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Abstract

This paper studies the use of a discrete instrumental variable to identify the
causal effect of an endogenous, mis-measured, binary treatment. We begin by
showing that the only existing identification result for this case, which appears
in Mahajan (2006), is incorrect. As such, identification in this model remains
an open question. We first prove that the treatment effect is unidentified based
on conditional first-moment information, regardless of the number of values that
the instrument may take. We go on to derive a novel partial identification result
based on conditional second moments that can be used to test for the presence of
mis-classification and to construct simple and informative bounds for the treat-
ment effect. In certain special cases, we can in fact obtain point identification of
the treatment effect based on second moment information alone. When this is
not possible, we show that adding conditional third moment information point
identifies the treatment effect and the measurement error process.
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1 Introduction

Many treatments of interest in applied work are binary. To take a particularly promi-
nent example, consider treatment status in a randomized controlled trial. Even if the
randomization is pristine, which yields a valid binary instrument (the offer of treat-
ment), subjects may select into treatment based on unobservables, and given the many
real-world complications that arise in the field, measurement error may be an impor-
tant concern. This paper studies the use of a discrete instrumental variable to identify
the causal effect of an endogenous, mis-measured, binary treatment in a model with
additively separable errors. Specifically, we consider the following model

y = h(T ∗,x) + ε (1.1)

where T ∗ ∈ {0, 1} is a mis-measured, endogenous treatment, x is a vector of exogenous
controls, and ε is a mean-zero error. Since T ∗ is potentially endogenous, E[ε|T ∗,x] may
not be zero. Our goal is to non-parametrically estimate the average treatment effect
(ATE) function

τ(x) = h(1,x)− h(0,x). (1.2)

using a single discrete instrumental variable z ∈ {zk}K
k=1. We assume throughout that

z is a relevant instrument for T ∗, in other words

P(T ∗ = 1|zj,x) 6= P(T ∗ = 1|zk,x), ∀k 6= j. (1.3)

While the structural relationship involves T ∗, we observe only a noisy measure T ,
polluted by non-differential measurement error. In particular, we assume that

P(T = 1|T ∗ = 0, z,x) = α0(x) (1.4)

P(T = 0|T ∗ = 1, z,x) = α1(x) (1.5)

where the mis-classification error rates α0(x) and α1(x) can depend on x but not z,
and additionally that, conditional on true treatment status, observed treatment status
provides no additional information about the error term. In other words, we assume
that

E[ε|T ∗, T, z,x] = E[ε|T ∗, z,x]. (1.6)

Although a relevant case for applied work, the setting we consider here has received
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little attention in the literature. The only existing result for the case of an endoge-
nous treatment appears in an important paper by Mahajan (2006), who is primarily
concerned with the case of an exogenous treatment. As we show below, Mahajan’s
identification result for the endogenous treatment case is incorrect. As far as we are
aware, this leaves the problem considered in this paper completely unsolved.

We begin by showing that the proof in Appendix A.2 of Mahajan (2006) leads
to a contradiction. Throughout his paper, Mahajan (2006) maintains an assumption
(Assumption 4) which he calls the “Dependency Condition.” This assumption requires
that the instrumental variable be relevant, namely that it generates variation in true
treatment status. When extending his result for an exogenous treatment to the more
general case of an endogenous one, however, he must impose an additional condition
on the model (Equation 11), which turns out to violate the Dependency Condition.
Since one cannot impose the condition in Equation 11 of Mahajan (2006), we go on
to study the prospects for identification in this model more broadly. We consider
two possibilities. First, since Mahajan’s identification results require only a binary
instrument, we borrow an idea from Lewbel (2007) and explore whether expanding the
support of the instrument yields identification based on moment equations similar to
those used by Mahajan (2006). While allowing the instrument to take on additional
values does increase the number of available moment conditions, we show that these
moments cannot point identify the treatment effect, regardless of how many (finite)
values the instrument takes on.

We then consider a new source of identifying information that arises from imposing
stronger assumptions on the instrumental variable. If the instrument is not merely
mean independent but in fact statistically independent of the regression error term,
as in a randomized controlled trial or a true natural experiment, additional moment
conditions become available. We show that adding a conditional second moment in-
dependence assumption on the instrument identifies the difference of mis-classification
rates α1(x)− α0(x). Because these rates must equal each other when there is no mis-
classification error, our result can be used to test a necessary condition for the absence
of measurement error. It can also be used to construct simple and informative partial
identification bounds for the treatment effect. When one of the mis-classification rates
is known, this identifies the treatment effect. More generally, however, this is not the
case. We go on to show that a conditional third moment independence assumption
on the instrument point identifies both α0(x) and α1(x) and hence the ATE function
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τ(x). Both our point identification and partial identification results require only a bi-
nary instrument, and lead to simple, closed-form method of moments estimators that
should be straightforward to apply in practice.

The remainder of this paper is organized as follows. In section 2 we discuss the
literature in relation to the problem considered here. Section 3 introduces notation and
assumptions, and presents our main results. Section 4 concludes. All proofs appear in
the Appendix.

2 Related Literature

Measurement error is a pervasive feature of economic data, motivating a long tradition
of measurement error modelling in econometrics. The textbook case considers a contin-
uous regressor (treatment) subject to classical measurement error in a linear model. In
this setting, the measurement error is assumed to be unrelated to the true, unobserved,
value of the treatment of interest. Regardless of whether this unobserved treatment is
exogenous or endogenous, a single valid instrument suffices to identify its effect. When
an instrument is unavailable, Lewbel (1997) shows that higher moment assumptions
can be used to construct one, provided that the mis-measured treatment is exogenous.
When it is endogenous, Lewbel (2012) uses a heteroskedasticity assumption to obtain
identification.

Departures from the linear, classical measurement error setting pose serious iden-
tification challenges. One strand of the literature considers relaxing the assumption
of linearity while maintaining that of classical measurement error. Schennach (2004),
for example, uses repeated measures of each mis-measured treatment to obtain identi-
fication, while Schennach (2007) uses an instrumental variable. Both papers consider
the case of exogenous treatments.1 More recently, Song et al. (2015) rely on a re-
peated measure of the mis-measured treatment and the existence of a set of additional
regressors, conditional upon which the treatment of interest is unrelated to the unob-
servables, to obtain identification. Another strand of the literature considers relaxing
the assumption of classical measurement error, by allowing the measurement error to
be related to the true value of the unobserved treatment. Chen et al. (2005) obtain
identification in a general class of moment condition models with mis-measured data

1For comprehensive reviews of the challenges of addressing measurement error in non-linear models,
see Chen et al. (2011) and Schennach (2013).
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by relying on the existence of an auxiliary dataset from which they can estimate the
measurement error process. In contrast, Hu and Shennach (2008) and Song (2015)
rely on an instrumental variable and an additional conditional location assumption on
the measurement error distribution. More recently, Hu et al. (2015) use a continu-
ous instrument to identify the ratio of partial effects of two continuous regressors, one
measured with error, in a linear single index model.

Many treatments of interest in economics, however, are binary, and in this case
classical measurement error is impossible. Because a true 1 can only be mis-measured
as a 0 and a true 0 can only be mis-measured as a 1, the measurement error must be
negatively correlated with the true treatment status (Aigner, 1973; Bollinger, 1996).
For this reason, even in a textbook linear model, the instrumental variables estima-
tor can only remove the effect of endogeneity, not that of measurement error (Frazis
and Loewenstein, 2003). Measurement error in a discrete variable is usually called
mis-classification.2 The simplest form of mis-classification is so-called non-differential
measurement error. In this case, conditional on true treatment status, and possibly a
set of exogenous covariates, the measurement error is assumed to be unrelated to all
other variables in the system.

A number of papers have studied this problem without the use of instrumental
variables under the assumption that the mis-measured binary treatment is exogenous.
The first to address this problem was Aigner (1973), who characterized the asymptotic
bias of the OLS estimator in this setting, and proposed a technique for correcting it
using outside information on the mis-classification process. Another early contribution
by Bollinger (1996) provides partial identification bounds. More recently, Chen et al.
(2008a) use higher moment assumptions to obtain identification in a linear regression
model, and Chen et al. (2008b) extend these results to the non-parametric setting. van
Hasselt and Bollinger (2012) and Bollinger and van Hasselt (2015) provide additional
partial identification results.

Continuing under the assumption of an exogenous treatment, a number of other pa-
pers in the literature have considered the identifying power of an instrumental variable,
or something like one. Black et al. (2000) and Kane et al. (1999) more-or-less simul-
taneously pointed out that when two alternative measures of treatment are available,
both subject to non-differential measurement error, a non-linear GMM estimator can
be used to recover the treatment effect. In essence, one measure serves as an instrument

2For general results on the partial identification of discrete probability distributions using mis-
classified observations, see Molinari (2008).
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for the other although the estimator is quite different from IV.3 Subsequently, Frazis
and Loewenstein (2003) correctly note that an instrumental variable can take the place
of one of the measures of treatment in a linear model with an exogenous treatment,
allowing one to implement a variant of the GMM estimator proposed by Black et al.
(2000) and Kane et al. (1999). However, as we will show below, the assumptions re-
quired to obtain this result are stronger than Frazis and Loewenstein (2003) appear
to realize: the usual IV assumption that the instrument is mean independent of the
regression error is insufficient for identification.

Mahajan (2006) extends the results of Black et al. (2000) and Kane et al. (1999) to
a more general nonparametric regression setting using a binary instrument in place of
one of the treatment measures. Although unaware of Frazis and Loewenstein (2003),
Mahajan (2006) makes the correct assumption over the instrument and treatment to
guarantee identification of the conditional mean function. When the treatment is in fact
exogenous, this coincides with the treatment effect. Hu (2008) derives related results
when the mis-classified discrete regressor may take on more than two values. Lewbel
(2007) provides an identification result for the same model as Mahajan (2006) under
different assumptions. In particular, the variable that plays the role of the “instrument”
need not satisfy the exclusion restriction provided that it does not interact with the
treatment and takes on at least three distinct values.

Much less is known about the case in which a binary, or discrete, treatment is not
only mis-measured but endogenous. Frazis and Loewenstein (2003) briefly discuss the
prospects for identification in this setting. Although they do not provide a formal proof
they argue, in the context of their parametric linear model, that the treatment effect is
unlikely to be identified unless one is willing to impose strong and somewhat unnatural
conditions.4 The first paper to provide a formal result for this case is Mahajan (2006).
He extends his main result to the case of an endogenous treatment, providing an
explicit proof of identification under the usual IV assumption in a model with additively
separable errors. As we show below, however, Mahajan’s proof is incorrect.

3Ignoring covariates, the observable moments in this case are the joint probability distribution of
the two binary treatment measures and the conditional means of the outcome variable given the two
measures. Although the system is highly non-linear, it can be manipulated to yield an explicit solution
for the treatment effect provided that the true treatment is exogenous.

4For example, one could consider using the results of Hausman et al. (1998), who study regressions
with a mis-classified, discrete outcome variable, as a first-stage in an IV setting. In principle, this
approach would fully identify the mis-classification error process. Using these results, however, requires
either an explicit, nonlinear, parametric model for the first stage, or an identification at infinity
argument.
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The results we derive here most closely relate to the setting considered in Mahajan
(2006) in that we study non-parametric identification of the effect of a binary, endoge-
nous treatment, using a discrete instrument. Unlike Mahajan (2006) we consider and
indeed show the necessity of using higher-moment information to identify the causal
effect of interest. Unlike Kreider et al. (2012), who partially identify the effects of food
stamps on health outcomes of children under weak measurement error assumptions,
we do not rely on auxiliary data. Unlike Shiu (2015), who considers a sample selection
model with a discrete, mis-measured, endogenous regressor, we do not rely on a para-
metric assumption about the form of the first-stage. Finally unlike Ura (2015), who
studies local average treatment effects under very general forms of mis-classification
but presents only partial identification results, we point identify an average treatment
effect under non-differential measurement error. Moreover, unlike the identification
strategies from the existing literature described above, we do not rely upon continuity
of the instrument, a large support condition, or restrictions on the relationship between
the true, unmeasured treatment and its observed surrogate, subject to the condition
that the measurement error process is non-differential.

3 Main Results

3.1 Notation and Basic Properties of the Model

Consider the model described in Equations 1.1–1.6. Our arguments below, like those of
Mahajan (2006) and Lewbel (2007), proceed by holding the exogenous covariates fixed
at some level xa. As such, there is no loss of generality from suppressing dependence
on x in our notation. It should be understood throughout that any conditioning
statements are evaluated at x = xa. To this end let c = h(0,xa) and define β =
h(1,xa)− h(0,xa). Using this notation, Equation 1.1 can be re-expressed as a simple
linear model, namely

y = βT ∗ + u (3.1)

where we define u = c + ε, an error term that need not be mean zero. We maintain
throughout that β 6= 0. If β = 0 then there is no meaningful sense in which there is
“mis-classification” since T ∗ is irrelevant for y. Because the probability limit of the
usual Wald IV estimator in this model is proportional to β, as we will discuss below,
this condition can be directly assessed from the data.
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z = 1 z = 2 . . . z = K

T = 0 ȳ01
p01

ȳ02
p02

. . . ȳ0K

p0K

T = 1 ȳ11
p11

ȳ12
p12

. . . ȳ1K

p1K

Table 1: Observables, using the shorthand p0k = qk(1− pk) and p1k = qkpk.

From the perspective of non-parametric identification, the observables in this prob-
lem are the conditional distribution of y given (T, z), the conditional probabilities of T
given z, and the marginal probabilities of z. For now, following the existing literature,
we will restrict attention to the conditional mean of y. Below we consider using higher
moments of y. Let ȳt,k denote E[y|T = t, z = zk], let pk denote P(T = 1|z = zk) and
let qk denote P(z = zk). Table 1 depicts the observable first moments for this problem.

The observed cell means ȳtk depend on a number of unobservable parameters which
we now define. Let m∗tk denote the conditional mean of u given T ∗ = t and z = zk,
E[u|T ∗ = t, z = zk], and let p∗k denote P(T ∗ = 1|z = zk). These quantities are depicted
in Table 2. By the Law of Total Probability and the definitions of pk and p∗k,

pk = P(T = 1|z = zk, T
∗ = 0)(1− p∗k) + P(T = 1|z = zk, T

∗ = 1)p∗k
= α0(1− p∗k) + (1− α1)p∗k

since the misclassification probabilities do not depend on z by Equations 1.4–1.5. Re-
arranging,

p∗k = pk − α0

1− α0 − α1
, 1− p∗k = 1− pk − α1

1− α0 − α1
. (3.2)

Equation 3.2 implies that p∗k is observable given knowledge of α0 and α1, since pk is
observable. Note that for these equations to be meaningful, we require that α0 + α1 6=
1. Indeed, the existing literature (Black et al., 2000; Frazis and Loewenstein, 2003;
Kane et al., 1999; Lewbel, 2007; Mahajan, 2006) imposes the stronger condition that
α0 + α1 < 1, namely that the measurement error is not so severe that 1 − T is a
better predictor of T ∗ than T is, and vice-versa. In the absence of this assumption
the treatment effect would only be identified up to sign. Our identification result,
presented below, will require that α0 + α1 < 1 whereas our partial identification result
will not.

A key assumption below will be the conditional mean independence of the error

8



z = 1 z = 2 . . . z = K

T ∗ = 0 m∗01
p∗01

m∗02
p∗02

. . . m∗0K

p∗0K

T ∗ = 1 m∗11
p∗11

m∗12
p∗12

. . . m∗1K

p∗1K

Table 2: Unobservables, using the shorthand p∗0k = qk(1− p∗k) and p∗1k = qkp
∗
k.

term and instrument, in other words E [ε|z] = 0. Since we have defined u = c+ ε, this
assumption can be expressed in terms of m∗tk as

(1− p∗k)m∗0k + p∗km
∗
1k = c (3.3)

for all k = 1, . . . , K. This restriction imposes that a particular weighted sum over the
rows of a given column of Table 2 takes the same value across columns.

3.2 Mahajan’s Approach

Here we show that Mahajan’s proof of identification for an endogenous treatment is
incorrect. The problem is subtle so we give his argument in full detail. We continue to
supress dependence on the exogenous covariates x.

The first step of Mahajan’s argument is to show that if one could recover the
conditional mean function of y given T ∗, then a valid and relevant binary instrument
would suffice to identify the treatment effect.

Assumption 1 (Mahajan A2). Suppose that y = c+ βT ∗ + ε where

(i) E[ε|z] = 0

(ii) P(T ∗ = 1|zk) 6= P(T ∗ = 1|z`) for all k 6= `

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1

(iv) α0 + α1 6= 1

(v) β 6= 0

Lemma 1 (Mahajan A2). Under Assumption 1, knowledge of the mis-classification
error rates α0, α1 suffices to identify β.
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In his Theorem 1, Mahajan (2006) proves that α0, α1 can in fact be identified under
the following assumptions.5

Assumption 2 (Mahajan A1). Define ν = y−E[y|T ∗] so that by construction we have
E[ν|T ∗] = 0. Assume that

(i) E[ν|T ∗, T, z] = 0.6

(ii) P(T ∗ = 1|zk) 6= P(T ∗ = 1|z`) for all k 6= `

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1

(iv) α0 + α1 < 1

(v) E[y|T ∗ = 0] 6= E[y|T ∗ = 1]

Lemma 2 (Mahajan Theorem 1). Under Assumptions 2, the error rates α0, α1 are
identified as is the conditional mean function E[y|T ∗].

Notice that the identification of the error rates in Lemma 2 does not depend on
the interpretation of the conditional mean function E[y|T ∗]. If T ∗ is an exogenous
treatment, the conditional mean coincides with the treatment effect; if it is endogenous,
this is not the case. Either way, the meaning of α0, α1 is unchanged: these parameters
simply characterize the mis-classification process. Based on this observation, Mahajan
(2006) claims that he can rely on Lemma 2 to identify α0, α1 and thus the causal effect
β when the treatment is endogenous via Lemma 1. To do this, he must build a bridge
between Assumption 1 and Assumption 2 that allows T ∗ to be endogenous. Mahajan
(2006) does this by imposing one additional assumption: Equation 11 in his paper.

Assumption 3 (Mahajan Equation 11). Let y = c + βT ∗ + ε where E[ε|T ∗] may not
be zero and suppose that

E[ε|T ∗, T, z] = E[ε|T ∗].

Lemma 3. Suppose that y = c+ βT ∗ + ε where E[ε|z] = 0 and define the unobserved
projection error ν = y − E[y|T ∗]. Then Assumption 3 implies that E[ν|T ∗, T, z] = 0,
which is Assumption 2(i).

5Technically, one additional assumption is required, namely that the conditional mean of y given
T ∗ and any covariates would be identified if T ∗ were observed.

6This is Mahajan’s Equation (I).
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To summarize, Mahajan’s claim is equivalent to the proposition that under As-
sumptions 1(i), 2(ii)–(v), and 3, β is identified even if T ∗ is endogenous. although
Lemmas 1, 2 and 3 are all correct, Mahajan’s claim is not.7 While Assumption 3 does
guarantee that Assumption 2(i) holds, when combined with Assumption 1(i) it also
implies that 2(ii) fails if T ∗ is endogenous. The failure of Assumption 2(ii) in turn
leads to a division by zero in the solution to the linear system following Mahajan’s
displayed Equation 26: the system no longer has a unique solution so identification
fails.8

Proposition 1 (Lack of a First Stage). Suppose that Assumptions 1(i) and 3 hold and
E[ε|T ∗] 6= 0. Then P(T ∗ = 1|z1) = P(T ∗ = 1|z2), violating Assumption 2(ii).

To understand the economic intuition behind Proposition 1, consider a simple ex-
ample in which we randomize the offer of a job training program to a sample of workers
to study the impact on future earnings. In this context z indicates whether a particular
individual is offered job training by the experimenter while T ∗ indicates whether she
actually obtains job training from any source, inside or outside of the experiment. We
observe not T ∗ but a self-report T that is measured with error. In this example u

contains all of the unobservable factors that determine an individual’s wage.
Assumption 3 allows for endogenous treatment receipt: E[u|T ∗ = 1] may be different

from E[u|T ∗ = 0]. We might expect, for example, that individuals who obtain job
training are more motivated than those who do not, and hence earn higher wages on
average. However, Assumption 3 imposes that E [u|T ∗ = t, z1] = E [u|T ∗ = t, z2] for
t = 0, 1. This has two implications. First, it means that, among those who do not
obtain job training, the average value of u is the same for those who were offered
training and those who were not. Second, it means that, among those who did obtain
job training, the average value of u is the same for those who were offered training and
those who were not. In other words, Assumption 3 requires that there is no selection on
unobservables. This is exactly the opposite of what we would expect in the job training

7Our Lemma 3 does not in fact appear in Mahajan (2006), but it is an implicit step in his proof
in Appendix A2.

8Notice that the root of the problem is the attempt to use one instrument to solve both the
measurement error and endogeneity problems. In a setting where one had a second mis-measured
surrogate for T ∗ in addition to an instrument that is conditionally mean independent of ε one could
use the second surrogate as an instrument for the first to estimate α0 and α1 via Lemma 1 and then use
the additional instrumental variable to estimate β/(1− α0 − α1) via the familiar Wald IV estimator.
This is effectively the approach used by Battistin et al. (2014) to evaluate the returns to schooling in
a setting with multiple misreported measures of educational qualifications.
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setting. For example, individuals who are offered job training but refuse it, are likely
to be very different from those who are not offered training and fail to obtain it from
an outside source. And herein lies the problem: Assumption 3 simultaneously allows
endogeneity and rules out selection. Given that the offer of job training is randomly
assigned, and hence a valid instrument, the only way to avoid a contradiction is if there
is no first stage: the fraction of individuals who take up job training cannot depend on
the offer of training.

3.3 Lack of Identification From Conditional Means

We have seen that Mahajan (2006)’s approach based on a binary instrument cannot
identify β when the treatment is endogenous: Assumption 3 in fact implies that the
instrument is irrelevant. We now show that, regardless of how many values the instru-
ment takes on, conditional mean information is insufficient for identification.

To begin, consider the model in Equation 3.1 without any restrictions on the m∗tk,
that is without imposing the IV restriction given in Equation 3.3. In this fully general
case, the 2K + 3 unknown parameters are β, α0, α1 and the conditional means of u,
namely m∗tk. In contrast, there are only 2K available moment conditions.

Lemma 4. Suppose that E [ε|T ∗, T, z] = E [ε|T ∗, z]. Then, under Assumption 1 (ii)–
(iv),

ŷ0k = α1(pk − α0)(β +m∗1k) + (1− α0)(1− pk − α1)m∗0k

1− α0 − α1
(3.4)

ŷ1k = (1− α1)(pk − α0)(β +m∗1k) + α0(1− pk − α1)m∗0k

1− α0 − α1
(3.5)

where ŷ0k = (1− pk)ȳ0k and ŷ1k = pkȳ1k.

Notice that the observable “weighted” cell mean ŷtk defined in the preceding lemma
depends on both m∗tk and m∗1−t,k since the cell in which T = t from Table 1 is in fact a
mixture of both the cells T ∗ = 0 and T ∗ = 1 from Table 2, for a particular column k.
Clearly we have fewer equations than unknowns. What additional restrictions could we
consider imposing on the system? In a very interesting paper, Lewbel (2007) proposes
using a three-valued “instrument” that does not satisfy the exclusion restriction. By
assuming instead that there is no interaction between the instrument and the treat-
ment, he is able to prove identification of the treatment effect. Using our notation
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it is easy to see why Lewbel (2007) requires a three-valued instrument. His moment
conditions are equivalent to Equations 3.4 and 3.5 with the additional restriction that
m∗0k = m∗1k for all k = 1, . . . , K. This leaves the number of equations unchanged at
2K, but reduces the number of unknowns to K + 3. The smallest K for which K + 3
is at least as large as 2K is 3.9

Unlike Lewbel (2007) we, along with Mahajan (2006) and others, assume that
E[ε|z] = 0 so that Equation 3.3 holds.

Corollary 1. Suppose that E [ε|T ∗, T, z] = E [ε|T ∗, z]. Then, under Assumption 1,

ŷ0k = α1(pk − α0)
(

β

1− α0 − α1

)
+ (1− α0)c− (pk − α0)m∗1k (3.6)

ŷ1k = (1− α1)(pk − α0)
(

β

1− α0 − α1

)
+ α0c+ (pk − α0)m∗1k (3.7)

where ŷ0k = (1− pk)ȳ0k and ŷ1k = pkȳ1k.

Equations 3.6 and 3.7 also make it clear why the IV estimator is inconsistent in
the face of non-differential measurement error, and that this inconsistency does not
depend on the endogeneity of the treatment, as noted by Frazis and Loewenstein (2003).
Adding together Equations 3.6 and 3.7 yields

ŷ0k + ŷ1k = c+ (pk − α0)
(

β

1− α0 − α1

)

completely eliminating the m∗1k from the system. Taking the difference of the pre-
ceding expression evaluated at two different values of the instrument, zk and z`, and
rearranging

W = (ŷ0k + ŷ1k)− (ŷ0` + ŷ1`)
pk − p`

= β

1− α0 − α1
(3.8)

which is the well-known Wald IV estimator, since ŷ0k + ŷ1k = E[y|z = zk].
Imposing E[ε|z] = 0 replaces the K unknown parameters {m∗0k}

K
k=1 in Equations

3.4–3.5 with a single parameter c, leaving us with the same 2K equations but only
K + 4 unknowns. When K = 2 (a binary instrument) we have 4 equations and

9The context considered by Lewbel (2007) is slightly different from the one we pursue here, in
that his “instrument” is more like a covariate: it is allowed to have a direct effect on the outcome
of interest. For this reason, Lewbel (2007) cannot use the exogeneity of the treatment to obtain
identification based on a two-valued instrument.
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6 unknowns. So how can one identify β in this case? The literature has imposed
additional assumptions which, using our notation, can once again be mapped into
restrictions on the m∗tk. Black et al. (2000), Kane et al. (1999), and Mahajan (2006)
make a joint exogeneity assumption on (T ∗, z), namely E[ε|T ∗, z] = 0. Notice that this
is strictly stronger than assuming that the instrument is valid and the treatment is
exogenous. In our notation, this joint exogeneity assumption is equivalent to imposing
m∗tk = c for all t, k. This reduces the parameter count to 4 regardless of the value of K.
Thus, when the instrument is binary, we have exactly as many equations as unknowns.
The arguments in Black et al. (2000), Kane et al. (1999), and Mahajan (2006) are
all equivalent to solving Equations 3.6 and 3.7 for β under the added restriction that
m∗1k = c, establishing identification for this case. Frazis and Loewenstein (2003) use
the same argument in a linear model with a potentially continuous instrument, but
impose only the weaker conditions that the treatment is exogenous and the instrument
is valid. Nevertheless, a crucial step in their derivation implicitly assumes the stronger
joint exogeneity assumption used by Black et al. (2000), Kane et al. (1999) and Mahajan
(2006). Without this assumption, their proof does not in fact go through.

If one wishes to allow for an endogenous treatment, the joint exogeneity assumption
m∗tk = c is unusable and we have 2K equations in K + 4 unknowns. Based on the
identification arguments described above, there would seem to be two possible avenues
for identification of the treatment effect when a valid instrument is available. One
idea would be to impose alternative conditions on the m∗tk that are compatible with
an endogenous treatment. If z is binary, two additional restrictions would suffice to
equate the counts of moments and unknowns. As we showed in Proposition 1, however,
this approach fails. Another idea, inspired by Lewbel (2007), would be to rely on an
instrument that takes on more than two values. Following this approach would suggest
a 4-valued instrument, the smallest value of K for which 2K = K + 4. Unfortunately
this approach fails as well, as we now show.

Theorem 1 (Lack of Identification). Suppose that Assumption 1 holds and additionally
that E[ε|T ∗, T, z] = E[ε|T ∗, z] (non-differential measurement error). Then regardless
of how many values z takes on, generically β is unidentified based on the observables
contained in Table 1.

The preceding argument establishes lack of identification by deriving a parametric
relationship between β and α0, α1, {m∗1k}K

k=1. So long as we adjust the other parameters
according to this relationship, we are free to vary β while leaving all observable moments
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unchanged. This holds regardless of the number of values, K, that the instrument takes
on.

3.4 Identification Based on Higher Moments

Having shown that the moment conditions from Table 1 do not identify β regardless of
the value ofK, we now consider exploiting the information contained in higher moments
of y. When z is not merely mean-independent but in fact statistically independent
of ε, as in a randomized controlled trial or a true natural experiment, the following
assumptions hold automatically.

Assumption 4 (Second Moment Independence). E[ε2|z] = E[ε2]

Assumption 5 (Third Moment Independence). E[ε3|z] = E[ε3]

Theorem 2. Under Assumption 4 and the conditions of Theorem 1 the difference of
mis-classification rates, (α1 − α0) is identified provided that z takes on at least two
values.

The preceding result can be used in several ways. One possibility is to test for the
presence of mis-classification error. If the treatment is measured without error, then α0

must equal α1. By examining the identified quantitiesR andW , one could possibly dis-
cover that this requirement it violated.10 Moreover, in some settings mis-classification
may be one-sided. In a smoking and birthweight example, it seems unlikely that moth-
ers who did not smoke during pregnancy would falsely claim to have smoked. If either
of α0, α1 is known, Theorem 2 point identifies the unknown error rate and hence β,
using the fact that β = W(1 − α0 − α1). When neither of the error rates is known
a priori, the same basic idea can be used to construct bounds for β. We now show
that by augmenting Theorem 2 with information on conditional third moments, we can
point identify β.

Theorem 3. Under Assumptions 4-5 and the conditions of Theorem 1, the mis-
classification rates α0 and α1 and the treatment effect β are identified provided that
α0 + α1 < 1 and z takes on at least two values.

Note that, unlike Theorem 2, Theorem 3 requires the assumption that α0 +α1 < 1.
Without this assumption, we identify β only up to sign.

10Note that Theorem 2 requires α0+α1 6= 1, since the Wald estimator would otherwise be undefined.
Accordingly, we cannot test for measurement error in the non-generic case α0 = α1 = 1/2.
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3.5 Estimation

We now briefly describe how the identification results from above can be applied in
practice. In our arguments above we suppressed dependence on the covariates x. We
now make this dependence explicit to illustrate how one can estimate the ATE τ(x)
and the mis-classification rates α0(x) and α1(x) non-parametrically as a function of
x. Our proofs, which appear below in the appendix, provide closed-form expressions
for each of these quantities in terms of three objects: W(x), defined in Equation 3.8,
R(x), defined in Equation A.11 and S(x), defined in Equation A.20. Provided that
pk(x) 6= p`(x) for all k 6= `, which follows from Assumption 2(ii) by Equation 3.2,
α0(x), α1(x) and τ(x) are smooth functions of (W(x),R(x),S(x)). Under the same
condition, these in turn are smooth functions of the underlying conditional expecta-
tion functions E [T |z,x] ,E [y|z,x], E [y2|z,x], E [y3|z,x], E [yT |z,x], and E [y2T |z,x].
One could employ any number of existing nonparametric techniques to estimate these
conditional expectation functions, at which point one is left with a standard, two-step
method of moments estimation problem.11

4 Conclusion

This paper has presented the first point identification result for the effect of an en-
dogenous, binary, mis-measured treatment using a discrete instrument. While our re-
sults require us to impose stronger conditions on the instrument, these conditions are
satisfied in a number of empirically relevant examples, for example randomized con-
trolled trials and true natural experiments. We obtain identification by augmenting
conditional first moments with additional information contained in second and third
moments and further derive a partial identification result based on first and second
moments alone. In addition, and contrary to an incorrect previous result in Maha-
jan (2006), we showed that appealing to higher moments is necessary if one wishes to
obtain identification: first moment information alone cannot identify the causal effect
of an endogenous, mis-classified binary treatment regardless of the number of values
the instrument may take. We have focused here on establishing identification and par-
tial identification results using a particular set of moment conditions. More generally
one could consider the use of additional moment conditions based on an independence

11For more details of the implementation of such a procedure see, e.g., Mahajan (2006) Section 4
or Lewbel (2007) Section 4.
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assumption for the instrument. From the standpoint of estimation, rather than iden-
tification, the use of such moments could provide efficiency gains. Another possible
avenue for future research would be to extend our framework to the fuzzy regression
discontinuity setting.

Appendix A Proofs

Proof of Lemma 1. Since z is a valid instrument that does not influence the mis-
classification probabilities

E[y|zk] = c+ βE[T ∗|zk] + E[ε|zk] = c+ βp∗k = c+ β
(

pk − α0

1− α0 − α1

)

by Equation 3.2. Since pk is observed, and z takes on two values, this is a system of
two linear equations in c, β provided that α0, α1 are known. A unique solution exists
if and only if p1 6= p2.

Proof of Lemma 2. See Mahajan (2006) Appendix A.1.

Proof of Lemma 3. Taking conditional expectations of the causal model,

E[y|T ∗] = c+ βT ∗ + E[ε|T ∗]

which implies that

ν = y − c− βT ∗ − E[ε|T ∗] = ε− E[ε|T ∗].

Now, taking conditional expectations of both sides given T ∗, T, z, we see that

E[ν|T ∗, T, z] = E[ε|T ∗, T, z]− E [E (ε|T ∗) |T, T ∗, z]

= E[ε|T ∗, T, z]− E [ε|T ∗] = 0

by Assumption 3, since E[ε|T ∗] is (T ∗, T, z)–measurable.

Proof of Proposition 1. By the Law of Iterated Expectations,

E[ε|T ∗, z] = ET |T ∗,z [E (ε|T ∗, T, z)] = ET |T ∗,z [E (ε|T ∗)] = E [ε|T ∗] (A.1)
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where the second equality follows from Assumption 3 and the final equality comes from
the fact that E[ε|T ∗] is (T ∗, z)–measurable. Using our notation from above let u = c+ε
and define m∗tk = E[u|T ∗ = t, z = zk]. Since c is a constant, by Equation A.1 we see
that m∗01 = m∗02 and m∗11 = m∗12. Now, by Assumption 1(i) we have E[ε|z] = 0 so that
E[u|z1] = E[u|z2] = c. Again using iterated expectations,

E [u|z1] = ET ∗|z1 [E (u|T ∗, z1)] = (1− p∗1)m∗01 + p∗1m
∗
11 = c

E [u|z2] = ET ∗|z2 [E (u|T ∗, z2)] = (1− p∗2)m∗02 + p∗2m
∗
12 = c

The preceding two equations, combined with m∗01 = m∗02 and m∗11 = m∗12 imply that
p∗1 = p∗2 unless m∗01 = m∗11 = m∗02 = m∗12 = c. But this four-way equality is ruled out
by the assumption that E[ε|T ∗] 6= 0.

Proof of Lemma 4. The result follows by combining Equation 3.2 with Bayes’ rule
and the Law of Iterated Expectations applied to Equation 3.1.

Proof of Corollary 1. Using Equation 3.2 and rearranging,

(1− pk − α1)m∗0k

1− α0 − α1
= c− (pk − α0)m1k∗

1− α0 − α1
.

The result follows by substituting into Equations 3.4–3.5 from Lemma 4.

Proof of Theorem 1. Recall from the discussion preceding Equation 3.8 that the
Wald estimatorW = β/(1−α0−α1) is identified in this model so long as K is at least
2. Rearranging, we find that:

α0 = (1− α1)− β/W

(pk − α0) = pk − (1− α1) + β/W

1− α0 = α1 + β/W

Substituting these into Equations 3.6 and 3.7 and summing the two, we find, after
some algebra, that

ŷ0k + ŷ1k +W(1− pk) = c+ β +Wα1.

Since the left-hand side of this expression depends only on observables and the identified
quantity W , this shows that the right-hand side is itself identified in this model. For
simplicity, we define Q = c + β +Wα1. Since W and Q are both identified, varying
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either necessarily changes the observables, so we must hold both of them constant.
We now show that Equations 3.6 and 3.7 can be expressed in terms of W and Q.
Conveniently, this eliminates α0 from the system. After some algebra,

ŷ0k = α1(Q−m∗1k) + β(c−m∗1k)/W + (1− pk) [m∗1k −Wα1] (A.2)

ŷ1k = (1− α1)Q+ β(m∗1k − c)/W − (1− pk) [m∗1k +W(1− α1)] (A.3)

Now, rearranging Equation A.3 we see that

Q− ŷ1k −W(1− pk) = α1(Q−m∗1k) + β(c−m∗1k)/W + (1− pk) [m∗1k −Wα1] (A.4)

Notice that the right-hand side of Equation A.4 is the same as that of Equation A.2
and that Q − ŷ1k −W(1 − pk) is precisely ŷ0k. In other words, given the constraint
that W and Q must be held fixed, we only have one equation for each value that the
instrument takes on. Finally, we can solve this equation for m∗1k as

m∗1k = W(ŷ0k − α1Q)− β(Q− β −Wα1) +W2(1− pk)α1

W(1− pk − α1)− β (A.5)

using the fact that c = Q − β −Wα1. Equation A.5 is a manifold parameterized by
(β, α1) that is unique to each value that the instrument takes on. Thus, by adjusting
{m∗1k}

K
k=1 according to Equation A.5 we are free to vary β while holding all observable

moments fixed.

Proof of Theorem 2. First define

µ∗k` = (pk − α0)m∗1k − (p` − α0)m∗k` (A.6)

∆y2 = E(y2|zk)− E(y2|z`) (A.7)

∆yT = E(yT |zk)− E(yT |z`) (A.8)

By iterated expectations it follows, after some algebra, that

∆y2 = βW(pk − p`) + 2Wµ∗k` (A.9)

∆yT = (1− α1)W(pk − p`) + µ∗k` (A.10)

Now, solving Equation A.10 for µ∗k`, substituting the result into Equation A.9 and
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rearranging,

R ≡ β − 2(1− α1)W = ∆y2 − 2W∆yT
W(pk − p`)

. (A.11)

SinceW is identified it follows that R is identified. Rearranging the preceding equality
and substituting β =W(1− α0 − α1) to eliminate β, we find that

α1 − α0 = 1 +R/W . (A.12)

Because both R and W are identified, it follows that the difference of error rates is
also identified.

Proof of Theorem 3. First define

v∗tk = E(u2|T ∗ = t, z = zk) (A.13)

λ∗k` = (pk − α0)v∗1k − (p` − α0)v∗1` (A.14)

∆y3 = E(y3|zk)− E(y3|z`) (A.15)

∆y2T = E(y2T |zk)− E(y2T |z`) (A.16)

where u, as above, is defined as ε + c. By iterated expectations it follows, after some
algebra, that

∆y3 = β2W(pk − p`) + 3βWµ∗k` + 3Wλ∗k` (A.17)

∆y2T = β(1− α1)W(pk − p`) + 2(1− α1)Wµ∗k` + λ∗k` (A.18)

where, as above, the identified quantityW equals β/(1−α0−α1) and µ∗k` is as defined
in Equation A.6. Now, substituting for λ∗k` in Equation A.17 using Equation A.18 and
rearranging, we find that

∆y3 − 3W∆y2T = βW(pk − p`) [β − 3W(1− α1)] + 3WRµ∗k` (A.19)

where R is as defined in Equation A.11. Now, using Equation A.10 to eliminate µ∗k`

from the preceding equation, we find after some algebra that

S ≡ β2 − 3W(1− α1)(β +R) =
∆y3 − 3W

[
∆y2T +R∆yT

]
W(pk − p`)

. (A.20)

Notice that S is identified. Finally, by eliminating β from the preceding expression
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using Equation A.11, we obtain a quadratic equation in (1− α1), namely

2W2(1− α1)2 + 2RW(1− α1) + (S −R2) = 0. (A.21)

Note that, since,W ,R and S are all identified, we can solve Equation A.21 for (1−α1).
The solutions are as follows

(1− α1) = 1
2

(
−R
W
± 1
W
√

3R2 − 2S
)

(A.22)

It can be shown that 3R2− 2S = [R+ 2W(1− α1)]2 so the quantity under the radical
is guaranteed to be positive, yielding two real solutions. One of these is (1 − α1).
Using Equation A.12 we can re-express Equation A.21 as a quadratic in α0. After
simplifying, we obtain a quadratic with identical coefficients, implying that the other
root of Equation A.21 identifies α0. Now, let rmax denote the larger of the two roots
of Equation A.21 and rmin the smaller. (By assumption α0 + α1 6= 1 which implies
rmax 6= rmin.) We claim that rmax = 1 − α1 and hence that rmin = α0. Suppose that
this were not the case. Then rmax = α0 and rmin = 1− α1 and accordingly

1− α0 − α1 = rmin − rmax < 0

which violates the assumption α0 + α1 < 1. Therefore α0 and α1 are identified and
multiplying the Wald estimator W by (1− α0 − α1) identifies β.
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