
Problem Set # 1

Econ 722

Spring 2018

Instructions: Answer each of the following. Questions 4 and 5 require numerical calcu-

lations. For these, please submit full source code, commented and cleanly formatted, along

with your answers. All solutions must be submitted electronically on canvas by 1:30pm on

Thursday, March 22nd. Late problem sets will not be accepted: it is much better to turn

in partial solutions rather than nothing at all. You may discuss these problems with your

classmates, but if you work together please list the names of the students with whom you

have collaborated at the top of your solutions.

1. Let Θ be a discrete set and π be a prior distribution that gives strictly positive probability

to each element of Θ. Show that if θ̂ is a Bayes rule with respect to π, it is admissible.

2. Derive the KL divergence from a N(µ0, σ
2
0) distribution to a N(µ1, σ

2
1) distribution.

3. Suppose we observe a random sample {(xt, yt)}Tt=1 from some population and decide to

predict y from x using the following linear model:

yt = x′
tβ + εt

Let β̂ denote the ordinary least squares estimator of β based on {(xt, yt)}Tt=1. Now sup-

pose that we observe a second random sample {(x̃t, ỹt)}Tt=1 from the sample population

that is independent of the first. Show that

E

[
1

T

T∑
t=1

(yt − x′
tβ̂)

2

]
≤ E

[
1

T

T∑
t=1

(ỹt − x̃′
tβ̂)

2

]

In other words, show that the in-sample squared prediction error is an overly optimistic

estimator of the out-of-sample squared prediction error.
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4. Let X ∼ N(θ, 1) where θ ∈ Θ = [−m,m] m > 0. Further define:

π(θ) =


1/2, θ = −m

0, −m < θ < m

1/2, θ = m

(a) Show that θ̂(X) = m tanh(mX) is the Bayes rule with respect to π under squared

error loss. Recall that tanh(z) = (ez − e−z)/(ez + e−z).

(b) Write code to calculate the risk function R(θ, θ̂) and Bayes risk r(π, θ̂) numerically.

I suggest numerical integration rather than a simulation-based approximation.

(c) For each value of m ∈ {0.5, 0.75, 1, 1.25} plot the following:

(i) X vs. θ̂(X) for X ∈ [−3, 3], with the 45-degree line indicated in red.

(ii) θ vs. R(θ, θ̂) for θ ∈ [−m,m] with r(π, θ̂) indicated as a red horizontal line.

(d) Explain your findings from part (c) above. How does θ̂ compare to the MLE? For

which, if any, of the values of m ∈ {0.5, 0.75, 1, 1.25} is θ̂ minimax?

5. Let X ∼ N(θ, I) where θ is a p-vector for p ≥ 3 and I is the (p× p) identity matrix. For

this problem, we showed in class that the maximum likelihood estimator for θ, θ̂ = X is

inadmissible, as it is dominated by the James-Stein estimator:

θ̂JS = θ̂

(
1− p− 2

θ̂′θ̂

)
I also argued, without proof, that the James-Stein estimator is itself inadmissible, as it

is dominated by the so-called “positive-part” James-Stein estimator, namely

θ̃JS = θ̂

[
max

{
1− p− 2

θ̂′θ̂
, 0

}]
This estimator takes its name from the fact that, unlike the plain-vanilla James-Stein

estimator, it can never shrink “past” zero and hence cannot have a different sign than

the MLE. Design and carry out a simulation experiment comparing the risk of θ̂, θ̂JS,

and θ̃JS under squared error loss. Your results should be based on 10,000 simulation

replications over a range of values for p ≥ 3 and different configurations of the true mean

vector θ. Write a brief summary of your results, accompanied by tables and or figures,

as needed.
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