
Lab #7 - More on Regression in R
Econ 224

September 18th, 2018

Robust Standard Errors

Your reading assignment from Chapter 3 of ISL briefly discussed two ways that the standard regression
inference formulas built into R can go wrong: (1) non-constant error variance, and (2) correlation between
regression errors. Today we’ll briefly look at the first of these problems and how to correct for it.

Consider the simple linear regression yi = β0 + β1xi + εi. If the variance of εi is unrelated to the value of
the predictor xi, we say that the regression errors are homoskedastic. This is just a fancy Greek work for
constant variance. If instead, the variance of εi depends on the value of xi, we say that the regression errors
are heteroskedastic. This is just a fancy Greek word for non-constant variance. Heteroskedasticity does not
invalidate our least squares estimates of β0 and β1, but it does invalidate the formulas used by lm to calculate
standard errors and p-values.

Let’s look at a simple simulation example:

set.seed(4321)
n <- 100
x <- runif(n)
e1 <- rnorm(n, mean = 0, sd = sqrt(2 * x))
e2 <- rnorm(n, mean = 0, sd = 1)
intercept <- 0.2
slope <- 0.9
y1 <- intercept + slope * x + e1
y2 <- intercept + slope * x + e2
library(tidyverse)
mydat <- tibble(x, y1, y2)
rm(x, y1, y2)

From the simulation code, we see that the errors e1 are heteroskedastic since their standard deviation is a
function of x. In contrast, the errors e2 are homoskedastic since their standard deviation is not a function of
x. This means that a regression of y1 on x will exhibit heteroskedasticity but a regression of y2 on x will not.
We can see this from a plot of the data:

library(ggplot2)
library(gridExtra)

heterosked_plot <- ggplot(mydat, aes(x, y1)) +
geom_smooth(method = 'lm') +
geom_point() +
ggtitle('Heteroskedastic')

homosked_plot <- ggplot(mydat, aes(x, y2)) +
geom_smooth(method = 'lm') +
geom_point() +
ggtitle('Homoskedastic')

grid.arrange(heterosked_plot, homosked_plot, ncol = 2)

1

−2

0

2

4

0.00 0.25 0.50 0.75 1.00

x

y1
Heteroskedastic

−2

0

2

0.00 0.25 0.50 0.75 1.00

x
y2

Homoskedastic

The values of y1 “fan out” around the regression line since e1 becomes more variable as x increases. In
contrast, the values of y2 do not show such a pattern: the variability in e2 is unrelated to x.

lm_robust

We’ll use the function lm_robust in the package estimatr to calculate the appropriate standard errors for a
regression with heteroskedasticity. Make sure to install this package before proceeding. For more information
on estimatr, see the help files and https://declaredesign.org/r/estimatr/. Standard errors that account
for heteroskedasticity are often called robust because they do not depend on the fairly strong assumption
of constant error variance. The function lm_robust is nearly identical to lm but it allows us to specify
a new argument se_type to indicate what kinds of standard errors we want to use. If we set se_type =
'classical' we’ll get exactly the same standard errors as if we had used lm, namely standard errors that
assume homoskedasticity:

library(estimatr)
reg_classical <- lm_robust(y1 ~ x, mydat, se_type = 'classical')
summary(reg_classical)

Call:
lm_robust(formula = y1 ~ x, data = mydat, se_type = "classical")

Standard error type: classical

Coefficients:
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 0.3418 0.2240 1.526 0.13027 -0.10273 0.7863 98
x 0.7766 0.3785 2.052 0.04286 0.02548 1.5277 98

Multiple R-squared: 0.04119 , Adjusted R-squared: 0.0314
F-statistic: 4.21 on 1 and 98 DF, p-value: 0.04286

2

https://declaredesign.org/r/estimatr/

If we set se_type = 'stata' we’ll get heteroskedasticity-robust standard errors identical to those calculated
by the command reg, robust in Stata. Since many economists still use Stata, this is handy for being able
to replicate their results. Notice that the robust standard errors are larger than the classical ones. This is
fairly typical in applications:

reg_robust <- lm_robust(y1 ~ x, mydat, se_type = 'stata')
summary(reg_robust)

Call:
lm_robust(formula = y1 ~ x, data = mydat, se_type = "stata")

Standard error type: HC1

Coefficients:
Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 0.3418 0.1739 1.966 0.05215 -0.003241 0.6868 98
x 0.7766 0.4068 1.909 0.05919 -0.030707 1.5839 98

Multiple R-squared: 0.04119 , Adjusted R-squared: 0.0314
F-statistic: 3.644 on 1 and 98 DF, p-value: 0.05919

You should go back through the two preceding sets of regression results carefully and verify that the estimates
are identical in each case. Because the standard errors are different, however, so are the test statistics and
p-values. For example, x is significant at the 5% level when we use classical standard errors, but not when we
use heteroskedasticity-robust standard errors. In general, failing to account for heteroskedasticity leads us to
understate the true sampling uncertainty in our regression estimates.

F-tests with lm_robust

Heteroskedasticity doesn’t just invalidate inference based on the t-tests from the lm summary output; it
also invalidates any F-tests that we construct by passing these results to linearHypothesis. Fortunately,
lm_robust makes it easy to fix this problem: as long as we fit our regression using lm_robust in place of
lm and choose robust standard errors, when we pass the regression object to linearHypothesis, it will
automatically make the appropriate adjustments. For example, notice that these do not give the same results:

library(car)
linearHypothesis(reg_classical, 'x = 0')

Linear hypothesis test

Hypothesis:
x = 0

Model 1: restricted model
Model 2: y1 ~ x

Res.Df Df Chisq Pr(>Chisq)
1 99
2 98 1 4.2098 0.04019 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3

linearHypothesis(reg_robust, 'x = 0')

Linear hypothesis test

Hypothesis:
x = 0

Model 1: restricted model
Model 2: y1 ~ x

Res.Df Df Chisq Pr(>Chisq)
1 99
2 98 1 3.6442 0.05626 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

That is because the first one uses classical standard errors while the second uses heteroskedasticity-robust
standard errors.

Exercise #1

(a) Fit a regression predicting colgpa from hsize, hsizeˆ2, hsperc, sat, female and athlete based on
the college_gpa.csv dataset from Problem Set #3. (You can download the data from the course
website.

(b) Compare the classical and robust standard errors for each predictor in this model. Are they similar or
very different?

(c) Test the null hypothesis that hsperc, sat, female, and athlete provide no additional predictive
information after controlling for hsize and hsizeˆ2. Carry out the test two ways: first using classical
and then using robust standard errors. How do the results differ?

Solution to Exercise #1

In this particular example, robust versus classical standard errors give very similar results:

gpa <- read_csv('http://ditraglia.com/econ224/college_gpa.csv')
mymodel <- colgpa ~ hsize + I(hsize^2) + hsperc + sat + female + athlete
classical <- lm_robust(mymodel, se_type = 'classical', gpa)
robust <- lm_robust(mymodel, se_type = 'stata', gpa)
SE_classical <- summary(classical)$coefficients[,2]
SE_robust <- summary(robust)$coefficients[,2]
round(cbind(coef(classical), SE_classical, SE_robust), 4)

SE_classical SE_robust
(Intercept) 1.2414 0.0795 0.0799
hsize -0.0569 0.0164 0.0169
I(hsize^2) 0.0047 0.0022 0.0023
hsperc -0.0132 0.0006 0.0006
sat 0.0016 0.0001 0.0001
female 0.1549 0.0180 0.0179
athlete 0.1693 0.0423 0.0370

4

http://ditraglia.com/econ224/college_gpa.csv
http://ditraglia.com/econ224/college_gpa.csv

myrestriction <- c('hsperc = 0', 'sat = 0', 'female = 0', 'athlete = 0')
linearHypothesis(classical, myrestriction)

Linear hypothesis test

Hypothesis:
hsperc = 0
sat = 0
female = 0
athlete = 0

Model 1: restricted model
Model 2: colgpa ~ hsize + I(hsize^2) + hsperc + sat + female + athlete

Res.Df Df Chisq Pr(>Chisq)
1 4134
2 4130 4 1678.9 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(robust, myrestriction)

Linear hypothesis test

Hypothesis:
hsperc = 0
sat = 0
female = 0
athlete = 0

Model 1: restricted model
Model 2: colgpa ~ hsize + I(hsize^2) + hsperc + sat + female + athlete

Res.Df Df Chisq Pr(>Chisq)
1 4134
2 4130 4 1782.6 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Publication-quality Tables

A crucial part of communicating our results in a statistical analysis creating tables that are clear, and easy to
read. In this section we’ll look at two packages that produce publication-quality tables like those that appear
in academic journals: stargazer and texreg. Make sure to install these packages before proceeding.

A Table of Summary Statistics with stargazer

We’ll start by learning how to make a simple table of summary statistics. There are a few quirks to be aware
of here, so please read this paragraph carefully! The first thing you should know is that stargazer
can only construct summary statistics for a dataframe. For almost all intents and purposes a tibble is a

5

dataframe, but stargazer is an exception to this rule. If you have a tibble called, say tbl, then you will
need to pass it into stargazer wrapped inside as.data.frame(). The second thing you should know is that
using stargazer with knitr will not work unless you set the chunk option results = 'asis'. The third
thing you need to know is that stargazer requires you to explicitly specify the kind of output that you want
it to produce. If you will be knitting a pdf you’ll need to set type = 'latex'. If you will be knitting an
html document, you’ll need to set type = 'html'. Finally, if you just want to display your table without
knitting it, e.g. as a preview in RStudio, you’ll need to set type = 'text'. Here is an example of the code
that I ran to generate a pdf version of this document:

library(stargazer)
stargazer(mtcars, type = 'latex')

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Sun, Sep 09, 2018 - 03:38:24 PM

Table 1:

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
mpg 32 20.091 6.027 10 15.4 22.8 34
cyl 32 6.188 1.786 4 4 8 8
disp 32 230.722 123.939 71 120.8 326 472
hp 32 146.688 68.563 52 96.5 180 335
drat 32 3.597 0.535 2.760 3.080 3.920 4.930
wt 32 3.217 0.978 1.513 2.581 3.610 5.424
qsec 32 17.849 1.787 14.500 16.892 18.900 22.900
vs 32 0.438 0.504 0 0 1 1
am 32 0.406 0.499 0 0 1 1
gear 32 3.688 0.738 3 3 4 5
carb 32 2.812 1.615 1 2 4 8

set type to 'html' if knitting to html and 'text' if previewing in RStudio

The stargazer command provides dozens of options for customizing the appearance of the output it generates.
Here’s a nicer version of the preceding table that uses some of these options:

mylabels <- c('Miles/gallon',
'No. of cylinders',
'Displacement (cubic inches)',
'Horsepower',
'Rear axle ratio',
'Weight (1000lb)',
'1/4 Mile Time',
'V/S',
'Manual Transmission? (1 = Yes)',
'No. forward gears',
'No. carburetors')

stargazer(mtcars,
type = 'latex',
title = 'Summary Statistics: Motor Trend Cars Dataset',
digits = 1,
header = FALSE,
covariate.labels = mylabels)

6

Table 2: Summary Statistics: Motor Trend Cars Dataset

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Miles/gallon 32 20.1 6.0 10 15.4 22.8 34
No. of cylinders 32 6.2 1.8 4 4 8 8
Displacement (cubic inches) 32 230.7 123.9 71 120.8 326 472
Horsepower 32 146.7 68.6 52 96.5 180 335
Rear axle ratio 32 3.6 0.5 2.8 3.1 3.9 4.9
Weight (1000lb) 32 3.2 1.0 1.5 2.6 3.6 5.4
1/4 Mile Time 32 17.8 1.8 14.5 16.9 18.9 22.9
V/S 32 0.4 0.5 0 0 1 1
Manual Transmission? (1 = Yes) 32 0.4 0.5 0 0 1 1
No. forward gears 32 3.7 0.7 3 3 4 5
No. carburetors 32 2.8 1.6 1 2 4 8

set type to 'html' if knitting to html and 'text' if previewing in RStudio

Notice how I reduced the number of significant figures presented in the table, added a caption and meaningful
variable names. We can also customize which summary statistics are reported using the options summary.stat
and omit.summary.stat. For example, if we only wanted to show the mean, standard deviation, and quartiles
of the data, we could use the following:

stargazer(mtcars,
type = 'latex',
title = 'Summary Statistics: Motor Trend Cars Dataset',
digits = 1,
header = FALSE,
covariate.labels = mylabels,
summary.stat = c('mean',

'sd',
'p25',
'median',
'p75'))

Table 3: Summary Statistics: Motor Trend Cars Dataset

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)
Miles/gallon 20.1 6.0 15.4 19.2 22.8
No. of cylinders 6.2 1.8 4 6 8
Displacement (cubic inches) 230.7 123.9 120.8 196.3 326
Horsepower 146.7 68.6 96.5 123 180
Rear axle ratio 3.6 0.5 3.1 3.7 3.9
Weight (1000lb) 3.2 1.0 2.6 3.3 3.6
1/4 Mile Time 17.8 1.8 16.9 17.7 18.9
V/S 0.4 0.5 0 0 1
Manual Transmission? (1 = Yes) 0.4 0.5 0 0 1
No. forward gears 3.7 0.7 3 4 4
No. carburetors 2.8 1.6 2 2 4

7

set type to 'html' if knitting to html and 'text' if previewing in RStudio

Exercise #2

Use stargazer to make a table of summary statistics for the college_gpa.csv dataset from Problem Set
#3. Add a title, use an appropriate number of digits, and provide meaningful labels for the variables.

Solution to Exercise #2

gpalabels <- c('Combined SAT Score',
'Total hours through Fall',
'College GPA (out of 4.0)',
'Athlete? (1 = Yes)',
'Ratio of SAT Verbal/Math',
'Size HS Grad. Class (100s)',
'Rank in HS Grad. Class',
'Percentile in HS Grad. Class',
'Female? (1 = Yes)',
'White? (1 = Yes)',
'Black? (1 = Yes)')

stargazer(as.data.frame(gpa), type = 'latex',
header = FALSE,
title = 'Summary Statistics: College GPA Dataset',
digits = 1,
summary.stat = c('mean', 'sd', 'p25', 'median', 'p75'),
covariate.labels = gpalabels)

Table 4: Summary Statistics: College GPA Dataset

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)
Combined SAT Score 1,030.3 139.4 940 1,030 1,120
Total hours through Fall 52.8 35.3 17 47 80
College GPA (out of 4.0) 2.7 0.7 2.2 2.7 3.1
Athlete? (1 = Yes) 0.05 0.2 0 0 0
Ratio of SAT Verbal/Math 0.9 0.1 0.8 0.9 1.0
Size HS Grad. Class (100s) 2.8 1.7 1.6 2.5 3.7
Rank in HS Grad. Class 52.8 64.7 11 30 70
Percentile in HS Grad. Class 19.2 16.6 6.4 14.6 27.7
Female? (1 = Yes) 0.4 0.5 0 0 1
White? (1 = Yes) 0.9 0.3 1 1 1
Black? (1 = Yes) 0.1 0.2 0 0 0

set type to 'html' if knitting to html and 'text' if previewing in RStudio

8

Regression Output with stargazer

As we have seen, when you pass a dataframe to stargazer, its default is to construct a table of summary
statistics. If you instead pass a regression object, it will make a regression table. For example: Run a bunch
of regressions using mtcars

reg1 <- lm(mpg ~ disp, mtcars)
stargazer(reg1, type = 'latex',

header = FALSE,
digits = 1,
title = 'Predicting Fuel Economy from Displacement')

Table 5: Predicting Fuel Economy from Displacement

Dependent variable:
mpg

disp −0.04∗∗∗

(0.005)

Constant 29.6∗∗∗

(1.2)

Observations 32
R2 0.7
Adjusted R2 0.7
Residual Std. Error 3.3 (df = 30)
F Statistic 76.5∗∗∗ (df = 1; 30)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

set type to 'html' if knitting to html and 'text' if previewing in RStudio

Let’s run a few more regressions and make a table that summarizes the results of all of them:

reg2 <- lm(mpg ~ wt, mtcars)
reg3 <- lm(mpg ~ disp + wt, mtcars)
stargazer(reg1, reg2, reg3,

type = 'latex',
digits = 1,
header = FALSE,
title = 'Regression Results for Motor Trend Dataset',
covariate.labels = c('Displacement (cubic inches)', 'Weight (1000lb)'),
dep.var.labels = 'Miles/gallon',
notes = c('Data are courtesy of Motor Trend Magazine. Also, R rules!'))

set type to 'html' if knitting to html and 'text' if previewing in RStudio

Notice how I added a label for the dependent variable and appended a note to the regression table.

9

Table 6: Regression Results for Motor Trend Dataset

Dependent variable:
Miles/gallon

(1) (2) (3)
Displacement (cubic inches) −0.04∗∗∗ −0.02∗

(0.005) (0.01)

Weight (1000lb) −5.3∗∗∗ −3.4∗∗∗

(0.6) (1.2)

Constant 29.6∗∗∗ 37.3∗∗∗ 35.0∗∗∗

(1.2) (1.9) (2.2)

Observations 32 32 32
R2 0.7 0.8 0.8
Adjusted R2 0.7 0.7 0.8
Residual Std. Error 3.3 (df = 30) 3.0 (df = 30) 2.9 (df = 29)
F Statistic 76.5∗∗∗ (df = 1; 30) 91.4∗∗∗ (df = 1; 30) 51.7∗∗∗ (df = 2; 29)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data are courtesy of Motor Trend Magazine. Also, R rules!

Exercise #3

(a) Use lm to create an object called reg1 that predicts colgpa from hsize and hsizeˆ2.
(b) Use lm to create an object called reg2 that adds hsperc, sat, female and athlete to reg1.
(c) Use stargazer to make a summary table that compares the output of reg1 and reg2. Be sure to add

a title, use appropriate labels, a reasonable number of digits, etc.

Solution to Exercise #3

reglabels <- c('Size HS Grad. Class (100s)',
'Size HS Grad. Class Squared',
'Percentile in HS Grad. Class',
'Combined SAT Score',
'Female? (1 = Yes)',
'Athlete? (1 = Yes)')

reg1 <- lm(colgpa ~ hsize + I(hsize^2), gpa)
reg2 <- lm(colgpa ~ hsize + I(hsize^2) + hsperc + sat + female + athlete, gpa)
stargazer(reg1, reg2, type = 'latex',

dep.var.labels = 'College GPA',
covariate.labels = reglabels,
title = 'Predicting College GPA')

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Sun, Sep 09, 2018 - 03:38:28 PM

10

Table 7: Predicting College GPA

Dependent variable:
College GPA

(1) (2)
Size HS Grad. Class (100s) 0.063∗∗∗ −0.057∗∗∗

(0.019) (0.016)

Size HS Grad. Class Squared −0.011∗∗∗ 0.005∗∗

(0.003) (0.002)

Percentile in HS Grad. Class −0.013∗∗∗

(0.001)

Combined SAT Score 0.002∗∗∗

(0.0001)

Female? (1 = Yes) 0.155∗∗∗

(0.018)

Athlete? (1 = Yes) 0.169∗∗∗

(0.042)

Constant 2.592∗∗∗ 1.241∗∗∗

(0.029) (0.079)

Observations 4,137 4,137
R2 0.005 0.293
Adjusted R2 0.004 0.291
Residual Std. Error 0.657 (df = 4134) 0.554 (df = 4130)
F Statistic 10.187∗∗∗ (df = 2; 4134) 284.589∗∗∗ (df = 6; 4130)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

11

Model 1 Model 2 Model 3
Intercept 29.60∗∗∗ 37.29∗∗∗ 34.96∗∗∗

(1.48) (2.19) (2.37)
Displacement (cubic inches) −0.04∗∗∗ −0.02∗

(0.01) (0.01)
Weight (1000lb) −5.34∗∗∗ −3.35∗∗

(0.65) (1.10)
R2 0.72 0.75 0.78
Adj. R2 0.71 0.74 0.77
Num. obs. 32 32 32
RMSE 3.25 3.05 2.92
Robust Standard Errors

Table 8: Predicting Fuel Economy

set type to 'html' if knitting to html and 'text' if previewing in RStudio

Regression Output with texreg

One downside of stargazer is that it does not play nicely with lm_robust. While there is a way to “trick”
stargazer into doing the right thing with an object created by lm_robust (See https://declaredesign.org/r/
estimatr/articles/regression-tables.html for details), this is a bit of a pain. Instead we’ll use an alternative to
stargazer called texreg. As with stargazer you need to set the chunk option results = 'asis' to get
texreg to display correctly with knitr.

The texreg package provides three main functions: texreg() is for pdf output with LaTeX, htmlreg() is
for html output, and screenreg() is for text output. This is different form stargazer which has a single
function but requires the user to specify type to indicate the desired output:

library(texreg)
cars1 <- lm_robust(mpg ~ disp, se_type = 'stata', mtcars)
cars2 <- lm_robust(mpg ~ wt, se_type = 'stata', mtcars)
cars3 <- lm_robust(mpg ~ disp + wt, se_type = 'stata', mtcars)
texreg(list(cars1, cars2, cars3), include.ci = FALSE,

caption = 'Predicting Fuel Economy',
custom.coef.names = c('Intercept',

'Displacement (cubic inches)',
'Weight (1000lb)'),

custom.note = 'Robust Standard Errors')

use htmlreg() if knitting to html, and screenreg() if previewing in RStudio

The output is very similar to stargazer. Note however that we need to pack multiple sets of regression
results into a list object for use with texreg.

Exercise #4

Repeat Exercise #3 but use lm_robust to generate robust standard errors and texreg rather than stargazer
to make the table of results.

12

https://declaredesign.org/r/estimatr/articles/regression-tables.html
https://declaredesign.org/r/estimatr/articles/regression-tables.html

Model 1 Model 2
Intercept 2.59∗∗∗ 1.24∗∗∗

(0.03) (0.08)
Size HS Grad. Class (100s) 0.06∗∗ −0.06∗∗∗

(0.02) (0.02)
Size HS Grad. Class Squared −0.01∗∗∗ 0.00∗

(0.00) (0.00)
Rank in HS Grad Class −0.01∗∗∗

(0.00)
Combined SAT Score 0.00∗∗∗

(0.00)
Female? (1 = Yes) 0.15∗∗∗

(0.02)
Athlete? (1 = Yes) 0.17∗∗∗

(0.04)
R2 0.00 0.29
Adj. R2 0.00 0.29
Num. obs. 4137 4137
RMSE 0.66 0.55
Note: robust standard errors.

Table 9: Predicting College GPA

Solution to Exercise #4

reglabels <- c('Intercept',
'Size HS Grad. Class (100s)',
'Size HS Grad. Class Squared',
'Rank in HS Grad Class',
'Combined SAT Score',
'Female? (1 = Yes)',
'Athlete? (1 = Yes)')

reg1_robust <- lm_robust(colgpa ~ hsize + I(hsize^2),
se_type = 'stata', gpa)

reg2_robust <- lm_robust(colgpa ~ hsize + I(hsize^2) + hsperc + sat + female + athlete,
se_type = 'stata', gpa)

texreg(list(reg1_robust, reg2_robust),
custom.coef.names = reglabels,
include.ci = FALSE,
caption = 'Predicting College GPA',
custom.note = 'Note: robust standard errors.')

use htmlreg() if knitting to html, and screenreg() if previewing in RStudio

Important Note:

From now own, we will expect you to format your results in problem sets and labs using the stargazer
and/or texreg packages.

13

	Robust Standard Errors
	lm_robust
	F-tests with lm_robust

	Exercise #1
	Solution to Exercise #1
	Publication-quality Tables
	A Table of Summary Statistics with stargazer

	Exercise #2
	Solution to Exercise #2
	Regression Output with stargazer

	Exercise #3
	Solution to Exercise #3
	Regression Output with texreg

	Exercise #4
	Solution to Exercise #4
	Important Note:

