.1 and 2.2 (i)–(ii), the sharp identified set is charac-

terized by

E[y|x, z = k] = c(x) + β(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
(5)

and α0(x) ≤ pk(x) ≤ 1− α1(x) for k = 0, 1 where pk(x) is defined in Equation 4.

Corollary 2.1. Under the conditions of Theorem 2.1, the sharp identified set for β(x) is the

closed interval between the reduced form estimand Cov(y, z|x)/Var(z|x) and the IV estimand

Cov(y, z|x)/Cov(z, T |x).

Corollary 2.1 follows by taking differences of the expression for E[y|x, z = k] across k = 1

and k = 0, and substituting the maximum and minimum value for α0(x) + α1(x) consistent

with the observed first-stage probabilities. When the mis-classification probabilities are

known a priori to satisfy additional restrictions, these bounds can be tightened.5 The

following corollary collects results for two common cases: one-sided misclassification (either

α0(x) or α1(x) equals zero), and symmetric mis-classification (α0(x) = α1(x)).

Corollary 2.2. Under the conditions of Theorem 2.1, the following restrictions on the mis-

classification probabilities α0(x), α1(x) shrink the sharp identified set for β(x) to the closed

interval between ∆× [Cov(y, z|x)/Cov(z, T |x)] and Cov(y, z|x)/Cov(z, T |x).

(i) If α0(x) = 0 then ∆ = maxk pk(x).

(ii) If α1(x) = 0 then ∆ = 1−mink pk(x).

(iii) If α0(x) = α1(x) then ∆ = 1− 2min {mink pk(x), 1−maxk pk(x)}.

Theorem 2.1 and Corollaries 2.1–2.2 do not impose Assumption 2.2 (iii) – non-differential

measurement error. We now show that this assumption yields further restrictions on the mis-

classification probabilities α0(x) and α1(x). While these restrictions are more complicated to

describe than those from Theorem 2.1, they are straightforward to implement in practice and

can be extremely informative, as we will show in our simulation exercises below. To the best

of our knowledge, the sharp bounds that we derive by adding Assumption 2.2 (iii) are new to

5Frazis and Loewenstein (2003) consider a model in which α0 and α1 do not depend on the exogenous
covariates x. In this case α0 ≤ P(T = 1|x, z) ≤ 1− α1 and they suggest minimizing the bounds over x.
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the literature. Our result uses two additional conditions to simplify the proof of sharpness.

First, we assume that y is continuously distributed. This is natural in an additively separable

model and holds in our simulation examples below. Without this assumption, the bounds

that we derive are still valid, but may not be sharp. Nevertheless, the reasoning from our

proof can be generalized to cases in which y does not have a continuous support set. We

also impose E[y|x, T = 0, z = k] 6= E[y|x, T = 1, z = k] for any k. This holds generically and

is not essential to the proof: it merely simplifies the description of the identified set.

Theorem 2.2. Suppose that the conditional distribution of y given (x, T, z) is continuous

for any values of the conditioning variables and E [y|x, T = 0, z = k] 6= E [y|x, T = 1, z = k]

for all k. Then, under Assumptions 2.1 and 2.2, the sharp identified set is characterized by

Equation 5 from Theorem 2.1 along with α0(x) < pk(x) < 1− α1(x) for k = 0, 1 and

µ
tk

(
q
tk

(
α0(x), α1(x),x

)
, x

)
≤ µk

(
α0(x),x

)
≤ µtk

(
qtk
(
α0(x), α1(x),x

)
, x

)
for all pairs (t, k) where

µ
tk

(
q,x
)
= E [y | y ≤ q,x, T = t, z = k] , µtk

(
q,x
)
= E [y | y > q,x, T = t, z = k]

µk

(
α0(x),x

)
=

pk(x)E[y|x, z = k, T = 1]− α0(x)E[y|x, z = k]

pk(x)− α0(x)

and we define

q
tk

(
α0(x), α1(x),x

)
= F−1

tk

(
rtk
(
α0(x), α1(x),x

) ∣∣∣∣x)
qtk
(
α0(x), α1(x),x

)
= F−1

tk

(
1− rtk

(
α0(x), α1(x),x

) ∣∣∣∣x)
where F−1

tk (·|x) is the conditional quantile function of y given (x, T = t, z = k),

r0k
(
α0(x), α1(x),x

)
=

α1(x)

1− pk(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
r1k
(
α0(x), α1(x),x

)
=

1− α1(x)

pk(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
and pk(x) is defined in Equation 4.

The intuition for Theorem 2.2 is as follows. For simplicity, suppress dependence on x.

Now, fix (T = t, z = k) and (α0, α1). The observed distribution of y given (T = t, z = k),
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call it Ftk, is a mixture of two unobserved distributions: the distribution of y given (T =

1, z = k, T ∗ = 1), call it F 1
tk, and the distribution of y given (T = t, z = k, T ∗ = 0), call it F 0

tk.

The mixing probabilities are rtk and 1− rtk from the statement of Theorem 2.2 and are fully

determined by (α0, α1) and pk. Assumptions 2.1 (i) and 2.2 (ii) imply that the unobserved

means E[y|T ∗, T, z] are fully determined by (α0, α1) given the observed means E[y|T, z]. The
question is whether it is possible, given the observed distribution Ftk, to construct F 1

tk and

F 0
tk with the required values for E[y|T ∗, T, z] such that Ftk = rtkF

1
tk + (1 − rtk)F

0
tk for all

combinations (t, k). If not, then (α0, α1) does not belong to the identified set. Our proof

provides necessary and sufficient conditions for such a mixture to exist at a given point

(α0, α1). We can then appeal to the reasoning from Theorem 2.1 to complete the argument.

By ruling out values for α0 and α1, Theorem 2.2 restricts β via Lemma 2.2. While these

restrictions can be very informative in practice, they do not yield point identification.

Corollary 2.3. Under Assumptions 2.1 and 2.2 the identified set for β(x) contains both the

IV estimand Cov(y, z|x)/Cov(z, T |x) and the true coefficient β(x).

Corollary 2.3 follows by Lemma 2.2 because α0(x) = α1(x) = 0 always belongs to the

sharp identified set from Theorem 2.2. Non-differential measurement error cannot exclude

the possibility that there is no mis-classification because in this case it is trivial to construct

the required mixtures.

Although we focus throughout this paper on the case of a binary instrument, one might

wonder whether point identification can be achieved by increasing the support of z, perhaps

along the lines of Lewbel (2007). The answer turns out to be no. Suppose that we were

to modify Assumptions 2.1 and 2.2 to hold for all values of z in some discrete support set.

By Lemma 2.2, a binary instrument identifies β(x) up to knowledge of the mis-classification

probabilities α0(x) and α1(x). It follows that any pair of values (k, `) in the support set

of z identifies the same object. Accordingly, to identify β(x) it is necessary and sufficient

to identify the mis-classification probabilities. A binary instrument fails to identify these

probabilities because we can never exclude the possibility of zero mis-classification. The

same is true of a discrete K-valued instrument. Increasing the support of z does, however,

shrink the identified set by increasing the number of restrictions available. If z takes on more

than two values, our results in Theorems 2.1–2.2 continue to apply if “k = 0, 1” is replaced

by “for all k.”

2.4 Point Identification

The results of the preceding section establish that β(x) is not point identified under As-

sumptions 2.1 and 2.2. In light of this, there are two possible ways to proceed: either one
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can report partial identification bounds based on our characterization of the sharp identified

set from Theorem 2.2, or one can attempt to impose stronger assumptions to obtain point

identification. In this section we consider the second possibility. We begin by defining the

following functions of the model parameters:

θ1(x) = β(x) [1− α0(x)− α1(x)]
−1 (6)

θ2(x) = [θ1(x)]
2 [1 + α0(x)− α1(x)] (7)

θ3(x) = [θ1(x)]
3 [{1− α0(x)− α1(x)}2 + 6α0(x) {1− α1(x)}

]
(8)

Now consider the following additional assumption:

Assumption 2.5. E[ε2|x, z] = E[ε2|x]

Assumption 2.5 is a second moment version of the standard mean exclusion restriction

for the instrument z – Assumption 2.1 (iii). It requires that the conditional variance of the

error term given the covariates x does not depend on z. Notice that this assumption does

not require homoskedasticity with respect to x, T ∗ or T . Assumption 2.5 allows us to derive

the following lemma:

Lemma 2.3. Under Assumptions 2.1, 2.2 and 2.5,

Cov(y2, z|x) = 2Cov(yT, z|x)θ1(x)− Cov(T, z|x)θ2(x)

where θ1(x) and θ2(x) are defined in Equations 6–7.

Lemma 2.2 identifies θ1(x). Since Cov(z, T |x) 6= 0 by Assumption 2.1 (ii), we can solve

for θ2(x) in terms of observables only, using Lemma 2.3. Given knowledge of θ1(x), we can

solve Equation 7 for the difference of mis-classification rates so long as β(x) 6= 0.

Corollary 2.4. Under Assumptions 2.1–2.2 and 2.5, α1(x)− α0(x) is identified so long as

β(x) 6= 0.

Corollary 2.4 identifies the difference of mis-classification error rates. Hence, under one-

sided mis-classification, α0(x) = 0 or α1(x) = 0, augmenting our baseline Assumptions

2.1–2.2 with Assumption 2.5 suffices to identify β(x). Notice that β(x) = 0 if and only if

θ1(x) = 0. Thus, β(x) is still identified in the case where Corollary 2.4 fails to apply.

Assumption 2.5 does not suffice to identify β(x) without a priori restrictions on the

mis-classification error rates. To achieve identification in the general case, we impose the

following additional conditions:
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Assumption 2.6.

(i) E[ε2|x, z, T ∗, T ] = E[ε2|x, z, T ∗]

(ii) E[ε3|x, z] = E[ε3|x]

Assumption 2.6 (i) is a second moment version of the non-differential measurement error

assumption, Assumption 2.2 (iii). It requires that, given knowledge of (x, T ∗, z), T provides

no additional information about the variance of the error term. Note that Assumption 2.6

(i) does not require homoskedasticity of ε with respect to x or T ∗. Assumption 2.6 (ii) is a

third moment version of Assumption 2.5. It requires that the conditional third moment of

the error term given x does not depend on z. This condition neither requires nor excludes

skewness in the error term conditional on covariates: it merely states that the skewness is

unaffected by the instrument.

While Assumptions 2.5 and 2.6 may appear unfamiliar, we consider them to be fairly

natural in the context of an additively separable model in which one has already assumed

that E[ε|z] = 0 and E[ε|x, z, T ∗, T ] = E[x, z, T ∗] – Assumptions 2.1 (iii) and 2.2 (iii) from

above.6 For example, if an applied researcher reports results both for an outcome in logs

and levels, she has implicitly assumed independence rather than first moment exclusion.

Assumptions 2.1 (iii), 2.5 and 2.6 (ii) are of course implied by ε ⊥ z|x while Assumptions

2.2 (iii) and 2.6 (i) are implied by ε ⊥ T |(x, T ∗, z). Achieving identification via Assumptions

2.5–2.6 involves using information beyond first moments and as such does places higher

demands on the data. Assumption 2.6 allows us to derive the following Lemma which,

combined with Lemma 2.3, leads to point identification:

Lemma 2.4. Under Assumptions 2.1–2.2 and 2.5–2.6,

Cov(y3, z|x) = 3Cov(y2T, z|x)θ1(x)− 3Cov(yT, z|x)θ2(x) + Cov(T, z|x)θ3(x)

where θ1(x), θ2(x) and θ3(x) are defined in Equations 6–7.

Theorem 2.3. Under Assumptions 2.1–2.2 and 2.5–2.6, β(x) is identified. If β(x) 6= 0,

then α0(x) and α1(x) are likewise identified.

Lemmas 2.2–2.4 yield a linear system of three equations in θ1(x), θ2(x) and θ3(x). Under

Assumption 2.1 (ii), the system has a unique solution so θ1(x), θ2(x) and θ3(x) are identified.

The proof of Theorem 2.3 shows that, so long as β(x) 6= 0, Equations 6–8 can be solved for

β(x), α0(x) and α1(x). If we relax Assumption 2.2 (ii) and assume α0(x) + α1(x) 6= 1 only,

β(x) is only identified up to sign.

6If one wishes to weaken our Assumption 2.1 (i) to allow for some form of unobserved heterogeneity, our
higher moment assumptions may impose additional restrictions.
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3 Identification-Robust Inference

We now turn our attention to inference based on the identification results from above. We

begin by expressing Lemmas 2.2, 2.3 and 2.4 as unconditional equality moment conditions,

and describing the resulting just-identified GMM estimator. As we explain in Section 3.1,

inference under binary mis-classification is complicated by problems of weak identification

and parameters on the boundary. Section 3.2 provides an overview of our inference procedure.

Full details appear in Sections 3.3–3.5. For simplicity we fix the exogenous covariates at

some specified level and suppress dependence on x in the notation. This is appropriate if the

covariates have a discrete support. We discuss how to incorporate covariates more generally

in Section 3.6.

3.1 The Non-standard Inference Problem

Lemmas 2.2–2.4 yield the following system of linear moment equalities in the reduced form

parameters θ = (θ1, θ2, θ3) from Equations 6–8:

Cov(y, z)− Cov(T, z)θ1 = 0

Cov(y2, z)− 2Cov(yT, z)θ1 + Cov(T, z)θ2 = 0

Cov(y3, z)− 3Cov(y2T, z)θ1 + 3Cov(yT, z)θ2 − Cov(T, z)θ3 = 0

Non-linearity arises solely through the relationship between the reduced from parameters

θ and the structural parameters (α0, α1, β). To convert the preceding moment equations

into unconditional moment equalities, we define the additional reduced form parameters

κ = (κ1, κ2, κ3) as follows:

κ1 = c− α0θ1

κ2 = c2 + σεε + α0(θ2 − 2cθ1)

κ3 = c3 + 3 (c− θ1α0)σεε + E[ε3]− α0θ3 − 3cα0

[
θ1 (c+ β)− 2θ21(1− α1)

]
Building on this notation, let

ψ′
1 = (−θ1, 1, 0, 0, 0, 0), ψ′

2 = (θ2, 0,−2θ1, 1, 0, 0), ψ′
3 = (−θ3, 0, 3θ2, 0,−3θ1, 1) (9)
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and collect these in the matrix Ψ =
[
ψ1 ψ2 ψ3

]
. Defining the observed data vector

w′
i = (Ti, yi, yiTi, y

2
i , y

2
i Ti, y

3
i ) for observation i, we can re-write the moment equations as:

E

[(
Ψ′(θ)wi − κ

)
⊗

(
1

zi

)]
= 0. (10)

Equation 10 is a just-identified, linear system of moment equalities in the reduced form

parameters (θ,κ) and yields explicit GMM estimators (κ̂, θ̂). From Theorem 2.3, knowledge

of θ suffices to identify β. From the definitions of κ above and θ in Equations 6–8, however,

the moment equalities from Equation 10 do not depend on (α0, α1) if β equals zero. By

continuity, they are nearly uninformative about the mis-classification probabilities if β is

small. But unless β = 0, knowledge of (α0, α1) is necessary to recover β, via Lemma 2.2.

Thus, we face a weak identification problem.7 Indeed, the GMM estimator of β̂ based on

Equation 10 may even fail to exist. Using arguments from the proof of Theorem 2.3, this

estimator is given by

β̂ = sign
(
θ̂1
)√

3
(
θ̂2/θ̂1

)2
− 2

(
θ̂3/θ̂1

)
Under our assumptions, 3(θ2/θ1)

2 > 2(θ3/θ1) provided that β 6= 0, but this may not be true

of the sample analogue. Indeed, because θ̂1 appears in the denominator, the terms within

the square root will be highly variable if β is small. Even if the GMM estimator exists, it

may violate the partial identification bounds for (α0, α1) from Theorem 2.2, or imply that

(α0, α1) are not valid probabilities. Importantly, the partial identification bounds remain

informative even if β is small or zero: so long as Assumption 2.1 (ii) holds, the first-stage

probabilities bound α0 and α1 from above.

Exactly the same inferential difficulties arise in the case where T ∗ and z are assumed to

be jointly exogenous, as in Black et al. (2000); Frazis and Loewenstein (2003); Kane et al.

(1999); Lewbel (2007); Mahajan (2006).8 This issue, however, has received little attention

in the literature. Kane et al. (1999) ensure that (α0, α1) are valid probabilities by employing

a logit specification. Frazis and Loewenstein employ a pseudo-Bayesian approach to ensure

that α0 and α1 are valid probabilities, and to impose partial identification bounds related

to those from our Theorem 2.1, i.e. without using the non-differential measurement error

restrictions. Because they provide neither simulation evidence nor a theoretical justification

for their procedure, however, it is unclear whether this method will yield valid Frequentist

coverage. We are unaware of any papers in the related literature that discuss the weak

7This is essentially equivalent to the problem of estimating mixture probabilities when the means of the
component distributions are very similar to each other.

8We provide details for Frazis and Loewenstein (2003) and Mahajan (2006) in Appendix C.
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identification problem arising when β is small.

3.2 Overview of the Inference Procedure

In the following sections we develop a procedure for uniformly valid inference in models with

a mis-classified binary regressor. Our purpose is to construct a confidence interval for β that

is robust to possible weak identification, respects the restricted parameter space for (α0, α1),

and incorporates both the information in the equality moment conditions from Equation 10

along with the partial identification bounds from Theorem 2.2.9 As argued in the preceding

section, our partial identification bounds remain informative even when the equality moment

conditions contain essentially no information about (α0, α1).

To carry out identification-robust inference combining equality and inequality moment

conditions, we adopt the generalized moment selection (GMS) approach of Andrews and

Soares (2010). This procedure provides a uniformly valid test of a joint null hypothesis for

the full parameter vector. In our model, this includes the parameter of interest β along with

various nuisance parameters: the mis-classification probabilities α0 and α1, the reduced form

parameters κ, defined in Section 3.1, and a vector q of parameters that enter the moment

inequalities.10 Under a given joint null hypothesis for (β, α0, α1), however, κ and q are

strongly identified and lie on the interior their respective parameter spaces. Accordingly, in

Section 3.4 we explain how to concentrate these parameters out of the GMS procedure, by

deriving an appropriate correction to the asymptotic variance matrix for the test.11

This leaves us with a uniformly valid test of any joint null hypothesis for (β, α0, α1). To

construct a marginal confidence interval for β we proceed as follows. Suppose that z is a

strong instrument. Then the usual IV estimator provides a valid confidence interval for the

reduced from parameter θ1. By Lemma 2.2, knowledge of (1−α0−α1) suffices to determine

β from θ1. Thus, a valid confidence interval for (1− α0 − α1) can be combined with the IV

interval for θ1 to yield a corresponding interval for β, via a Bonferroni-type correction. To

construct the required interval for (1 − α0 − α1), we note from Equations 6–8 that β only

enters the moment equality conditions in Equation 10 through θ1. But, again, inference for

θ1 is standard provided that z is a strong instrument. We can thus pre-estimate θ1 along

with κ and q, yielding a uniformly valid GMS test of any joint null hypothesis for (α0, α1).

By inverting this test, we construct a joint confidence set for (α0, α1) which we then project

9Note that β = 0 if and only if θ1 = 0. Thus, if one is merely interested in testing H0 : β = 0, one can
ignore the mis-classification error problem and test H0 : θ1 = 0 using the standard IV estimator and standard
error, provided that z is a strong instrument.

10These are defined below in Section 3.3.
11Note that we cannot take the same approach to concentrate out α0 and α1 because the mis-classification

probabilities may be weakly identified or lie on the boundary of their parameter space.
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to obtain a confidence interval for (1 − α0 − α1). Because the parameter space for (α0, α1)

is bounded and two-dimensional, the projection step is computationally trivial.12 If desired,

one could also carry out a valid test of the null hypothesis that there is no mis-classification,

α0 = α1 = 0, using the joint test for (α0, α1). In the following sections we provide full details

of our Bonferroni-based confidence interval procedure for β.

3.3 Moment Inequalities

As noted above, the partial identification bounds from Theorems 2.1 and 2.2 remain infor-

mative about (α0, α1) even when β is small. To incorporate them in our inference procedure,

we first express them as unconditional moment inequalities. The bounds from Theorem 2.1

are given by

pk − α0 ≥ 0, 1− pk − α1 ≥ 0, for all k

where the first-stage probabilities pk are defined in Equation 4. We write these inequalities

as

E
[
mI

1(wi,ϑ)
]
≥ 0, mI

1(wi,ϑ) ≡


(1− zi)(Ti − α0)

(1− zi)(1− Ti − α1)

zi(T − α0)

zi(1− Ti − α1)

 (11)

The bounds derived in Theorem 2.2 by imposing assumption 2.2 (iii) are

µk(α0)− µ
tk

(
q
tk
(α0, α1)

)
≥ 0, µtk

(
qtk(α0, α1)

)
− µk(α0) ≥ 0, for all t, k

12We considered two alternatives to the Bonferroni-based inference procedure described here. The first
constructs a marginal confidence interval for β by projecting a joint confidence set for (β, α1, α0), i.e. without
preliminary estimation of θ1. This method is more computationally demanding than our two-dimensional
projection and involves a parameter space that is unbounded along the β-dimension. From a practical per-
spective, the relevant question is whether the reduction in conservatism from projecting a lower dimensional
set is outweighed by the additional conservatism induced by the Bonferroni correction. In our experiments,
the full three-dimensional projection and Bonferroni procedure produced broadly similar results: neither
reliably dominated in terms of confidence interval width. Given its substantially lower computational bur-
den, we prefer the Bonferroni procedure. We also experimented with two recently proposed methods for
sub-vector inference: Kaido et al. (2016) and Bugni et al. (2017). In both cases we obtained significant size
distortions, suggesting that our model may not satisfy the regularity conditions required by these papers.
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where µk, µtk
, µtk, qtk and qtk are defined in the statement of the Theorem. Expressing these

as unconditional moment inequalities, we have

E[mI
2(wi,ϑ,q)] ≥ 0, mI

2(wi,ϑ,q) ≡


mI

2,00(wi,ϑ,q)

mI
2,10(wi,ϑ,q)

mI
2,01(wi,ϑ,q)

mI
2,11(wi,ϑ,q)

 (12)

where q ≡ (q
00
, q00, q10, q10, q01, q01, q11, q11) and we define

mI
2,0k

(
wi,ϑ,q) ≡

 yi1 (zi = k)
{
(Ti − α0)− 1(yi ≤ q

0k
)(1− Ti)

(
1−α0−α1

α1

)}
−yi1(zi = k)

{
(Ti − α0)− 1(yi > q0k)(1− Ti)

(
1−α0−α1

α1

)}  (13)

mI
2,1k(wi,ϑ,q) ≡

 yi1 (zi = k)
{
(Ti − α0)− 1(yi ≤ q

1k
)Ti

(
1−α0−α1

1−α1

)}
−yi1(zi = k)

{
(Ti − α0)− 1(yi > q1k)Ti

(
1−α0−α1

1−α1

)}  . (14)

Finally we define mI = (mI′
1 ,m

I′
2 )

′. Notice that the second set of inequalities, mI
2, depends

on the unknown parameter q which is in turn a function of (α0, α1). In the next section we

discuss how q can be estimated under a given null hypothesis for (α0, α1).

3.4 Accounting for Preliminary Estimation

Let ϑ = (α0, α1) and γ = (κ, θ1) where θ1 is defined in Equation 6 and κ in Section 3.1.

Our moment conditions take the form

E[mI(wi,ϑ0,q0)] ≥ 0, E[mE(wi,ϑ0,γ0)] = 0 (15)

where mI = (mI′
1 ,m

I′
2 )

′, defined in Section 3.3, and

mE(wi,ϑ0,γ0) =

[
{ψ′

2(θ1, α0, α1)wi − κ2} zi
{ψ′

3(θ1, α0, α1)wi − κ3} zi

]
. (16)

Notice that we now writeψ2 andψ3, defined in Equation 9, as explicit functions of (θ1, α0, α1),

using the definitions of (θ2, θ3) from Equations 7–8. To construct a GMS test of the null

hypothesis H0 : ϑ = ϑ0 based on Equation 15, we require preliminary estimators γ̂(ϑ0) and

q̂(ϑ0) that are consistent and asymptotically normal under the null. We now provide full

details of the construction and derive the associated adjustment to the asymptotic variance
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matrix.

Consider first the equality moment conditions mE. For these we require preliminary

estimators of θ1, κ2, and κ3. Recall that θ1 is simply the IV estimand: it can be consis-

tently estimated directly from observations of (y, T, z) without knowledge of α0 or α1. Note,

moreover, from Equation 10 that κ is simply a vector of intercepts. These can be directly

estimated from observations of w because Ψ(θ1, α0, α1) is consistently estimable under the

null H0 : ϑ = ϑ0: the hypothesis specifies α0 and α1 and IV provides a consistent estimator

of θ1. Accordingly, define

hE(wi,ϑ,γ) =

[
Ψ′(θ1, α0, α1)wi − κ
{ψ′

1(θ1)wi − κ1} zi

]
. (17)

Under H0 : ϑ = ϑ0, the just-identified GMM-estimator based on E[hE(wi,ϑ0,γ0)] = 0 yields

a consistent and asymptotically normal estimator of γ0 under the usual regularity conditions.

Now consider the inequality moment conditions mI . From Section 3.3 we see that mI
2

depends on q, the vector of conditional quantiles qtk and q
tk
defined in Theorem 2.2. Under

the assumption that y follows a continuous distribution, as maintained in Theorem 2.2, these

can be expressed as conditional moment equalities as follows:

E
[
1(y ≤ q

tk
)|T = t, z = k

]
− rtk(α0, α1) = 0 (18)

E [1(y ≤ qtk)|T = t, z = k]−
(
1− rtk(α0, α1)

)
= 0 (19)

where rtk is defined in Theorem 2.2 and t, k = 0, 1. Under H0 : ϑ = ϑ0, a consistent estimator

r̂tk of rtk can be obtained directly from p̂k, the sample analogue of pk based on iid observations

of wi. In turn, the (r̂tk)
th and (1− r̂tk)

th sample conditional quantiles of y provide consistent

estimates of q
tk

and qtk.
13 Collecting these for all (t, k) gives q̂(ϑ0). Now, define

hI(wi,ϑ,q) =

[
hI
0(w,ϑ,q)

hI
1(w,ϑ,q)

]
(20)

13Consistency of the sample quantiles requires 0 < rtk < 1. If rtk = 0 or 1 for some (t, k), however, then
the associated moment inequality is trivially satisfied and we no longer require estimates of q

tk
, qtk.
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where

hI
k(wi,ϑ,q) =


1(yi ≤ q

0k
)1(zi = k)(1− Ti)−

(
α1

1−α0−α1

)
1(zi = k)(Ti − α0)

1(yi ≤ q0k)1(zi = k)(1− Ti)−
(

1−α0

1−α0−α1

)
1(zi = k)(1− Ti − α1)

1(yi ≤ q
1k
)1(zi = k)Ti −

(
1−α1

1−α0−α1

)
1(zi = k)(Ti − α0)

1(yi ≤ q1k)1(zi = k)Ti −
(

α0

1−α0−α1

)
1(zi = k)(1− Ti − α1)

 . (21)

Equation 21 gives the unconditional version of Equations 18–19. Now, under the null q̂(ϑ0)

converges in probability to q0, which satisfies the just-identified collection of moment equal-

ities E[hI(wi,ϑ0,q0)] = 0. Although hI is a discontinuous function of q, it is bounded

for any fixed (α0, α1). Moreover, since y|(T = t, z = k) is a continuous random variable,

E[hI(wi,ϑ,q)] is continuously differentiable with respect to q. Hence, q̂ is asymptotically

normal under mild regularity conditions.14 To account for the effect of preliminary estima-

tion of q and γ on the asymptotic variance matrix used in the GMS test, we rely on the

following Lemma:

Lemma 3.1. Let m̄I
1,n(ϑ) = n−1

∑n
i=1m

I
1,n(wi,ϑ) and define m̄I

2,n, m̄
E
n , h̄

I
n, h̄

E
n analogously.

Further let γ̂(ϑ0) = argminγ‖h̄E
n (ϑ0,γ)‖ and ‖hI

n(ϑ0, q̂(ϑ0))‖ ≤ infq‖hI
n(ϑ0,q)‖ + op(1).

Then, under standard regularity conditions

√
n

 m̄I
1,n (ϑ0)

m̄I
2,n

(
ϑ0, q̂(ϑ0)

)
m̄E

n

(
ϑ0, γ̂(ϑ0)

)
→p

 I 0 0 0 0

0 I 0 BI(ϑ0, q0) 0

0 0 I 0 BE(ϑ0,γ0)

√
n


m̄I

1,n (ϑ0)

m̄I
2,n (ϑ0,q0)

m̄E
n (ϑ0,γ0)

h̄I
n (ϑ0,q0)

h̄E
n (ϑ0,γ0)


where we define BI(ϑ, q) = (1 − α0 − α1) [diag(a)]

−1 q and BE(ϑ,γ) = −ME(HE)−1 with

a′ = (α1, α1, 1− α1, 1− α1, α1, α1, 1− α1, 1− α1), and

ME =

 0 −E[zi] 0
(

∂ψ2

∂θ1

)′
E[wizi]

0 0 −E[zi]
(

∂ψ3

∂θ1

)′
E[wizi]

 , HE =



−1 0 0
(

∂ψ1

∂θ1

)′
E[wi]

0 −1 0
(

∂ψ2

∂θ1

)′
E[wi]

0 0 −1
(

∂ψ3

∂θ1

)′
E[wi]

−E[zi] 0 0
(

∂ψ1

∂θ1

)′
E[wizi]


.

Lemma 3.1 relates the sample analogues m̄I
2,n and m̄E

n evaluated at the preliminary esti-

14For details, see Andrews (1994) and Newey and McFadden (1994) Section 7.
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mators q̂(ϑ0) and γ̂(ϑ0) to their counterparts evaluated at the true parameter values q0 and

γ0. The estimator γ̂(ϑ0) exactly solves hE
n (ϑ0,γ) = 0 while q̂(ϑ0), constructed as described

immediately before the statement of the Lemma, approximately solves h̄I
n(ϑ0,q) = 0. A few

lines of matrix algebra show that the determinant of HE equals Cov(z, T ). Hence, BE is

well-defined if z is a relevant instrument. The matrix BI is likewise well-defined provided

that α1 6= 0 and the elements of q0 are computed for probabilities strictly between zero and

one. If either of these conditions fails, however, some of the moment inequalities in mI
2 are

trivially satisfied and can be dropped (see Footnote 13). After removing the correspond-

ing elements of q0 and a, BI becomes well-defined. The regularity conditions required for

Lemma 3.1 are mild. The result relies on a number of mean-value expansions: h̄E
n (ϑ0,γ0) and

m̄E
n (ϑ0,γ0) are expanded around γ = γ̂(ϑ0) while E[hI(wi,ϑ0,q0)] and E[mI

2(wi,ϑ0,q0)]

are expanded around q = q̂(ϑ0). These expansions, in turn, rely on the fact that q and γ are

interior to their respective parameter spaces and the relevant functions are all continuously

differentiable in our example.

We now have all the ingredients required to construct an asymptotic variance matrix for

the GMS test that accounts for preliminary estimation of γ and q. Let m′ = (mI′
1 ,m

I′
2 ,m

E′
),

h′ = (hI′ , hE′
), and define the shorthand τ ′

0 = (γ ′
0,q

′
0) and τ̂

′
0 =

(
γ̂ ′(ϑ0), q̂

′(ϑ0)
)
. Given a

collection of iid observations (w1, . . . ,wn), we have

√
n

[
m̄n(ϑ0, τ 0)

h̄n(ϑ0, τ 0)

]
→d N

(
0,V(ϑ0, τ 0)

)
, V(ϑ0, τ 0) = Var

[
m(wi,ϑ0, τ 0)

h(wi,ϑ0, τ 0)

]
(22)

under H0 : ϑ = ϑ0, by an appropriate central limit theorem. What we require for the test,

however, is the asymptotic variance matrix of
√
n m̄n(ϑ0, τ̂ 0). Combining Equation 22 with

Lemma 3.1, we obtain

Avar
(√

n m̄n(ϑ0, τ̂ 0)
)
= Ξ(ϑ0, τ 0)V(ϑ0, τ 0) Ξ

′(ϑ0, τ 0) (23)

with

Ξ(ϑ, τ ) =
[
I B(ϑ, τ )

]
, B(ϑ, τ ) =

 0 0

BI(ϑ,q) 0

0 BE(ϑ,γ)

 (24)

where BI(·, ·) and BE(·, ·) are defined in Lemma 3.1. Finally, we construct a consistent

estimator Σ̂n(ϑ0) of the asymptotic variance matrix of
√
n m̄n(ϑ0, τ̂ 0) under the null:

Σ̂n(ϑ0) ≡ Ξ(ϑ0, τ̂ 0) V̂n(ϑ0, τ̂ ) Ξ
′(ϑ0, τ̂ 0) (25)

20



where

V̂n(ϑ, τ ) ≡
1

n

n∑
i=1

[
m(wi,ϑ, τ )− m̄n(ϑ, τ )

h(wi,ϑ, τ )− h̄n(ϑ, τ )

][
m(wi,ϑ, τ )− m̄n(ϑ, τ )

h(wi,ϑ, τ )− h̄n(ϑ, τ )

]′
. (26)

In the following section we provide a step-by-step description of our inference procedure.

3.5 Details of the Inference Procedure

In this section we provide full details of our Bonferroni-based inference procedure. We begin

by defining some notation. Let J denote the total number of inequality moment conditions,

K denote the total number of equality moment conditions, and define

m̄n(ϑ, τ ) =

[
m̄I

n(ϑ,q)

m̄E
n (ϑ,γ)

]
=

 m̄I
n,1(ϑ)

m̄I
n,2(ϑ,q)

m̄E
n (ϑ,γ)

 =
1

n

n∑
i=1

 mI
1(wi,ϑ)

mI
2(wi,ϑ,q)

mE(wi,ϑ,γ)

 (27)

with mI
1 as defined in Equation 11, mI

2 in Equations 12–14 and mE in Equation 16.15 Now

let S be the function

S(x,y) =
∑
j

min
{
0, x2

j

}
+ y′y (28)

where x,y are two finite-dimensional real vectors and xj denotes the jth element of x. This

function will be used to calculate the modified method of moments (MMM) test statistic as

part of the GMS test below. The argument x stands in for the moment inequalities, which

only contribute to the test statistic when they are violated, i.e. take on a negative value.

Using this notation, we now detail the first step of our inference procedure: a GMS test for

ϑ = (α0, α1) with preliminary estimation of q and γ under the null.

Algorithm 3.1 (GMS Test for α0 and α1 ).

Inputs: hypothesis ϑ0; iid dataset {wi}ni=1; simulations {ζ(r)}Rr=1 ∼ iid NJ+K(0, I).

1. Calculate the variance matrix estimator Σ̂n(ϑ0).

(i) Calculate τ̂ 0 = (q̂′
0, γ̂

′
0)

′ where γ̂0 = γ̂(ϑ0) and q̂0 = q̂(ϑ0) from Section 3.4.

(ii) Calculate Ξ(ϑ0, τ̂ 0) using Equation 24.

(iii) Calculate V̂n(ϑ0, τ̂ 0) using Equation 26.

(iv) Set Σ̂n(ϑ0) = Ξ(ϑ0, τ̂ 0) V̂n(ϑ0, τ̂ ) Ξ
′(ϑ0, τ̂ 0).

15In our problemK = 2 and J is at most 12. Under certain nulls for (α0, α1), however, we drop components
of mI

2 as they are trivially satisfied. See footnote 13 and Section 3.4 for further discussion.
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2. Calculate the test statistic Tn(ϑ0).

(i) Calculate
√
n m̄n(ϑ0, τ̂ 0) using Equation 27.

(ii) Set νn(ϑ0) =
[
diag

{
Σ̂n(ϑ0)

}]−1/2

[
√
n m̄n(ϑ0, τ̂ 0)].

(iii) Let νI
n(ϑ0) denote the first J elements of νn and νE

n (ϑ0) the last K elements.

(iv) Set Tn(ϑ0) = S
(
νI
n(ϑ0), ν

E
n (ϑ0)

)
using Equation 28.

3. Construct the moment selection matrix Φ.

(i) For j = 1, . . . , J set ϕI
j = 1

{
νI
n,j(ϑ0) ≤

√
log n

}
and let J̃ =

∑J
j=1 ϕ

I
j .

(ii) For j = 1, . . . , K set ϕE
j = 1.

(iii) Set ϕ = (ϕI
1, . . . , ϕ

I
J , ϕ

E
1 , . . . , ϕ

E
K)

′.

(iv) Let Φ be the (J̃ +K)× (J +K) of zeros and ones that selects those elements xj

of an arbitrary vector x that correspond to ϕj = 1.

4. Simulate the sampling distribution of Tn(ϑ0) under the null.

(i) Let Ω̂ be the correlation matrix that corresponds to Σ̂n(ϑ0).

(ii) For each r = 1, . . . , R set ξ(r) =
[
Φ Ω̂Φ′

]1/2
Φζ(r).

(iii) Let ξ
(r)
I denote the first J̃ and ξ

(r)
E the last K elements of ξ(r).

(iv) For each r = 1, . . . , R set T
(r)
n (ϑ0) = S

(
ξ
(r)
I , ξ

(r)
E

)
using Equation 28.

5. Calculate the p-value of the test: p̂(ϑ0) =
1

R

R∑
r=1

1
{
T (r)
n (ϑ0) > Tn(ϑ0)

}
.

Algorithm 3.1 corresponds to the asymptotic version of the GMS test from Andrews

and Soares (2010), based on the MMM test statistic – S1 in Andrews and Soares (2010)

– and the “BIC choice” κn =
√
log n for the sequence of constants κn used for moment

selection. The procedure is as follows. In Step 1, we compute a consistent estimator of the

asymptotic variance matrix of the full set of moment conditions, under the null, accounting

for preliminary estimation of q and γ as explained in Section 3.4. In step 2, we calculate

the observed value of the MMM test statistic. Note that this test statistic uses only the

diagonal elements of Σ̂n(ϑ0). Moreover, the moment inequalities only contribute to Tn if

they are violated, i.e. if they take on a negative value. In step 3 we determine which moment

inequalities are “far from binding,” defined as having a t-ratio greater than
√
log n. These

moment inequalities will be excluded when approximating the large-sample distribution of
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the test statistic. The matrix Φ encodes the results of the moment selection step. Pre–

multiplying a (J +K)–vector x by Φ results in a (J̃ ×K)–vector x̃ whose last K elements

match the last K elements of x but whose first J̃ elements contain the subset of (x1, . . . , xJ)

whose indices match those of the moment inequalities with t-ratios less than or equal to
√
log n, i.e. those that are not far from binding.16 Step 4 uses a collection of iid normal draws,

{ζ(r)}Rr=1, to approximate the large-sample distribution of Tn under the null. The appropriate

multiplications by Φ ensure that this approximation includes all moment equalities, but

excludes any moment inequality judged to be far from binding in step 3. Finally, step 5

computes the p-value of the test by comparing the actual test statistic Tn(ϑ0) to the collection

of simulated test statistics {T (r)
n (ϑ0)}Rr=1 from step 4. We now detail our Bonferroni-based

confidence interval for β.17

Algorithm 3.2 (Bonferroni-based Confidence Interval for β).

Inputs: significance levels (δ1, δ2); iid dataset {wi}ni=1; simulations {ζ(r)}Rr=1 ∼ iid NJ+K(0, I).

1. Construct a (1− δ1)× 100% joint confidence set C(δ1) for ϑ = (α0, α1)
′.

(i) Let ΛN =
{
0, 1

N
, 2
N
, . . . , N−2

N
, N−1

N

}
where N > 1 is a natural number.

(ii) Set ∆N = {(α0, α1) ∈ (ΛN × ΛN) : α0 + α1 < 1}.

(iii) For each ϑ ∈ ∆N calculate p̂(ϑ) using Algorithm 3.1, holding {ζ(r)}Rr=1 fixed.

(iv) Set C(δ1) = {ϑ ∈ ∆N : p̂(ϑ) ≥ δ1}.

2. Construct a (1− δ1)× 100% confidence interval [s(δ1), s(δ1)] for s ≡ (1− α0 − α1).

(i) Set s(δ1) = min {(1− α0 − α1) : (α0, α1) ∈ C(δ1)}.

(ii) Set s(δ1) = max {(1− α0 − α1) : (α0, α1) ∈ C(δ1)}.

3. Construct a (1− δ2)× 100% confidence interval
[
θ1(δ2), θ1(δ2)

]
for θ1.

(i) Use the standard IV interval from a regression of y on T with instrument z.

4. Construct the (1− δ)× 100% Bonferroni-based confidence interval
[
β(δ), β(δ)

]
for β.

16Although this does not affect the results of the procedure, notice that Algorithm 3.1 carries out moment
selection in a slightly different way from the steps given by Andrews and Soares (2010). In particular, before

carrying out any further calculations, we subset the correlation matrix Ω̂ and normal vectors ζ(r) to remove
elements corresponding to moment inequalities deemed far from binding. In contrast, Andrews and Soares
(2010) carry along the full set of inequalities throughout, but add +∞ to the appropriate elements when

computing T
(r)
n to ensure that only the moment inequalities that are not far from binding affect the results.

Although it requires more notation to describe, sub-setting is substantially faster, as it avoids carrying out
computations for inequalities that cannot affect the result.

17Code implementing this procedure is available at https://github.com/fditraglia/mbereg.
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(i) Let δ = δ1 + δ2.

(ii) Set β(δ) = min {s(δ1)× θ1(δ2), s(δ1)× θ1(δ2)}.

(iii) Set β(δ) = max
{
s(δ1)× θ1(δ2), s(δ1)× θ1(δ2)

}
.

Step 1 of Algorithm 3.2 constructs a (1 − δ1) × 100% joint confidence set C(δ1) for

ϑ = (α0, α1) by inverting the GMS test from Algorithm 3.1 over a discretized parameter

space ∆N . Because the parameter space for (α0, α1) is bounded, this is computationally

straightforward. Note that the same normal draws {ζ(r)}Rr=1 are used to test each null

hypothesis contained in ∆N . Step 2 projects C(δ1) to yield a (1 − δ1) × 100% confidence

interval for s ≡ (1− α0 − α1), simply taking the maximum and minimum values of s in the

discrete set C(δ1). Step 3 constructs the usual IV confidence interval for the reduced form

parameter θ1, and step 4 combines the results of steps 2–3 with Bonferroni’s inequality to

yield a (1 − δ1 − δ2) × 100% confidence interval for β. For some discussion of alternatives

to Algorithm 3.2, see Footnote 12. Notice that, by construction, the Bonferroni interval for

β excludes zero if and only if the confidence interval for θ1 from step 3 of Algorithm 3.2

excludes zero. Under mild regularity conditions, the confidence interval from Algorithm 3.2

is uniformly asymptotically valid.

Theorem 3.1. Let w1, . . . ,wn be an iid collection of observations satisfying the conditions

of Theorems 2.2 and 2.3, and let z be a strong instrument. Then, under standard regu-

larity conditions, the confidence interval for β from Algorithm 3.2 has asymptotic coverage

probability no less than 1− (δ1 + δ2) as R,N, n → ∞ uniformly over the parameter space.

Theorem 3.1 is effectively a corollary of Theorem 1 from Andrews and Soares (2010),

which establishes the uniform asymptotic validity of the GMS test, and Lemma 3.1, which

accounts for preliminary estimation of γ and q. Given iid observations wi, the only substan-

tive condition required for Theorem 3.1 is the joint asymptotic normality of
√
n m̄n(ϑ0, τ 0)

and
√
nh̄n(ϑ0, τ 0), where h̄n denotes the sample analogues for the full set of auxiliary mo-

ment conditions (hI , hE) defined in Section 3.4. For further discussion of the regularity

conditions required for the GMS procedure, see Appendix A3 of Andrews and Soares (2010).

For some discussion of the regularity conditions required for Lemma 3.1, see Section 3.4.

Theorem 3.1 invokes the higher-moment assumptions (Assumptions 2.5–2.6) under which

we establish global identification of β in Theorem 2.3, and Algorithm 3.1 likewise incorporates

the higher-moment equality conditions that arise from this result. To proceed without these

conditions, simply remove mE from the set of moment conditions used in the algorithm

and leave the steps unchanged. In this case β is no longer point identified but the inference

procedure provides valid inference for the points in the sharp identified set from Theorem 2.2.
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Algorithm 3.2 can likewise be used in the case of an exogenous T ∗, as in Mahajan (2006) and

Frazis and Loewenstein (2003). As mentioned above in Section 3.1, the exogenous regressor

case is subject to the same inferential difficulties as the endogenous case on which we focus

in this paper. To accommodate an exogenous regressor, simply replace mE with the moment

equalities described in Appendix C.

3.6 Further Details Regarding Covariates

The inference procedure described in the preceding sections holds x fixed, and is thus ap-

propriate for examples with discrete covariates. To accommodate covariates more generally,

there are several possible approaches. At one extreme, suppose one were willing to assume

that (α0, α1) did not vary with x and that y = c+βT ∗+x′φ+ε, as in Frazis and Loewenstein

(2003). In this case, the standard IV estimator identifies φ and one could simply augment

the moment equalities mE from Equation 16 above to provide a preliminary estimator of

φ in Algorithm 3.1. At the other extreme, if one wished to remain fully non-parametric,

one could adopt the approach of Andrews and Shi (2014), based on kernel averaging near

a fixed covariate value x = x0. As a compromise between these two extremes, one could

alternatively specify a semi-parametric model, perhaps along the lines of Section 4 of Lewbel

(2007), and follow the approach of Andrews and Shi (2013). Both of these latter possibilities

could be an interesting extension of the method described above.

4 Simulation Study

In this section we present results from a simulation study using the inference procedure

described in Section 3.5 above. Unless otherwise specified, all calculations are based on 2000

simulation replications with n = 1000 using Algorithm 3.2 with R = 5000 simulation draws.

Supplementary simulation results appear in Appendix D.

4.1 Simulation DGP

Our simulation design generates n iid draws of the observables (yi, Ti, zi) as follows:

1. Generate the instrumental variable z.

(i) For each 1 ≤ i ≤ n/2 set zi = 0.

(ii) For each n/2 < i ≤ n, set zi = 1.
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2. Generate the error terms:[
ηi

εi

]
∼ iid N

([
0

0

]
,

[
1 ρ

ρ 1

])
.

3. Generate the unobserved regressor: T ∗
i = 1 {d0 + d1zi + ηi > 0}.

4. Generate the outcome: yi = c+ βT ∗
i + εi.

5. Generate the observed, mis-classified regressor T .

(i) For all i with T ∗
i = 0 draw Ti ∼ iid Bernoulli(α0).

(ii) For all i with T ∗
i = 1 draw Ti ∼ iid Bernoulli(1− α1).

This DGP generates random variables that satisfy the conditions of Theorems 2.2 and 2.3.

Thus β is point identified, and all moment equalities and inequalities from Section 3 hold at

the true parameter values of the DGP. Note from step 1 that we condition on the instrument

z, holding it fixed in repeated samples. Our simulation varies the parameters (α0, α1, β, n)

over a grid. Because ε has unit variance, values for β are measured in standard deviations of

the error. For simplicity we present results for c = 0, d0 = Φ−1(0.15), and d1 = Φ−1(0.85)−
Φ−1(0.15), where Φ−1(·) denotes the quantile function of a standard normal random variable.

Using these values for (d0, d1) holds the unobserved first stage probabilities fixed: p∗0 = 0.15

and p∗1 = 0.85. In contrast the observed first-stage probabilities p0 and p1 vary with (α0, α1)

according to Lemma 2.1.

4.2 Simulation Results

As explained in Section 3.1 above, the just-identified, unconstrained GMM estimator based

on Equation 10 suffers from weak identification and boundary value problems. Moreover,

the estimator may not even exist in finite samples. Even when the GMM estimator exists,

its asymptotic variance matrix could be numerically singular, so that the standard GMM

confidence interval is undefined. Table 1 reports the percentage of simulation draws for

which the standard GMM confidence interval is undefined, while Table 2 reports the coverage

probability of a nominal 95% GMM confidence interval, conditional on its existence.

We see from Table 1 that when β is small compared to the error variance, the GMM

confidence interval fails to exist with high probability. When β = 0.5, for example, the

interval is undefined approximately 30% of the time. As β increases, however, it becomes less

likely that the GMM interval is undefined. All else equal, larger amounts of mis-classification,

i.e. higher values for (α0, α1), increase the probability that the GMM interval fails to exist.
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 27 33 30 14 1 0 0 0
0.1 27 32 29 13 2 0 0 0
0.2 26 33 32 15 4 0 0 0
0.3 26 34 30 17 5 0 0 0

0.1 0.0 26 32 31 14 2 0 0 0
0.1 26 36 32 16 4 0 0 0
0.2 27 35 31 18 8 0 0 0
0.3 25 35 32 21 11 1 0 0

0.2 0.0 26 33 30 15 3 0 0 0
0.1 26 33 30 19 6 0 0 0
0.2 26 35 33 22 12 1 0 0
0.3 26 35 33 26 15 3 0 0

0.3 0.0 26 32 32 16 6 0 0 0
0.1 24 35 33 21 11 1 0 0
0.2 26 32 35 27 15 4 0 0
0.3 26 35 35 28 21 7 2 0

Table 1: Percentage of replications for which the standard GMM confidence interval based on
Equation 10 fails to exist, either because the point estimate is NaN or the asymptotic covariance
matrix is numerically singular. Calculations are based on 2000 replications of the DGP from 4.1
with n = 1000.

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 72 62 62 80 92 95 94 95
0.1 72 62 63 79 92 95 96 95
0.2 73 61 61 77 90 96 96 96
0.3 73 59 62 76 88 95 96 95

0.1 0.0 73 63 60 78 91 95 96 96
0.1 73 58 59 77 90 95 95 94
0.2 73 59 61 75 86 95 95 94
0.3 74 59 58 71 82 94 96 96

0.2 0.0 74 62 60 78 91 95 96 96
0.1 73 60 61 74 87 95 96 94
0.2 73 58 57 70 81 93 95 95
0.3 73 58 56 66 78 92 95 96

0.3 0.0 74 62 60 76 89 95 96 96
0.1 75 59 58 71 82 93 96 95
0.2 74 61 56 65 78 90 96 96
0.3 73 58 55 64 71 88 93 96

Table 2: Coverage (%) of the standard nominal 95% GMM confidence interval for β based on
Equation 10. Coverage is calculated only for those simulation draws for which the interval exists.
(See Table 1.) Calculations are based on 2000 replications of the DGP from 4.1 with n = 1000.

27



β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 19.07 3.44 1.86 1.32 0.87 0.47 0.37 0.35
0.1 17.52 3.47 1.92 1.41 1 0.61 0.51 0.46
0.2 17.41 3.51 1.9 1.45 1.1 0.76 0.65 0.58
0.3 18.23 3.34 1.92 1.48 1.24 0.91 0.79 0.7

0.1 0.0 17.13 3.51 1.86 1.38 0.97 0.61 0.51 0.46
0.1 17.88 3.33 1.85 1.45 1.13 0.78 0.67 0.6
0.2 17.37 3.36 1.95 1.54 1.24 0.97 0.85 0.75
0.3 18.07 3.33 1.98 1.63 1.41 1.17 1.04 0.92

0.2 0.0 17.79 3.39 1.92 1.45 1.11 0.75 0.65 0.58
0.1 18.98 3.43 1.96 1.54 1.26 0.97 0.84 0.75
0.2 18.25 3.26 1.92 1.64 1.45 1.2 1.06 0.95
0.3 19.03 3.31 2.02 1.75 1.66 1.49 1.33 1.19

0.3 0.0 18.27 3.48 1.87 1.5 1.25 0.9 0.79 0.7
0.1 19.4 3.41 1.96 1.63 1.43 1.18 1.04 0.92
0.2 18.22 3.56 1.96 1.74 1.67 1.49 1.35 1.19
0.3 17.56 3.55 2.13 1.96 1.86 1.86 1.74 1.55

Table 3: Median width of the standard nominal 95% GMM confidence interval for β based on
Equation 10. Coverage is calculated only for those simulation draws for which the interval exists.
Calculations are based on 2000 replications of the DGP from 4.1 with n = 1000.

Turning our attention to the simulation draws for which it is well-defined, we see from

Tables 2 and 3 that the GMM confidence interval performs extremely poorly when β is

small. Substantial size distortions persist until β is 1.5 or larger. All else equal, the size

distortions are more severe the larger the amount of mis-classification error. For sufficiently

large β, however, standard GMM inference performs well. As β grows, the weak identification

problem vanishes. For large enough β the inference problem in effect becomes standard.

We now examine the performance of the Bonferroni-based confidence interval from Al-

gorithm 3.2, beginning with its first step: a joint GMS confidence set for (α0, α1). Table

4 presents coverage probabilities for a nominal 97.5% GMS confidence set for (α0, α1). Be-

cause these results are extremely fast to compute, Table 4 is based on 10,000 simulation

replications. Aside from some slight under-coverage at intermediate values of (α0, α1) when

β = 3, the GMS interval makes good on its promise of uniformly valid inference. As shown

in Appendix D, the under-coverage problem appears to be a finite-sample artifact: if we

increase n to 2000, the maximum size distortion becomes negligible. The GMS test tends,

however, to be fairly conservative, particularly for larger values of (α0, α1). When there is no

mis-classification error, the GMS confidence sets are very nearly exact. Results for nominal

95% and 90% intervals are qualitatively similar: see Appendix D.

We now present results for the Bonferroni interval from Algorithm 3.2, setting δ1 = δ2 =
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 97.7 97.7 97.6 97.7 98.0 98.0 97.4 97.9
0.1 98.0 98.7 98.8 99.1 98.8 98.4 97.1 96.4
0.2 98.4 98.5 98.9 98.9 98.8 98.6 98.0 97.0
0.3 98.5 98.8 98.8 99.0 98.7 98.4 97.8 97.5

0.1 0.0 98.1 98.5 98.3 98.8 98.8 98.4 96.8 95.7
0.1 98.6 99.1 99.5 99.6 99.6 98.8 97.7 95.2
0.2 99.0 99.3 99.7 99.8 99.7 98.9 97.5 95.7
0.3 99.4 99.7 99.8 99.8 99.6 99.0 98.2 96.7

0.2 0.0 98.6 98.5 98.6 98.9 98.7 98.2 97.7 97.0
0.1 99.0 99.5 99.7 99.7 99.4 99.0 98.1 96.5
0.2 99.5 99.7 99.8 99.7 99.4 99.0 97.8 96.8
0.3 99.7 99.8 99.8 99.8 99.5 99.0 98.7 97.7

0.3 0.0 98.7 98.7 98.8 98.7 98.7 98.2 98.1 97.6
0.1 99.4 99.6 99.6 99.7 99.4 98.9 98.3 96.8
0.2 99.8 99.8 99.7 99.8 99.5 99.1 98.5 97.8
0.3 100.0 99.9 99.9 99.8 99.6 99.5 99.1 98.8

Table 4: Coverage probability (1 - size) in percentage points of a 97.5% GMS joint test for α0 and
α1 using Algorithm 3.1 with n = 1000. Calculations are based on 10,000 replications of the DGP
from Section 4.1.

0.025 to yield an interval with asymptotic coverage no less that 95%.18 Table 5 presents

coverage probabilities in percentage points and Table 5 presents median widths.

The Bonferroni interval achieves its stated minimum coverage uniformly over the param-

eter space. When there is no mis-classification, α0 = α1, its actual coverage is close or equal

to 95%. In the presence of mis-classification, however, the interval can be quite conservative,

particularly for larger values of β. For smaller but nonzero values of β, this conservatism

reflects the fact that the model is effectively partially identified: although Theorem 2.3 shows

that (α0, α1) are point identified for any β 6= 0, the amount of data required to distinguish

one pair of alphas from another when β is small would be astronomical.

In spite of its conservatism, the Bonferroni interval is informative, as we see from the

median widths in Table 6. Because median widths provide only a limited picture of the

behavior of a confidence interval, Figures 1–3 present further evidence in the form of coverage

functions (1 - power) for β = 0.5, 1, 3. Coverage curves for additional values of β and n appear

in Appendix D. Each figure holds the true value of β fixed and varies (α0, α1) over the grid

{0, 0.1, 0.2} × {0, 0.2, 0.2}. The plots within each Figure give coverage in percentage points

as a function of the specified alternative for β. Solid curves are computed using the full

18In principle, one could optimize the choice of δ1 subject to the constraint δ1 + δ2 = 0.95 to reduce the
width of the resulting interval. In our experiments, there was no choice of δ1 that uniformly dominated for
all values of (α0, α1, β) so we report only results for δ1 = δ2 here.
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 97 96 97 97 95 96
0.1 97 99 99 99 99 100 100 99
0.2 98 99 99 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

0.1 0.0 97 99 99 99 100 100 100 98
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

0.2 0.0 97 99 99 100 100 100 100 100
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

0.3 0.0 97 99 100 100 100 100 100 100
0.1 97 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

Table 5: Coverage probability in percentage points of a nominal > 95% Bonferroni confidence
interval for β using Algorithm 3.2 with n = 1000, R = 5000 and δ1 = δ2 = 0.025. Calculations are
based on 2000 replications of the DGP from Section 4.1.

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.4 0.41 0.43 0.43 0.43 0.42 0.41 0.41
0.1 0.45 0.47 0.54 0.59 0.63 0.7 0.75 0.86
0.2 0.51 0.54 0.65 0.76 0.85 0.95 1.01 1.17
0.3 0.58 0.62 0.79 0.95 1.07 1.17 1.24 1.48

0.1 0.0 0.45 0.47 0.54 0.59 0.63 0.7 0.76 0.88
0.1 0.51 0.54 0.66 0.77 0.86 1.03 1.18 1.46
0.2 0.58 0.63 0.8 0.98 1.12 1.38 1.55 1.88
0.3 0.67 0.75 1 1.25 1.46 1.74 1.94 2.4

0.2 0.0 0.51 0.54 0.65 0.76 0.86 0.96 1.02 1.19
0.1 0.58 0.63 0.81 0.99 1.14 1.42 1.64 2.08
0.2 0.67 0.75 1.01 1.29 1.54 1.97 2.33 2.9
0.3 0.81 0.91 1.3 1.7 2.09 2.73 3.13 3.9

0.3 0.0 0.58 0.62 0.8 0.95 1.09 1.18 1.25 1.5
0.1 0.68 0.74 1.01 1.26 1.49 1.84 2.13 2.78
0.2 0.81 0.91 1.3 1.7 2.11 2.8 3.4 4.48
0.3 1.01 1.16 1.74 2.35 2.93 4.17 5.2 6.85

Table 6: Median width of a nominal > 95% Bonferroni confidence interval for β using Algorithm
3.2 with n = 1000, R = 5000 and δ1 = δ2 = 0.025. Calculations are based on 2000 replications of
the DGP from Section 4.1.
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set of inequality moment conditions from Section 3.3, while dashed curves use only mI
1, i.e.

they do not impose the restrictions implied by non-differential measurement error. In each

figure, the dashed horizontal line gives the nominal coverage probability, 95%, while the

dashed vertical lines are the reduced from and instrumental variables estimands: for β ≥ 0

the reduced form is always smaller than the IV.

As seen from Figures 1–3, and their counterparts in Appendix D, the Bonferroni proce-

dure has power against the alternative β = 0, even when the true value of β is small. As

described in Section 3.5, the Bonferroni interval excludes zero if and only if the confidence

interval for θ1 from which it is constructed also excludes zero. These figures also indicate the

gains from includingmI
2, the moment inequalities that emerge from assuming non-differential

measurement error: substantial increases in power against alternatives between the true pa-

rameter value and zero, particularly for larger values of β. Note moreover that the excellent

performance of Bonferroni in the zero mis-classification case (α0, α1) depends crucially on

imposing the assumption of non-differential measurement error. As the true value of β in-

creases, the Bonferroni interval begins to have power against both the reduced form and IV

estimands.

A drawback of the identification-robust inference procedure from Algorithm 3.2 becomes

apparent when both β and the mis-classification probabilities are large. In this case the

confidence interval for β is excessively wide, as we see from Table 6 and Figure 3.19 Note

from Tables 1 and 2, that this is a region of the parameter space in which the plain-vanilla

GMM confidence interval yields valid inference. Moreover, we see from Table 3 that the

median width of the GMM interval is far more reasonable when β is large, even in the

presence of large amounts of mis-classification. It is important to stress that the source of

this excess width is not the Bonferroni correction: the same behavior emerges if one projects

a joint GMS confidence set for (α0, α1, β) to yield marginal inference for β. Rather, it is

the inevitable cost of applying a robust inference procedure in a region of the parameter

space where standard inference performs well. While a detailed theoretical investigation of

this problem is beyond the scope of the present paper, we now explore the performance of

a “hybrid” confidence interval that uses a simple heuristic to transition between robust and

standard inference.20 The procedure for constructing the hybrid interval is as follows. First

compute the robust confidence interval based on Algorithm 3.2. Next, determine whether

the GMM interval is well-defined: if so, determine whether it is contained within the robust

interval. If the GMM interval exists and lies within the robust interval, report GMM;

otherwise report the robust interval. Table 7 presents coverage probabilities (in percentage

19As expected, median widths decrease with sample size: see the results for n = 2000 in Appendix D.
20This idea is related to Andrews (2016), although somewhat different in its details.

31



β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 97 96 97 97 95 93
0.1 97 99 99 99 99 98 96 95
0.2 98 99 99 100 100 97 96 96
0.3 97 100 100 100 99 96 96 96

0.1 0.0 97 99 99 99 100 98 97 95
0.1 98 100 100 100 100 96 96 96
0.2 98 100 100 100 99 96 96 95
0.3 97 100 100 100 97 95 96 96

0.2 0.0 97 99 99 100 100 96 96 96
0.1 98 100 100 100 99 96 96 96
0.2 98 100 100 100 96 95 95 96
0.3 98 100 100 98 95 95 95 96

0.3 0.0 97 99 100 100 100 95 96 97
0.1 97 100 100 100 97 94 96 96
0.2 98 100 100 98 94 94 96 96
0.3 98 100 99 96 92 94 95 96

Table 7: Coverage probabilities (%) of a hybrid confidence interval constructed from the nominal
95% standard GMM interval and the > 95% Bonferroni confidence interval for β using Algorithm
3.2 with n = 1000, R = 5000 and δ1 = δ2 = 0.025. The hybrid interval reports Bonferroni unless
the GMM interval exists and is contained within the Bonferroni interval. Calculations are based
on 2000 replications of the DGP from Section 4.1.

points) and Table 8 median widths for the resulting hybrid confidence interval. Coverage

plots for β = 1, 2, 3 appear in Figures 4–6. Plots for additional values of β and n appear in

Appendix D. The conventions of these figures are identical to those of Figures 1–3 with one

exception: in Figures 4–6 the dashed curves correspond to the hybrid confidence interval.

The hybrid interval performs extremely well: with the exception of a slight size distortion

at (α0 = α1 = 0.3, β = 1) and (α0 = α1 = 0, β = 3), it is effectively a free lunch.21 Note in

particular that the coverage curves for the hybrid interval from Figures 4–6 (dashed curves)

lie uniformly below those of the Bonferroni interval (solid curves) while still maintaining

correct coverage at the true value of β. It could be interesting to investigate this idea further

in future work.

21The distortion at (α0 = α1 = 0.3, β = 1) disappears when n increases to 2000: see Appendix D.
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.4 0.41 0.43 0.43 0.43 0.42 0.4 0.35
0.1 0.45 0.47 0.54 0.59 0.63 0.67 0.52 0.46
0.2 0.51 0.54 0.65 0.76 0.84 0.82 0.65 0.58
0.3 0.58 0.62 0.79 0.95 1.05 0.96 0.79 0.7

0.1 0.0 0.45 0.47 0.54 0.59 0.63 0.67 0.51 0.46
0.1 0.51 0.54 0.66 0.77 0.86 0.92 0.69 0.61
0.2 0.58 0.63 0.8 0.97 1.11 1.17 0.87 0.75
0.3 0.67 0.75 1 1.25 1.4 1.4 1.06 0.92

0.2 0.0 0.51 0.54 0.65 0.76 0.85 0.83 0.65 0.58
0.1 0.58 0.63 0.81 0.99 1.12 1.18 0.86 0.75
0.2 0.67 0.75 1.01 1.29 1.48 1.56 1.08 0.95
0.3 0.81 0.91 1.3 1.67 1.95 1.77 1.35 1.2

0.3 0.0 0.58 0.62 0.8 0.95 1.07 0.95 0.8 0.7
0.1 0.68 0.74 1.01 1.26 1.43 1.48 1.06 0.93
0.2 0.81 0.91 1.3 1.66 1.98 1.94 1.37 1.19
0.3 1.01 1.16 1.73 2.24 2.71 2.33 1.78 1.55

Table 8: Median width of a hybrid confidence interval constructed from the nominal 95% standard
GMM interval and the > 95% Bonferroni confidence interval for β using Algorithm 3.2 with n =
1000, R = 5000 and δ1 = δ2 = 0.025. The hybrid interval reports Bonferroni unless the GMM
interval exists and is contained within the Bonferroni interval. Calculations are based on 2000
replications of the DGP from Section 4.1.
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Figure 1: Coverage curves (1 - power) for β when the truth is β = 0.5, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mI

2, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.
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Figure 2: Coverage curves (1 - power) for β when the truth is β = 1, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mI

2, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.

35



2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0, α1 = 0

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0, α1 = 0.1

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.1

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.1

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0, α1 = 0.2

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.2

2 3 4 5 6

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.2

Figure 3: Coverage curves (1 - power) for β when the truth is β = 3, from a nominal > 95%
Bonferroni confidence interval using Algorithm 3.2, with n = 1000 and R = 5000. The solid curve
uses all moment inequalities from Section 3.3 in the GMS step, while the dashed curve excludes
mI

2, those implied by non-differential measurement error. The dashed horizontal line gives the
nominal coverage (95%), while dashed vertical lines are the reduced form estimand (left) and the
IV estimand (right). Calculations are based on 2000 replications of the DGP from Section 4.1.
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Figure 4: Comparison of Coverage curves (1 - power) for β when the truth is β = 1: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7–8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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Figure 5: Comparison of Coverage curves (1 - power) for β when the truth is β = 2: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7–8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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Figure 6: Comparison of Coverage curves (1 - power) for β when the truth is β = 3: the solid curve
corresponds the Bonferroni nominal > 95% interval from Algorithm 3.2 and the dashed curve to the
hybrid interval from Tables 7–8. The dashed horizontal line gives the nominal coverage (95%), while
dashed vertical lines are the reduced form estimand (left) and the IV estimand (right). Results are
based on 2000 simulation replications from the DGP in Section 4.1 with n = 1000.
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5 Conclusion

This paper has studied identification and inference for a mis-classified, binary, endogenous

regressor in an additively separable model using a discrete instrumental variable. We have

shown that the only existing identification result for this model is incorrect, and gone on to

derive the sharp identified set under standard first-moment assumptions from the literature.

Strengthening these assumptions to hold for second and third moments, we have established

point identification for the effect of interest. Inference in models with mis-classification er-

ror is complicated by problems of weak identification and parameters on the boundary. To

address these challenges, we have proposed a Bonferroni-based procedure for identification

robust inference, using both the moment equalities from our identification results and mo-

ment inequalities from our partial identification results. This procedure is computationally

attractive and performs well in simulations. An interesting extension of the results presented

here would be to explore the more general case of a discrete endogenous regressor subject

to mis-classification error, possibly by combining our approach with the matrix factorization

techniques from Hu (2008). Another interesting extension, inspired by our hybrid confidence

interval heuristic from Section 4, would be to study the transition between robust and stan-

dard inference in moment condition models. It may be possible, for example, to adapt the

techniques of Andrews (2016) in this direction to provide similar theoretical guarantees.

A Proofs

Throughout the following arguments, we suppress dependence on x for simplicity.

A.1 Partial Identification Results

Proof of Lemma 2.1. Follows from a simple calculation using the law of total probability.

Proof of Lemma 2.2. Immediate since Cov(z, T ) = (1− α0 − α1)Cov(z, T
∗) by Lemma 2.1.

Proof of Theorem 2.1. We first show that so long as α0 ≤ pk ≤ 1 − α1 then we can construct
a valid joint probability distribution for (T ∗, T, z) that satisfies our assumptions. First decompose
the joint probability mass function as

p(T ∗, T, z) = p(T |T ∗, z)p(T ∗|z)p(z).

By Assumption 2.2 (ii), p(T |T ∗, z) = p(T |T ∗) and thus α0 and α1 fully determine p(T |T ∗, z). Under
the proposed bounds, α0 and α1 are clearly valid probabilities. Since p(z) is observed, it thus suffices
to ensure that p(T ∗|z) is a valid probability mass function. By Lemma 2.1, p∗k = (pk−α0)/(1−α0−
α1) and hence 0 ≤ p∗k ≤ 1 if and only if α0 ≤ pk ≤ 1−α1. Since (pk − p`) = (p∗k − p∗` )(1−α0 −α1),
we have p∗k 6= p∗` provided that pk − p` 6= 0
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We now show how to construct a valid conditional distribution for y given (T ∗, T, z) that satisfies
our assumptions if β(pk − α0) = (1− α0 − α1)[E(y|z = k)− c] for all k. Define

rtk ≡ P(T ∗ = 1|T = t, z = k) Ft(τ) ≡ P(y ≤ τ |z = k)

Ftk(τ) ≡ P(y ≤ τ |T = t, z = k) F t∗
tk (τ) ≡ P(y ≤ τ |T ∗ = t∗, T = t, z = k)

Gk(τ) ≡ P(ε ≤ τ |z = k) Gt∗
tk(τ) ≡ P(ε ≤ τ |T ∗ = t∗, T = t, z = k).

Assumption 2.1 (i) implies a relationship between Gt∗
tk and F t∗

tk for each t∗, namely

G0
tk(τ) = F 0

tk(τ + c), G1
tk(τ) = F 1

tk(τ + c+ β) (A.1)

and thus we see that

Gk(τ) = r1kpkF
1
1k(τ + c+ β) + r0k(1− pk)F

1
0k(τ + c+ β)

+ (1− r1k)pkF
0
1k(τ + c) + (1− r0k)(1− pk)F

0
0k(τ + c) (A.2)

applying the law of total probability and Bayes’ rule. Moreover, again applying the law of total
probability,

Ftk(τ) = rtkF
1
tk(τ) + (1− rtk)F

0
tk(τ) (A.3)

for all t, k ∈ {0, 1}, and by Bayes’ rule,

r1k =
(1− α1)p

∗
k

pk
, r0k =

α1p
∗
k

1− pk
. (A.4)

There are four cases, corresponding to different possibilities for the rtk.

Case I: r1k = 0, r0k 6= 0 By Equation A.4, this requires α1 = 1 which is ruled out by Assumption
2.2 (ii).

Case II: r0k = r1k = 0 By Equation A.4, this requires p∗k = 0 which in turn requires pk = α0.
Moreover, by Equation A.3 we have F 0

tk = Ftk, while F 1
tk is undefined. Substituting into Equation

A.2,
Gk(τ) = pkF1k(τ + c) + (1− pk)F0k(τ + c) = Fk(τ + c)

Now, since Fk(τ + c) is the conditional CDF of y − c given that z = k, and Gk is the conditional
CDF of ε given z = k, we see that Assumption 2.1 (i) is satisfied if and only if E(y|z = k) = c. But
since pk = α0 in this case, c = c+ β(pk − α0)/(1− α0 − α1).

Case III: r1k 6= 0, r0k = 0 By Equation A.4 this requires α1 = 0 and p∗k 6= 0. By Equation A.3
we have F 0

0k = F0k and since r1k 6= 1, we can solve to obtain

F 1
1k(τ) =

1

r1k

[
F1k(τ)− (1− r1k)F

0
1k(τ)

]
Substituting into Equation A.2, we obtain

Gk(τ) = [(1− pk)F0k(τ + c) + pkF1k(τ + c+ β)]

+ pk(1− r1k)
[
F 0
1k(τ + c)− F 0

1k(τ + c+ β)
]
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Now, F0k(τ + c) is the conditional CDF of (y − c) given (T = 0, z = k) while F1k(τ + c + β) is
the conditional CDF of (y − c − β) given (T = 1, z = k). Similarly, F 0

1k(τ + c) is the conditional
CDF of ε given (T ∗ = 0, T = 1, z = k) while F 0

1k(τ + c + β) is the conditional CDF of (ε − β)
given (T ∗ = 0, T = 1, z = k). Since Gk(τ) is the conditional CDF of ε given z = k, we see that
Assumption 2.1 (iii) is satisfied if and only if

0 = (1− pk)E(y − c|T = 0, z = k) + pkE(y − c− β|T = 1, z = k)

+ pk(1− r1k) [E(ε|T ∗ = 0, T = 1, z = k)− E(ε− β|T ∗ = 0, T = 1, z = k)]

Rearranging, this is equivalent to

E(y|z = k) = c+ (1− α1)β

(
pk − α0

1− α0 − α1

)
= c+ β

(
pk − α0

1− α0 − α1

)
since α1 = 0 in this case. As explained above, F 0

0k = F0k in the present case while F 1
0k is undefined.

We are free to choose any distributions for F 0
1k and F 1

1k that satisfy Equation A.3, for example
F 0
1k = F 1

1k = F1k.

Case IV: r1k 6= 0, r0k 6= 0 In this case, we can solve Equation A.3 to obtain

F 1
tk(τ) =

1

rtk

[
Ftk(τ)− (1− rtk)F

0
tk(τ)

]
Substituting this into Equation A.2, we have

Gk(τ) = Fk(τ + c+ β) + pk(1− r1k)
[
F 0
1k(τ + c)− F 0

1k(τ + c+ β)
]

+ (1− pk)(1− r0k)
[
F 0
0k(τ + c)− F 0

0k(τ + c+ β)
]

using the fact that Fk(τ) = pkF1k(τ) + (1− pk)F0k(τ). Now, Fk(τ + c+ β) is the conditional CDF
of (y − c − β) given z = k, while F 0

tk(τ + c) is the conditional CDF of ε given (T = t, z = k) and
F 0
tk(τ + c+β) is the conditional CDF of (ε−β) given (T = t, z = k). Since Gk(τ) is the conditional

CDF of ε given z = k, we see that Assumption 2.1 (iii) is satisfied if and only if

0 = E[y − c− β|z = k] + pk(1− r1k) [E(ε|T ∗ = 0, T = 1, z = k)− E(ε− β|T ∗ = 0, T = 1, z = k)]

+ (1− pk)(1− r0k) [E(ε|T ∗ = 0, T = 0, z = k)− E(ε− β|T ∗ = 0, T = 0, z = k)]

0 = E[y − c− β|z = k] + β [pk(1− r1k) + (1− pk)(1− r0k)]

But since [pk(1− r1k) + (1− pk)(1− r0k)] = (1−p∗k) and p∗k = (pk−α0)/(1−α0−α1), this becomes

E[y|z = k] = c+ β [(pk − α0)(1− α0 − α1)] .

Thus, in this case we are free to choose any distributions for F 0
tk and F 1

tk that satisfy Equation A.3.
For example we could take F 0

tk = F 1
tk = Ftk.

Proof of Corollary 2.1. Follows by plugging in the largest and smallest possible values for α0+α1

and taking the difference of the expressions for E[y|z = k]

Proof of Theorem 2.2. Under Assumption 2.1 (i) and Assumption 2.2 (iii), we obtain E(y|T ∗, T, z) =
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E(y|T ∗, z). Hence, by iterated expectations

E(y|T = 0, z = k) = (1− r0k)E(y|T ∗ = 0, z = k) + r0kE(y|T ∗ = 1, z = k)

E(y|T = 1, z = k) = (1− r1k)E(y|T ∗ = 0, z = k) + r1kE(y|T ∗ = 1, z = k)

where rtk is defined as in the proof of Theorem 2.1. This is system of two linear equations in two
unknowns: E(y|T ∗ = 0, z = k) and E(y|T ∗ = 1, z = k). After some algebra, we find that the
determinant is

r1k − r0k =

[
pk − α0

1− α0 − α1

] [
1− pk − α1

pk(1− pk)

]
and thus a unique solution exists provided that α0 6= pk and α1 6= 1− pk. By our assumption that
E[y|T = 0, z = k] 6= E[y|T = 1, z = k], the system has no solution when the determinant condition
fails. Thus, Assumption 2.2 (iii) rules out α0 = pk and α1 = 1− pk. Solving,

µ0
k ≡ E(y|T ∗ = 0, z = k) =

(
1

1− pk − α1

)
[(1− pk)E(y|T = 0, z = k)− α1E(y|z = k)]

µ1
k ≡ E(y|T ∗ = 1, z = k) =

(
1

pk − α0

)
[pkE(y|T = 1, z = k)− α0E(y|z = k)]

Given (α0, α1), we see that rtk, µ
0
k, and µ1

k are fixed. The question is whether, for a given pair
(α0, α1) and observed CDFs Ftk, we can construct valid CDFs F 0

tk, F
1
tk such that∫

R
τF 0

tk(dτ) = µ0
k,

∫
R
τF 1

tk(dτ) = µ1
k, Ftk(τ) = rtkF

1
tk(τ) + (1− rtk)F

0
tk(τ)

where Ftk and F t∗
tk are as defined in the proof of Theorem 2.2. For a given pair (t, k), there are two

cases: 0 < rtk < 1 and rtk ∈ {0, 1}.

Case I: rtk ∈ {0, 1} Suppose that rtk = 1. Then, µ1
k = E[y|T = t, z = k] so we can simply set

F 1
tk = Ftk. In this case F 0

tk is undefined. If instead rtk = 0, then µ0
k = E[y|T = t, z = k] so we can

simply set F 0
tk = Ftk. In this case F 1

tk is undefined.

Case II: 0 < rtk < 1 Define

µtk(ξ) = E[y|y ∈ Itk(ξ), T = t, z = k]

Itk(ξ) =
[
F−1
tk (1− ξ − rtk), F

−1
tk (1− ξ)

]
for t, k = 0, 1 where 0 ≤ ξ ≤ 1 − rtk and F−1

tk is the quantile function of y given (T = t, z = k).
We see that µtk is a decreasing function of ξ that attains its maximum at ξ = 0 and minimum at
ξ = 1− rtk. Define these extrema as µ

tk
= µtk(1− rtk) and µtk = µtk(0).

Suppose first that µ1
k does not lie in the interval [µ

tk
, µtk]. We show that it is impossible to

construct valid CDFs F 0
tk and F 1

tk that satisfy Ftk(τ) = rtkF
1
tk(τ) + (1 − rtk)F

0
tk(τ) where Ftk and

F t∗
tk are as defined in the proof of Theorem 2.2. Since rtk 6= 1, we can solve the expression for

Ftk to yield F 0
tk(τ) =

[
Ftk(τ)− rtkF

1
tk(τ)

]
/(1 − rtk). Hence, since rtk 6= 0, the requirement that

0 ≤ F 0
tk(τ) ≤ 1 implies

Ftk(τ)− (1− rtk)

rtk
≤ F 1

tk(τ) ≤
Ftk(τ)

rtk
(A.5)
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Now define

F 1
tk(τ) = min {1, Ftk(τ)/rtk}

F
1
tk(τ) = max {0, Ftk(τ)/rtk − (1− rtk)/rtk}

Combining Equation A.5 with the requirement that 0 ≤ F 1
tk(τ) ≤ 1, we see that

F
1
tk(τ) ≤ F 1

tk(τ) ≤ F 1
tk(τ)

Hence F
1
tk first-order stochastically dominates F 1

tk which in turn first-order stochastically dominates
F 1

tk. It follows that ∫
τF 1

tk(dτ) ≤
∫

τF 1
tk(dτ) ≤

∫
τF

1
tk(dτ)

But notice that

µ
tk

=

∫
τF 1

tk(dτ), µ1
k =

∫
τF 1

tk(dτ), µtk =

∫
τF

1
tk(dτ)

so we have µ
tk

≤ µ1
k ≤ µtk which contradicts µ1

k /∈ [µ
tk
, µtk].

Now suppose that µ1
k ∈

[
µ
tk
, µtk

]
. Since y is assumed to follow a continuous distribution

conditional on (T, z), µtk is continuous on its domain and takes on all values in
[
µ
tk
, µtk

]
by the

intermediate value theorem. Thus, there exists a ξ∗ such that µtk(ξ
∗) = µ1

k. Now let ftk(τ) =
dFtk(τ)/dτ which is non-negative by the assumption that y is continuously distributed. Define the
densities

f1
tk(τ) =

ftk(τ)× 1 {τ ∈ Itk(ξ
∗)}

rtk
, f0

tk(τ) =
ftk(τ)× 1 {τ ∈ Itk(ξ

∗)}
1− rtk

.

Clearly f1
tk ≥ 0 and f0

tk ≥ 0. Integrating,∫
R
f1
tk(τ) dτ =

1

rtk

∫
Itk(ξ∗)

ftk(τ) dτ = 1∫
R
f0
tk(τ) dτ =

1

1− rtk

∫
ICtk(ξ

∗)
ftk(τ) dτ = 1

where ICtk is the complement of Itk. And, by construction

rtk

∫
A
f1
tk(τ) dτ + (1− rtk)

∫
A
f0
tk(τ) dτ =

∫
A
ftk(τ) dτ

for any set A. Finally,∫
R
τf1

tk(τ) dτ =
1

rtk

∫
Itk(ξ∗)

τftk(τ) dτ = µtk(ξ
∗) = µ1

k.

The result now follows by appealing to the proof of Theorem 2.1.
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A.2 Point Identification Results

In the proofs of Lemma 2.3, Lemma 2.4, and Theorem 2.3, we use the shorthand

π ≡ Cov(T, z), ηj ≡ Cov(yj , z), τj ≡ Cov(Tyj , z)

for j = 1, 2, 3. Using this notation, Lemma 2.2 becomes η1 = πθ1, while Lemma 2.3 becomes
η2 = 2τ1θ1 − πθ2, and Lemma 2.4 becomes η3 = 3τ2θ1 − 3τ1θ2 + πθ3.

Proof of Lemma 2.3. By Assumption 2.1 (i) and the basic properties of covariance,

η2 = β2Cov(T ∗, z) + 2β [cCov(T ∗, z) + Cov(T ∗ε, z)] + 2cCov(ε, z) + Cov(ε2, z)

τ1 = cπ +Cov(Tε, z) + βCov(TT ∗, z)

using the fact that T ∗ is binary. Now, by Assumptions 2.1 (iii) and 2.5 we have Cov(ε, z) =
Cov(ε2, z) = 0. And, using Assumptions 2.2 (i) and (ii), one can show that Cov(TT ∗, z) = (1 −
α1)Cov(T

∗, z) and Cov(T ∗, z) = π/(1− α0 − α1). Hence,

η2 = θ1 (β + 2c)π + 2βCov(T ∗ε, z)

2τ1θ1 − πθ2 =
[
2θ1c+ 2θ21(1− α1)− θ2

]
π + 2θ1Cov(Tε, z)

but since θ2 = θ21 [(1− α1) + α0], we see that [2θ21(1 − α1) − θ2] = θ1β. Thus, it suffices to show
that βCov(T ∗ε, z) = θ1Cov(Tε, z). This equality is trivially satisfied when β = 0, so suppose
that β 6= 0. In this case it suffices to show that (1 − α0 − α1)Cov(T

∗ε, z) = Cov(Tε, z). Define
m∗

tk = E [ε|T ∗ = t, z = k] and p∗k = P(T ∗ = 1|z = k). Then, by iterated expectations, Bayes’ rule,
and Assumption 2.2 (iii)

Cov(T ∗ε, z) = q(1− q) (p∗1m
∗
11 − p∗0m

∗
10)

Cov(Tε, z) = q(1− q) {(1− α1) [p
∗
1m

∗
11 − p∗0m

∗
10] + α0 [(1− p∗1)m

∗
01 − (1− p∗0)m

∗
00]}

But by Assumption 2.1 (iii), E[ε|z = k] = m∗
1kp

∗
k+m∗

0k(1−p∗k) = 0 and thus we obtainm∗
0k(1−p∗k) =

−m∗
1kp

∗
k. Therefore (1− α0 − α1)Cov(T

∗ε, z) = Cov(Tε, z) as required.

Proof of Lemma 2.4. Since T ∗ is binary, if follows from the basic properties of covariance that,

η3 = Cov
[
(c+ ε)3, z

]
+ 3βCov[(c+ ε)2T ∗, z] + 3β2Cov[(c+ ε)T ∗, z] + β3Cov(T ∗, z)

τ2 = Cov
[
(c+ ε)2T, z

]
+ 2βCov [(c+ ε)TT ∗, z] + β2Cov(TT ∗, z)

By Assumptions 2.1 (iii), 2.5, and 2.6 (ii) , Cov
[
(c+ ε)3, z

]
= 0. Expanding,

η3 = 3βCov(T ∗ε2, z) +
(
3β2 + 6cβ

)
Cov(T ∗ε, z) +

(
β3 + 3cβ2 + 3c2β

)
Cov(T ∗, z)

τ2 = c2Cov(T, z) + β(β + 2c)Cov(TT ∗, z) + Cov(Tε2, z) + 2cCov(Tε, z) + 2β Cov(TT ∗ε, z)

Now, define s∗tk = E[ε2|T ∗ = t, z = k] and p∗k = P(T ∗ = 1|z = k). By iterated expectations, Bayes’
rule, and Assumption 2.6 (i),

Cov(T ∗ε2, z) = q(1− q)(p∗1s
∗
11 − p∗0s

∗
10)

Cov(Tε2, z) = q(1− q) {(1− α1) [p
∗
1s

∗
11 − p∗0s

∗
10] + α0 [(1− p∗1)s

∗
01 − (1− p∗0)s

∗
00]}
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By Assumption 2.5, E[ε2|z = 1] = E[ε2|z = 0] and thus, by iterated expectations we have p∗1s
∗
11 −

p∗0s
∗
10 = − [(1− p∗1)s

∗
01 − (1− p∗0)s

∗
00] which implies

Cov(Tε2, z) = (1− α0 − α1)Cov(T
∗ε2, z). (A.6)

Similarly by iterated expectations and Assumptions 2.2 (i)–(ii)

Cov(TT ∗ε, z) = q(1− q)(1− α1)(p
∗
1m

∗
1k − p∗0m

∗
10) = (1− α1)Cov(T

∗ε, z) (A.7)

where m∗
tk is defined as in the proof of Lemma 2.3. As shown in the proof of Lemma 2.3,

Cov(TT ∗, z) = (1− α1)Cov(T
∗, z)

Cov(T ∗, z) = π/(1− α0 − α1)

Cov(T ∗ε, z) = Cov(Tε, z)/(1− α0 − α1)

and combining these equalities with Equations A.6 and A.7, it follows that

τ2 = 2 [(1− α1)(c+ β)− cα0] Cov(T
∗ε, z) +

[
(1− α1)(c+ β)2 − c2α0

]
Cov(T ∗, z)

+ (1− α0 − α1)Cov(T
∗ε2, z)

τ1 = (1− α0 − α1)Cov(T
∗ε, z) + [(1− α1)(c+ β)− cα0] Cov(T

∗, z)

using τ1 = cπ +Cov(Tε, z) + βCov(TT ∗, z) as shown in the proof of Lemma 2.3. Thus,

3τ2θ1 − 3τ1θ2 + πθ3 = K1Cov(T
∗ε2, z) +K2Cov(T

∗ε, z) +K3Cov(T
∗, z)

where K1 ≡ 3θ1(1− α0 − α1) = 3β and

K2 ≡ 6θ1 [(1− α1)(c+ β)− cα0]− 3θ2(1− α0 − α1)

K3 ≡ 3θ1
[
(1− α1)(c+ β)2 − c2α0

]
− 3θ2 [(1− α1)(c+ β)− cα0] + θ3(1− α0 − α1)

Substituting the definitions of θ1, θ2, and θ3 from Equations 6–8, tedious but straightforward algebra
shows that K2 = 3β2+6cβ and K3 = β3+3cβ2+3c2β. Therefore the coefficients of η3 equal those
of 3τ2 − 3τ1θ2 + πθ3 and the result follows.

Proof of Theorem 2.3. Collecting the results of Lemmas 2.2–2.4, we have

η1 = πθ1, η2 = 2τ1θ1 − πθ2, η3 = 3τ2θ1 − 3τ1θ2 + πθ3

which is a linear system in θ1, θ2, θ3 with determinant −π3. Since π 6= 0 by assumption 2.1 (ii),
θ1, θ2 and θ3 are identified. Now, so long as β 6= 0, we can rearrange Equations 7 and 8 to obtain

A = θ2/θ
2
1 = 1 + (α0 − α1) (A.8)

B = θ3/θ
3
1 = (1− α0 − α1)

2 + 6α0(1− α1) (A.9)

Equation A.8 gives (1−α1) = A−α0. Hence (1−α0−α1) = A−2α0 and α0(1−α1) = α0(A−α0).
Substituting into Equation A.9 and simplifying, (A2 − B) + 2Aα0 − 2α2

0 = 0. Substituting for α0

analogously yields a quadratic in (1 − α1) with identical coefficients. It follows that one root of

46



(A2 −B) + 2Ar − 2r2 = 0 is α0 and the other is 1− α1. Solving,

r =
A

2
±
√
3A2 − 2B =

1

θ21

(
θ2
2

±
√
3θ22 − 2θ1θ3

)
. (A.10)

By Equations 7 and 8,

3θ22 − 2θ1θ3 = 3
[
θ21 (1 + α0 − α1)

]2 − 2θ1
{
θ31
[
(1− α0 − α1)

2 + 6α0(1− α1)
]}

= θ41
{
3(1 + α0 − α1)

2 − 2
[
(1− α0 − α1)

2 + 6α0(1− α1)
]}

.

Expanding the first term we find that

3(1 + α0 − α1)
2 = 3

[
1 + 2(α0 − α1) + (α0 − α1)

2
]

= 3 + 6α0 − 6α1 + 3α2
0 + 3α2

1 − 6α0α1

and expanding the second

2
[
(1− α0 − α1)

2 + 6α0(1− α1)
]
= 2

[
1− 2(α0 + α1) + (α0 + α1)

2 + 6α0 − 6α0α1

]
= 2 + 8α0 − 4α1 + 2α2

0 + 2α2
1 − 8α0α1.

Therefore

3θ22 − 2θ1θ3 = θ41
{
1− 2α0 − 2α1 + α2

0 − α2
1 + 2α0α1

}
= θ41

[
(1− α0 − α1)

2
]

which is strictly greater than zero since θ1 6= 0 and α0 + α1 6= 0. It follows that both roots of the
quadratic are real. Moreover, 3θ22/θ

4
1 − 2θ3/θ

3
1 identifies (1−α0 −α1)

2. Substituting into Equation
6, it follows that β is identified up to sign. If α0 + α1 < 1 then sign(β) = sign(θ1) so that both the
sign and magnitude of β are identified. If α0 + α1 < 1 then 1 − α1 > α0 so (1 − α1) is the larger
root of (A2 −B) + 2Ar − 2r2 = 0 and α0 is the smaller root.

B Comment on Mahajan (2006) A.2

Expanding on our discussion from Section 2.2 above, we now show that Mahajan’s iden-
tification argument for an endogenous regressor in an additively separable model (A.2) is
incorrect. Unless otherwise indicated, all notation used below is as defined in Section 2.

The first step of Mahajan (2006) A.2 argues (correctly) that under Assumptions 2.1 and
2.2 (i)–(ii), knowledge of α0(x) and α1(x) is sufficient to identify β(x). This step is equivalent
to our Lemma 2.2 above. The second step appeals to Mahajan (2006) Theorem 1 to argue
that α0(x) and α1(x) are indeed point identified. To understand the logic of this second
step, we first re-state Mahajan (2006) Theorem 1 in our notation. As in Section 2 above,
T ∗ denotes an unobserved binary random variable, z is a instrument, T an observed binary
surrogate for T ∗, y an outcome of interest, and x a vector covariates.

Assumption B.1 (Mahajan (2006) Theorem 1). Define g(T ∗,x) ≡ E[y|x, T ∗] and v ≡
y − g(T ∗,x). Suppose that knowledge of (y, T ∗,x) is sufficient to identify g and that:

(i) P(T ∗ = 1|x, z = 0) 6= P(T ∗ = 1|x, z = 1).
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(ii) T is conditionally independent of z given (x, T ∗).

(iii) α0(x) + α1(x) < 1

(iv) E[v|x, z, T ∗, T ] = 0

(v) g(1,x) 6= g(0,x)

Theorem B.1 (Mahajan (2006) Theorem 1). Under Assumption B.1, α0(x) and α1(x) are
point identified, as is g(T ∗,x).

Assumption B.1 (i) is equivalent to our Assumption 2.1 (ii), while Assumptions B.1
(ii)–(iii) are equivalent to our Assumptions 2.2 (i)–(ii). Assumption B.1 (v) serves the same
purpose as β(x) 6= 0 in our Theorem 2.3: unless T ∗ affects y, we cannot identify the mis-
classification probabilities. The key difference between Theorem B.1 and the setting we
consider in Section 2 comes from Assumption B.1 (iv). This is essentially a stronger version
of our Assumptions 2.1 (iii) and 2.2 (iii) but applies to the projection error v, defined in As-
sumption B.1 rather than the structural error ε, defined in Assumption 2.1 (i). Accordingly,
Theorem B.1 identifies the conditional mean function g rather than the causal effect β(x).

Although the meaning of the error term changes when we move from a structural to a
reduced form model, the meaning of the mis-classification error rates does not: α0(x) and
α1(x) are simply conditional probabilities for T given (T ∗,x). Step 2 of Mahajan (2006) A.2
relies on this insight. The idea is to find a way to satisfy Assumption B.1 (iv) simultaneously
with Assumptions 2.1 (iii) and 2.2 (iii), while allowing T ∗ to be endogenous. If this can be
achieved, α0(x), α1(x) will be identified via Theorem B.1, and identification of β(x) will
follow from step 1 of A.2 (our Lemma 2.2). To this end, Mahajan (2006) invokes the
condition

E(y|x, z, T ∗, T ) = E(y|x, T ∗). (B.1)

Because Mahajan (2006) A.2 assumes an additively separable model – our Assumption 2.1
(i) – we see that

E(y|x, z, T ∗, T ) = c(x) + β(x)T ∗ + E(ε|x, z, T ∗, T )

so Equation B.1 is equivalent to E(ε|x, z, T ∗, T ) = E(ε|x, T ∗). Note that this allows T ∗ to
be endogenous, as it does not require E(ε|x, T ∗) = 0. Now, applying Equation B.1 to the
definition of v from Assumption B.1, we have

E(v|x, z, T ∗, T ) = E [y − E(y|x, T ∗) |x, z, T ∗, T ] = 0

which satisfies Assumption B.1 (iv) as required. Based on this reasoning, Mahajan (2006)
claims that Equation B.1 along with Assumptions B.1 (iv), 2.1, and 2.2 (i)–(ii) suffice to
identify the effect β(x) of an endogenous T ∗, so long as g(1,x) 6= g(0,x). As we now show,
however, these Assumptions are contradictory unless T ∗ is exogenous.

By Equation B.1 and Assumption 2.1 (i), E(ε|x, z, T ∗, T ) = E(ε|x, T ∗) and thus by
iterated expectations, we obtain

E(ε|x, T ∗, z) = ET |x,T ∗,z [E(ε|x, T ∗, T, z)] = ET |x,T ∗,z [E(ε|x, T ∗)] = E(ε|x, T ∗). (B.2)
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Now, let m∗
tk(x) = E(ε|x, T ∗ = t, z = k). Using this notation, Equation B.2 is equivalent to

m∗
t0(x) = m∗

t1(x) for t = 0, 1. Combining iterated expectations with Assumption 2.1 (iii),

E(ε|x, z = k) = [1− p∗k(x)]m
∗
0k(x) + p∗k(x)m

∗
1k(x) = 0 (B.3)

for k = 0, 1 where p∗k(x) ≡ P(T ∗ = 1|x, z = k). But substituting m∗
t0(x) = m∗

t1(x) into
Equation B.3 for k = 0, 1, we obtain

[1− p∗0(x)]m
∗
00(x) + p∗0(x)m

∗
10(x) = 0

[1− p∗1(x)]m
∗
00(x) + p∗1(x)m

∗
10(x) = 0

The preceding two equalities are convex combinations of m∗
00 and m∗

10. The only way that
both can equal zero simultaneously is if either p∗0(x) = p∗1(x), contradicting Assumption 2.1
(ii), or if m∗

tk(x) = 0 for all (t, k), which implies that T ∗ is exogenous. Hence Mahajan (2006)
A.2 fails: given the assumption that z is a valid instrument for ε, Equation B.1 implies that
either there is no first-stage relationship between z and T ∗ or that T ∗ is exogenous.

The root of the problem with A.2 is the attempt to use one instrument to satisfy both the
assumptions of Theorem B.1 and Lemma 2.2. If one had access to a second instrument w,
or equivalently a second mis-measured surrogate for T ∗, that satisfied Assumptions B.1, one
could use w to recover α0(x) and α1(x) via Theorem B.1 and z to recover the IV estimand
β(x)/[1− α0(x)− α1(x)] via Lemma 2.2. This is effectively the approach used by Battistin
et al. (2014) to evaluate the returns to schooling in a setting with multiple misreported
measures of educational qualifications.

C Moment Equalities Under Joint Exogeneity

In this Section we discuss the moment equalities that replace Equation 10 under joint exo-
geneity: Assumption 2.3. Because the moment inequalities from Section 3.3 are unchanged
under this assumption, we do not discuss them further here. Define θ1 as in Equation 6, κ1 as
in Section 3.1, and let ρ = −θ1α0(1−α1) and η = θ1(1+α0−α1). Now, under Assumptions
2.1, 2.2, and 2.3:

E
{[

y − κ1 − θ1T
(y − κ1)T − ρ− ηT

]
⊗
[
1
z

]}
= 0. (C.1)

where the equalities involving ρ and η follow from an argument similar to one of the steps
from the proof of Lemma 2.3 – see, e.g., Frazis and Loewenstein (2003) and Mahajan (2006).
The moment equalities from C.1 point identify the reduced form parameters (θ1, κ1, ρ, η) and
lead to a just-identified method of moments estimator of the same. To see why knowledge
of (θ1, κ1, ρ, η) suffices to identify (β, α0, α1), define

A ≡ η/θ1 = 1 + α0 − α1, B ≡ −ρ/θ1 = α0(1− α1)

Eliminating (1− α1) and α0, respectively, we obtain:

α2
0 − Aα0 +B = 0, (1− α1)

2 − A(1− α1) +B = 0
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These are exactly the same quadratic, namely x2 −Ax+B = 0. Hence one root is α0 while
the other is (1− α1). The discriminant is

A2 − 4B = [(1− α1) + α0]
2 − 4 [α0(1− α1)] = (1− α0 − α1)

2

so that both roots are real as long as α0+α1 6= 0. To solve for α0 and α1 we need to calculate
the roots of x2 − Ax + B = 0, namely x = 1

2

(
A±

√
A2 − 4B

)
. One of these roots is α0

and the other is 1 − α1. By assumption, however, α0 + α1 < 1 and thus α0 < 1 − α1. It
follows that the smaller of the two roots is α0 and the larger is 1− α1. Given that (α0, α1)
are identified, identification of β follows by Lemma 2.2.

Inference based on the moment equalities from Equation C.1 suffers from the same diffi-
culties as that based on Equation 10 above. First, note that, while A2 > 4B in population
since α0 + α1 < 1 by assumption, the same may not hold in sample. In this case the GMM
estimator of β will fail to exist. Second, notice that the moment equalities from Equation
C.1 only depend on β through θ1 and are completely uninformative about (α0, α1) if β = 0.

Substituting Equation C.1 for Equation 10 in Algorithm 3.1 requires some small changes.
First, mE and hE from Equations 16–17 are replaced by

hE =

[
y − κ1 − θ1T

(y − κ1 − θ1T )z

]
, mE =

[
(y − κ1)T − ρ− ηT

{(y − κ1)T − ρ− ηT} z

]
where in this case we require preliminary estimators of κ1 and θ1. Accordingly, H

E and ME

from Lemma 3.1 become

HE =

[
−1 −E(T )

−E(z) −E(Tz)

]
, ME =

[
−E[T ] 0
−E[Tz] 0

]
and thus

BE = −ME(HE)−1 =
1

Cov(T, z)

[
−E(T )E(Tz) E(T )2
−E(Tz)2 E(Tz)E(T )

]
which is well-defined as long as T is correlated with z.
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D Supplementary Simulation Results: Online Only

In this section we provide additional simulation results to supplement those from Section 4
above. For details of the simulation DGP, etc. see the discussion above.

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 90 90 90 91 90 91 90 90
0.1 91 93 94 94 94 94 90 89
0.2 92 93 94 94 94 94 92 90
0.3 93 93 94 94 94 93 92 91

0.1 0.0 92 93 93 94 94 93 90 87
0.1 93 95 96 97 97 96 92 87
0.2 95 96 97 98 97 96 92 87
0.3 96 98 98 98 98 95 92 88

0.2 0.0 93 93 93 93 93 93 92 89
0.1 95 96 98 98 97 95 93 89
0.2 97 97 98 98 97 95 92 89
0.3 98 98 98 98 97 95 93 91

0.3 0.0 93 94 94 94 94 93 92 91
0.1 97 97 98 98 97 95 93 89
0.2 98 98 98 98 97 94 93 91
0.3 99 99 99 98 98 96 95 94

Table D.1: Coverage (1 - size) of 90% GMS joint test for α0 and α1: n = 1000.
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 90 91 91 90 90 90 90 90
0.1 91 92 92 93 94 94 92 90
0.2 91 92 93 93 93 94 93 91
0.3 92 93 93 93 94 93 93 91

0.1 0.0 90 92 93 94 93 94 92 89
0.1 92 93 95 96 97 97 94 90
0.2 92 94 96 97 97 96 95 89
0.3 94 95 97 98 98 96 94 90

0.2 0.0 91 93 93 93 93 94 92 90
0.1 92 95 96 97 97 96 94 90
0.2 94 96 97 97 97 95 93 90
0.3 96 97 98 98 97 95 93 90

0.3 0.0 92 92 93 93 93 93 92 91
0.1 93 96 97 97 97 96 93 90
0.2 96 97 97 97 96 95 93 90
0.3 98 98 98 98 97 95 94 92

Table D.2: Coverage (1 - size) of 90% GMS joint test for α0 and α1: n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 95 95 95 96 96 96 95 95
0.1 96 97 97 97 97 97 95 94
0.2 96 97 98 98 97 97 96 95
0.3 97 97 97 98 97 97 96 95

0.1 0.0 96 97 97 97 97 97 95 93
0.1 97 98 99 99 99 98 96 92
0.2 98 99 99 99 99 98 96 93
0.3 99 99 99 99 99 98 96 94

0.2 0.0 97 97 97 97 97 96 96 94
0.1 98 99 99 99 99 98 96 94
0.2 99 99 99 99 99 98 96 94
0.3 99 100 100 99 99 98 97 95

0.3 0.0 97 97 97 97 97 96 96 95
0.1 99 99 99 99 99 98 97 94
0.2 99 99 99 99 99 98 97 96
0.3 100 100 100 99 99 98 98 97

Table D.3: Coverage (1 - size) of 95% GMS joint test for α0 and α1: n = 1000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 95 95 96 95 95 95 95 95
0.1 96 96 96 97 97 97 96 95
0.2 96 96 97 97 97 97 96 95
0.3 96 97 97 97 97 97 97 95

0.1 0.0 95 96 97 97 97 97 96 94
0.1 96 97 98 98 99 99 97 94
0.2 96 98 98 99 99 98 97 94
0.3 97 98 99 99 99 98 97 95

0.2 0.0 96 96 97 97 97 97 96 95
0.1 96 98 98 99 99 98 97 94
0.2 97 98 99 99 99 98 97 95
0.3 98 99 99 99 99 98 97 94

0.3 0.0 96 96 97 97 97 97 96 95
0.1 97 98 99 99 99 98 96 94
0.2 98 99 99 99 98 98 96 95
0.3 99 99 99 99 99 98 97 96

Table D.4: Coverage (1 - size) of 95% GMS joint test for α0 and α1: n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 97.7 97.7 97.6 97.7 98.0 98.0 97.4 97.9
0.1 98.0 98.7 98.8 99.1 98.8 98.4 97.1 96.4
0.2 98.4 98.5 98.9 98.9 98.8 98.6 98.0 97.0
0.3 98.5 98.8 98.8 99.0 98.7 98.4 97.8 97.5

0.1 0.0 98.1 98.5 98.3 98.8 98.8 98.4 96.8 95.7
0.1 98.6 99.1 99.5 99.6 99.6 98.8 97.7 95.2
0.2 99.0 99.3 99.7 99.8 99.7 98.9 97.5 95.7
0.3 99.4 99.7 99.8 99.8 99.6 99.0 98.2 96.7

0.2 0.0 98.6 98.5 98.6 98.9 98.7 98.2 97.7 97.0
0.1 99.0 99.5 99.7 99.7 99.4 99.0 98.1 96.5
0.2 99.5 99.7 99.8 99.7 99.4 99.0 97.8 96.8
0.3 99.7 99.8 99.8 99.8 99.5 99.0 98.7 97.7

0.3 0.0 98.7 98.7 98.8 98.7 98.7 98.2 98.1 97.6
0.1 99.4 99.6 99.6 99.7 99.4 98.9 98.3 96.8
0.2 99.8 99.8 99.7 99.8 99.5 99.1 98.5 97.8
0.3 100.0 99.9 99.9 99.8 99.6 99.5 99.1 98.8

Table D.5: Coverage (1 - size) of 97.5% GMS joint test for α0 and α1: n = 1000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 97.7 97.7 97.6 97.6 97.6 97.5 97.4 97.5
0.1 98.0 98.1 98.4 98.3 98.8 98.6 97.8 97.0
0.2 98.1 98.2 98.8 98.6 98.9 98.6 98.3 97.3
0.3 98.2 98.5 98.6 98.6 98.8 98.4 98.2 97.4

0.1 0.0 97.4 98.1 98.3 98.8 98.5 98.5 97.9 96.9
0.1 98.0 98.6 99.1 99.4 99.5 99.3 98.4 96.8
0.2 98.2 98.9 99.4 99.6 99.7 99.3 98.8 96.8
0.3 98.6 99.1 99.6 99.8 99.6 99.2 98.4 97.0

0.2 0.0 97.8 98.1 98.5 98.6 98.5 98.4 98.0 97.6
0.1 98.3 98.9 99.2 99.6 99.5 99.1 98.6 97.0
0.2 98.7 99.4 99.7 99.6 99.5 99.0 98.4 96.9
0.3 99.1 99.6 99.7 99.7 99.5 99.0 98.2 97.0

0.3 0.0 98.2 98.3 98.7 98.5 98.6 98.5 98.0 97.7
0.1 98.6 99.3 99.4 99.6 99.5 99.2 98.1 97.0
0.2 99.2 99.7 99.7 99.6 99.4 98.8 98.4 97.4
0.3 99.6 99.8 99.8 99.7 99.4 99.1 98.8 98.2

Table D.6: Coverage (1 - size) of 97.5% GMS joint test for α0 and α1: n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 27 33 30 14 1 0 0 0
0.1 27 32 29 13 2 0 0 0
0.2 26 33 32 15 4 0 0 0
0.3 26 34 30 17 5 0 0 0

0.1 0.0 26 32 31 14 2 0 0 0
0.1 26 36 32 16 4 0 0 0
0.2 27 35 31 18 8 0 0 0
0.3 25 35 32 21 11 1 0 0

0.2 0.0 26 33 30 15 3 0 0 0
0.1 26 33 30 19 6 0 0 0
0.2 26 35 33 22 12 1 0 0
0.3 26 35 33 26 15 3 0 0

0.3 0.0 26 32 32 16 6 0 0 0
0.1 24 35 33 21 11 1 0 0
0.2 26 32 35 27 15 4 0 0
0.3 26 35 35 28 21 7 2 0

Table D.7: Percentage of simulation replications for which the standard GMM confidence interval
fails to exist, either becuase the point estimate is NaN or the asymptotic covariance matrix is
numerically singular (n = 1000)
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 25 36 29 7 0 0 0 0
0.1 28 36 29 7 0 0 0 0
0.2 28 37 28 10 1 0 0 0
0.3 27 36 28 12 2 0 0 0

0.1 0.0 27 36 27 10 0 0 0 0
0.1 26 36 29 9 1 0 0 0
0.2 28 38 29 13 2 0 0 0
0.3 24 36 31 15 5 0 0 0

0.2 0.0 26 36 30 9 1 0 0 0
0.1 25 37 29 12 2 0 0 0
0.2 27 38 32 17 4 0 0 0
0.3 25 39 34 20 9 1 0 0

0.3 0.0 26 37 30 10 2 0 0 0
0.1 25 38 31 16 4 0 0 0
0.2 27 38 34 19 9 0 0 0
0.3 27 36 36 23 13 2 0 0

Table D.8: Percentage of simulation replications for which the standard GMM confidence interval
fails to exist, either becuase the point estimate is NaN or the asymptotic covariance matrix is
numerically singular (n = 2000)

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 72 62 62 80 92 95 94 95
0.1 72 62 63 79 92 95 96 95
0.2 73 61 61 77 90 96 96 96
0.3 73 59 62 76 88 95 96 95

0.1 0.0 73 63 60 78 91 95 96 96
0.1 73 58 59 77 90 95 95 94
0.2 73 59 61 75 86 95 95 94
0.3 74 59 58 71 82 94 96 96

0.2 0.0 74 62 60 78 91 95 96 96
0.1 73 60 61 74 87 95 96 94
0.2 73 58 57 70 81 93 95 95
0.3 73 58 56 66 78 92 95 96

0.3 0.0 74 62 60 76 89 95 96 96
0.1 75 59 58 71 82 93 96 95
0.2 74 61 56 65 78 90 96 96
0.3 73 58 55 64 71 88 93 96

Table D.9: Coverage of nominal 95% GMM Intervals with n = 1000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 19.07 3.44 1.86 1.32 0.87 0.47 0.37 0.35
0.1 17.52 3.47 1.92 1.41 1 0.61 0.51 0.46
0.2 17.41 3.51 1.9 1.45 1.1 0.76 0.65 0.58
0.3 18.23 3.34 1.92 1.48 1.24 0.91 0.79 0.7

0.1 0.0 17.13 3.51 1.86 1.38 0.97 0.61 0.51 0.46
0.1 17.88 3.33 1.85 1.45 1.13 0.78 0.67 0.6
0.2 17.37 3.36 1.95 1.54 1.24 0.97 0.85 0.75
0.3 18.07 3.33 1.98 1.63 1.41 1.17 1.04 0.92

0.2 0.0 17.79 3.39 1.92 1.45 1.11 0.75 0.65 0.58
0.1 18.98 3.43 1.96 1.54 1.26 0.97 0.84 0.75
0.2 18.25 3.26 1.92 1.64 1.45 1.2 1.06 0.95
0.3 19.03 3.31 2.02 1.75 1.66 1.49 1.33 1.19

0.3 0.0 18.27 3.48 1.87 1.5 1.25 0.9 0.79 0.7
0.1 19.4 3.41 1.96 1.63 1.43 1.18 1.04 0.92
0.2 18.22 3.56 1.96 1.74 1.67 1.49 1.35 1.19
0.3 17.56 3.55 2.13 1.96 1.86 1.86 1.74 1.55

Table D.10: Median Width of nominal 95% GMM Intervals with n = 1000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 74 54 63 87 95 94 96 95
0.1 72 54 62 86 94 95 95 96
0.2 72 53 64 85 94 95 95 94
0.3 73 54 64 81 94 95 95 94

0.1 0.0 73 54 65 83 94 95 94 96
0.1 74 55 64 84 93 95 95 95
0.2 72 52 63 80 93 96 95 95
0.3 75 53 59 77 90 95 95 95

0.2 0.0 74 54 61 84 93 96 95 94
0.1 74 54 63 81 92 96 95 96
0.2 73 52 60 75 90 96 96 95
0.3 74 50 57 72 86 95 96 96

0.3 0.0 74 53 61 83 92 97 95 95
0.1 75 52 60 78 90 95 96 96
0.2 73 52 57 73 85 95 96 96
0.3 73 53 54 69 80 93 96 96

Table D.11: Coverage of nominal 95% GMM Intervals with n = 2000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 17.4 2.42 1.47 1 0.62 0.33 0.27 0.24
0.1 16.56 2.51 1.49 1.06 0.7 0.43 0.36 0.33
0.2 16.33 2.4 1.53 1.13 0.81 0.53 0.46 0.41
0.3 17.06 2.52 1.57 1.19 0.91 0.65 0.56 0.5

0.1 0.0 17.2 2.5 1.53 1.05 0.71 0.43 0.36 0.33
0.1 17.48 2.5 1.53 1.15 0.83 0.56 0.48 0.43
0.2 16.32 2.45 1.57 1.2 0.97 0.69 0.6 0.53
0.3 18.37 2.43 1.51 1.3 1.1 0.84 0.73 0.65

0.2 0.0 17.64 2.5 1.49 1.13 0.8 0.54 0.46 0.41
0.1 18.25 2.47 1.58 1.22 0.96 0.69 0.6 0.54
0.2 17.02 2.4 1.57 1.31 1.13 0.86 0.76 0.67
0.3 18.05 2.39 1.61 1.43 1.33 1.09 0.95 0.85

0.3 0.0 17.72 2.43 1.53 1.19 0.91 0.65 0.56 0.5
0.1 18.8 2.46 1.55 1.32 1.11 0.84 0.74 0.65
0.2 18.24 2.45 1.61 1.45 1.3 1.08 0.96 0.85
0.3 17.43 2.55 1.67 1.62 1.57 1.4 1.24 1.1

Table D.12: Median Width of nominal 95% GMM Intervals with n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 97 96 97 97 95 96
0.1 97 99 99 99 99 100 100 99
0.2 98 99 99 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

0.1 0.0 97 99 99 99 100 100 100 98
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

0.2 0.0 97 99 99 100 100 100 100 100
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

0.3 0.0 97 99 100 100 100 100 100 100
0.1 97 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

Table D.13: Coverage of nominal > 95% Bonferroni Intervals with n = 1000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 96 97 96 96 95 95
0.1 97 98 99 100 100 100 100 99
0.2 97 99 99 100 100 100 100 100
0.3 97 99 100 100 100 100 100 100

0.1 0.0 97 99 99 99 100 100 100 99
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

0.2 0.0 97 99 99 100 100 100 100 99
0.1 98 100 100 100 100 100 100 100
0.2 98 100 100 100 100 100 100 100
0.3 98 100 100 100 100 100 100 100

0.3 0.0 97 100 100 100 100 100 100 100
0.1 97 100 100 100 100 100 100 100
0.2 97 100 100 100 100 100 100 100
0.3 97 100 100 100 100 100 100 100

Table D.14: Coverage of nominal > 95% Bonferroni Intervals with n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.4 0.41 0.43 0.43 0.43 0.42 0.41 0.41
0.1 0.45 0.47 0.54 0.59 0.63 0.7 0.75 0.86
0.2 0.51 0.54 0.65 0.76 0.85 0.95 1.01 1.17
0.3 0.58 0.62 0.79 0.95 1.07 1.17 1.24 1.48

0.1 0.0 0.45 0.47 0.54 0.59 0.63 0.7 0.76 0.88
0.1 0.51 0.54 0.66 0.77 0.86 1.03 1.18 1.46
0.2 0.58 0.63 0.8 0.98 1.12 1.38 1.55 1.88
0.3 0.67 0.75 1 1.25 1.46 1.74 1.94 2.4

0.2 0.0 0.51 0.54 0.65 0.76 0.86 0.96 1.02 1.19
0.1 0.58 0.63 0.81 0.99 1.14 1.42 1.64 2.08
0.2 0.67 0.75 1.01 1.29 1.54 1.97 2.33 2.9
0.3 0.81 0.91 1.3 1.7 2.09 2.73 3.13 3.9

0.3 0.0 0.58 0.62 0.8 0.95 1.09 1.18 1.25 1.5
0.1 0.68 0.74 1.01 1.26 1.49 1.84 2.13 2.78
0.2 0.81 0.91 1.3 1.7 2.11 2.8 3.4 4.48
0.3 1.01 1.16 1.74 2.35 2.93 4.17 5.2 6.85

Table D.15: Median Width of nominal > 95% Bonferroni Intervals with n = 1000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.29 0.3 0.31 0.31 0.31 0.3 0.29 0.29
0.1 0.32 0.35 0.4 0.44 0.48 0.53 0.55 0.61
0.2 0.36 0.41 0.51 0.59 0.65 0.67 0.69 0.81
0.3 0.41 0.48 0.64 0.76 0.81 0.8 0.85 1.01

0.1 0.0 0.32 0.35 0.4 0.44 0.48 0.53 0.56 0.62
0.1 0.36 0.41 0.51 0.6 0.69 0.82 0.88 1.02
0.2 0.41 0.48 0.64 0.79 0.91 1.04 1.08 1.27
0.3 0.48 0.59 0.82 1.02 1.16 1.25 1.33 1.61

0.2 0.0 0.36 0.41 0.51 0.59 0.65 0.67 0.7 0.82
0.1 0.41 0.48 0.65 0.79 0.92 1.09 1.21 1.52
0.2 0.48 0.59 0.83 1.05 1.24 1.49 1.61 1.96
0.3 0.57 0.73 1.09 1.43 1.69 1.9 2.08 2.6

0.3 0.0 0.41 0.48 0.64 0.77 0.82 0.78 0.84 1.02
0.1 0.48 0.59 0.83 1.03 1.18 1.36 1.57 2.06
0.2 0.57 0.73 1.1 1.43 1.71 2.11 2.45 3.18
0.3 0.72 0.95 1.5 2.03 2.53 3.15 3.56 4.56

Table D.16: Median Width of nominal > 95% Bonferroni Intervals with n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 97 96 97 97 95 93
0.1 97 99 99 99 99 98 96 95
0.2 98 99 99 100 100 97 96 96
0.3 97 100 100 100 99 96 96 96

0.1 0.0 97 99 99 99 100 98 97 95
0.1 98 100 100 100 100 96 96 96
0.2 98 100 100 100 99 96 96 95
0.3 97 100 100 100 97 95 96 96

0.2 0.0 97 99 99 100 100 96 96 96
0.1 98 100 100 100 99 96 96 96
0.2 98 100 100 100 96 95 95 96
0.3 98 100 100 98 95 95 95 96

0.3 0.0 97 99 100 100 100 95 96 97
0.1 97 100 100 100 97 94 96 96
0.2 98 100 100 98 94 94 96 96
0.3 98 100 99 96 92 94 95 96

Table D.17: Coverage of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 1000

D-9



β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 96 97 96 97 96 96 95 93
0.1 97 98 99 100 100 98 97 96
0.2 97 99 99 100 100 97 96 95
0.3 97 99 100 100 99 96 96 96

0.1 0.0 97 99 99 99 100 98 96 95
0.1 98 100 100 100 100 96 96 97
0.2 98 100 100 100 99 96 96 97
0.3 98 100 100 99 97 95 96 96

0.2 0.0 97 99 99 100 100 97 96 95
0.1 98 100 100 100 98 96 96 97
0.2 98 100 100 100 96 96 96 96
0.3 98 100 100 97 95 95 96 96

0.3 0.0 97 100 100 100 99 98 97 96
0.1 97 100 100 100 96 95 96 97
0.2 97 100 100 97 94 96 96 97
0.3 97 100 100 94 94 95 96 96

Table D.18: Coverage of hybrig CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 2000

β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.4 0.41 0.43 0.43 0.43 0.42 0.4 0.35
0.1 0.45 0.47 0.54 0.59 0.63 0.67 0.52 0.46
0.2 0.51 0.54 0.65 0.76 0.84 0.82 0.65 0.58
0.3 0.58 0.62 0.79 0.95 1.05 0.96 0.79 0.7

0.1 0.0 0.45 0.47 0.54 0.59 0.63 0.67 0.51 0.46
0.1 0.51 0.54 0.66 0.77 0.86 0.92 0.69 0.61
0.2 0.58 0.63 0.8 0.97 1.11 1.17 0.87 0.75
0.3 0.67 0.75 1 1.25 1.4 1.4 1.06 0.92

0.2 0.0 0.51 0.54 0.65 0.76 0.85 0.83 0.65 0.58
0.1 0.58 0.63 0.81 0.99 1.12 1.18 0.86 0.75
0.2 0.67 0.75 1.01 1.29 1.48 1.56 1.08 0.95
0.3 0.81 0.91 1.3 1.67 1.95 1.77 1.35 1.2

0.3 0.0 0.58 0.62 0.8 0.95 1.07 0.95 0.8 0.7
0.1 0.68 0.74 1.01 1.26 1.43 1.48 1.06 0.93
0.2 0.81 0.91 1.3 1.66 1.98 1.94 1.37 1.19
0.3 1.01 1.16 1.73 2.24 2.71 2.33 1.78 1.55

Table D.19: Median width of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 1000
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Figure D.1: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0, n = 1000
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Figure D.2: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0, n = 2000
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Figure D.3: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.25, n = 1000
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Figure D.4: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.25, n = 2000
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Figure D.5: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.5, n = 1000
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Figure D.6: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.5, n = 2000
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Figure D.7: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.75, n = 1000
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Figure D.8: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
0.75, n = 2000
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Figure D.9: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
1, n = 1000

D-19



0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0, α1 = 0.2

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.2

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.2

Figure D.10: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
1, n = 2000
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Figure D.11: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
1.5, n = 1000
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Figure D.12: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
1.5, n = 2000
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Figure D.13: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
2, n = 1000
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Figure D.14: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
2, n = 2000
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Figure D.15: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
3, n = 1000
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Figure D.16: Coverage Curves for Bonferroni with and without Non-differential Bounds: β =
3, n = 2000
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Figure D.17: Coverage Curves for Bonferroni versus Hybrid CIs: β = 0.75, n = 1000
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Figure D.18: Coverage Curves for Bonferroni versus Hybrid CIs: β = 0.75, n = 2000
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Figure D.19: Coverage Curves for Bonferroni versus Hybrid CIs: β = 1, n = 1000

D-29



0.5 1.0 1.5 2.0

0
20

40
60

80

α0 = 0, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.1

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0, α1 = 0.2

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.1, α1 = 0.2

0.5 1.0 1.5 2.0

0
20

40
60

80
10
0

α0 = 0.2, α1 = 0.2

Figure D.20: Coverage Curves for Bonferroni versus Hybrid CIs: β = 1, n = 2000
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Figure D.21: Coverage Curves for Bonferroni versus Hybrid CIs: β = 1.5, n = 1000
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Figure D.22: Coverage Curves for Bonferroni versus Hybrid CIs: β = 1.5, n = 2000
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Figure D.23: Coverage Curves for Bonferroni versus Hybrid CIs: β = 2, n = 1000
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Figure D.24: Coverage Curves for Bonferroni versus Hybrid CIs: β = 2, n = 2000
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Figure D.25: Coverage Curves for Bonferroni versus Hybrid CIs: β = 3, n = 1000
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Figure D.26: Coverage Curves for Bonferroni versus Hybrid CIs: β = 3, n = 2000
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β
α0 α1 0 0.25 0.5 0.75 1 1.5 2 3

0.0 0.0 0.29 0.3 0.31 0.31 0.31 0.3 0.29 0.25
0.1 0.32 0.35 0.4 0.44 0.48 0.48 0.36 0.33
0.2 0.36 0.41 0.51 0.59 0.65 0.57 0.46 0.41
0.3 0.41 0.48 0.64 0.76 0.79 0.68 0.56 0.5

0.1 0.0 0.32 0.35 0.4 0.44 0.48 0.48 0.37 0.33
0.1 0.36 0.41 0.51 0.6 0.68 0.65 0.48 0.43
0.2 0.41 0.48 0.64 0.78 0.89 0.83 0.61 0.54
0.3 0.48 0.59 0.82 1.02 1.09 0.98 0.75 0.65

0.2 0.0 0.36 0.41 0.51 0.59 0.65 0.58 0.46 0.41
0.1 0.41 0.48 0.65 0.79 0.9 0.89 0.61 0.54
0.2 0.48 0.59 0.83 1.05 1.2 1.22 0.77 0.67
0.3 0.57 0.73 1.09 1.4 1.58 1.53 0.97 0.85

0.3 0.0 0.41 0.48 0.64 0.77 0.8 0.69 0.56 0.5
0.1 0.48 0.59 0.83 1.02 1.13 1.19 0.75 0.65
0.2 0.57 0.73 1.1 1.4 1.62 1.79 0.97 0.85
0.3 0.72 0.95 1.49 1.93 2.36 1.58 1.25 1.1

Table D.20: Median width of hybrid CI constructed from nominal 95% GMM and nominal > 95%
Bonferroni intervals: n = 2000
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