
Lab #5 - Predictive Regression I
Econ 224

September 11th, 2018

Introduction

This lab provides a crash course on least squares regression in R. In the interest of time we’ll work with a
very simple, but somewhat boring, dataset that requires very little explanation. In our next lab and on the
problem set you’ll use what you’ve learned here to look at much more interesting examples!

The mtcars Dataset

The built-in R dataset mtcars contains information on 32 models of automobile from 1973-74 as reported
in Motor Trend Magazine. For more information on the variables, see the R help file ?mtcars. Note that
mtcars is a dataframe rather than a tibble. Just to keep things simple I won’t convert it to a tibble. But
don’t worry: everything I demonstrate in this tutorial will work just as well with a tibble as with a dataframe.
A tibble is a dataframe even though a dataframe is not a tibble. (C.f. a square is a rectangle, but a rectangle
is not a square.) Here are the first few rows of the mtcars:

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Our goal will be to predict mpg (fuel efficiency in miles/gallon) using the other variables such as cyl (#
of cylinders), disp (engine displacement in cubic inches), hp (horsepower), and wt (weight in thousands of
pounds).

The lm Command

The command for least squares regression in R is lm which stands for linear model. The basic syntax is as
follows: lm([Y variable] ~ [1st predictor] + ... + [pth predictor], [dataframe]). For example,
to predict mpg using disp and hp we would run the command

lm(mpg ~ disp, mtcars)

Call:
lm(formula = mpg ~ disp, data = mtcars)

Coefficients:
(Intercept) disp

29.59985 -0.04122

1

Exercise #1

Carry out a regression predicting mpg using disp, hp, cyl and wt

lm(mpg ~ disp + hp + cyl + wt, mtcars)

Call:
lm(formula = mpg ~ disp + hp + cyl + wt, data = mtcars)

Coefficients:
(Intercept) disp hp cyl wt

40.82854 0.01160 -0.02054 -1.29332 -3.85390

Getting More Information from lm

If we simply run lm as above, R will display only the estimated regression coefficients: β̂0, β̂1, . . . , β̂p along
with the command used to run the regression: Call. To get more information, we need to store the results of
our regression.

reg1 <- lm(mpg ~ disp + hp, mtcars)

If you run the preceding line of code in the R console, it won’t produce any output. But if you check your R
environment after running it, you’ll see a new List object: reg1. To see what’s inside this list, we can use
the command str:

str(reg1)

List of 12
$ coefficients : Named num [1:3] 30.7359 -0.0303 -0.0248
..- attr(*, "names")= chr [1:3] "(Intercept)" "disp" "hp"

$ residuals : Named num [1:32] -2.15 -2.15 -2.35 1.23 3.24 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

$ effects : Named num [1:32] -113.65 -28.44 5.8 1.1 3.01 ...
..- attr(*, "names")= chr [1:32] "(Intercept)" "disp" "hp" "" ...

$ rank : int 3
$ fitted.values: Named num [1:32] 23.1 23.1 25.1 20.2 15.5 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

$ assign : int [1:3] 0 1 2
$ qr :List of 5
..$ qr : num [1:32, 1:3] -5.657 0.177 0.177 0.177 0.177 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...
..$: chr [1:3] "(Intercept)" "disp" "hp"
.. ..- attr(*, "assign")= int [1:3] 0 1 2
..$ qraux: num [1:3] 1.18 1.09 1.01
..$ pivot: int [1:3] 1 2 3
..$ tol : num 1e-07
..$ rank : int 3
..- attr(*, "class")= chr "qr"

$ df.residual : int 29

2

$ xlevels : Named list()
$ call : language lm(formula = mpg ~ disp + hp, data = mtcars)
$ terms :Classes 'terms', 'formula' language mpg ~ disp + hp
.. ..- attr(*, "variables")= language list(mpg, disp, hp)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:3] "mpg" "disp" "hp"
..$: chr [1:2] "disp" "hp"
.. ..- attr(*, "term.labels")= chr [1:2] "disp" "hp"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(mpg, disp, hp)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
..- attr(*, "names")= chr [1:3] "mpg" "disp" "hp"

$ model :'data.frame': 32 obs. of 3 variables:
..$ mpg : num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
..$ disp: num [1:32] 160 160 108 258 360 ...
..$ hp : num [1:32] 110 110 93 110 175 105 245 62 95 123 ...
..- attr(*, "terms")=Classes 'terms', 'formula' language mpg ~ disp + hp
..- attr(*, "variables")= language list(mpg, disp, hp)
..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:3] "mpg" "disp" "hp"
..$: chr [1:2] "disp" "hp"
..- attr(*, "term.labels")= chr [1:2] "disp" "hp"
..- attr(*, "order")= int [1:2] 1 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: R_GlobalEnv>
..- attr(*, "predvars")= language list(mpg, disp, hp)
..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
..- attr(*, "names")= chr [1:3] "mpg" "disp" "hp"

- attr(*, "class")= chr "lm"

Don’t panic: you don’t need to know what all of these list elements are. The important thing to understand
is that lm returns a list from which we can extract important information about the regression we have run.
To extract the regression coefficient estimates, we use coef

coef(reg1)

(Intercept) disp hp
30.73590425 -0.03034628 -0.02484008

To extract the regression residuals, we use resid

resid(reg1)

Mazda RX4 Mazda RX4 Wag Datsun 710
-2.1480911 -2.1480911 -2.3483788

Hornet 4 Drive Hornet Sportabout Valiant

3

1.2258440 3.2357695 -3.1997835
Duster 360 Merc 240D Merc 230
0.5745752 -0.3440204 -1.3033408
Merc 280 Merc 280C Merc 450SE

-3.3945383 -4.7945383 -1.4951865
Merc 450SL Merc 450SLC Cadillac Fleetwood
-0.5951865 -2.6951865 -0.9202450

Lincoln Continental Chrysler Imperial Fiat 128
-1.0359995 3.0296761 5.6917931
Honda Civic Toyota Corolla Toyota Corona
3.2529931 6.9363213 -3.1818286

Dodge Challenger AMC Javelin Camaro Z28
-1.8597761 -2.5846240 -0.7288875

Pontiac Firebird Fiat X1-9 Porsche 914-2
4.9496206 0.6008970 1.1752002

Lotus Europa Ford Pantera L Ferrari Dino
5.3569558 2.2734203 -2.2886799

Maserati Bora Volvo 142E
1.7197522 -2.9564359

and to extract the fitted values i.e. the predicted values of Y , we use fitted.values

fitted.values(reg1)

Mazda RX4 Mazda RX4 Wag Datsun 710
23.14809 23.14809 25.14838

Hornet 4 Drive Hornet Sportabout Valiant
20.17416 15.46423 21.29978

Duster 360 Merc 240D Merc 230
13.72542 24.74402 24.10334
Merc 280 Merc 280C Merc 450SE
22.59454 22.59454 17.89519

Merc 450SL Merc 450SLC Cadillac Fleetwood
17.89519 17.89519 11.32025

Lincoln Continental Chrysler Imperial Fiat 128
11.43600 11.67032 26.70821

Honda Civic Toyota Corolla Toyota Corona
27.14701 26.96368 24.68183

Dodge Challenger AMC Javelin Camaro Z28
17.35978 17.78462 14.02889

Pontiac Firebird Fiat X1-9 Porsche 914-2
14.25038 26.69910 24.82480

Lotus Europa Ford Pantera L Ferrari Dino
25.04304 13.52658 21.98868

Maserati Bora Volvo 142E
13.28025 24.35644

Exercise # 2

1. Plot a histogram of the residuals from reg1 using ggplot with a bin width of 1.25. Is there anything
noteworthy about this plot?

2. Calculate the residuals “by hand” by subtracting the fitted values from reg1 from the column mpg in
mtcars. Use the R function all.equal to check that this gives the same result as resid.

4

Solution to Exercise #2

1. There seems to be some right skewness in the residuals.

library(ggplot2)
ggplot() +

geom_histogram(aes(x = resid(reg1)), binwidth = 1.25)

0

2

4

6

−5 0 5

resid(reg1)

co
un

t

2. They give exactly the same result:

all.equal(resid(reg1), mtcars$mpg - fitted.values(reg1))

[1] TRUE

Summarizing Regression Output

To view the usual summary of regression output, we use the summary command:

summary(reg1)

Call:
lm(formula = mpg ~ disp + hp, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.7945 -2.3036 -0.8246 1.8582 6.9363

5

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.735904 1.331566 23.083 < 2e-16 ***
disp -0.030346 0.007405 -4.098 0.000306 ***
hp -0.024840 0.013385 -1.856 0.073679 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.127 on 29 degrees of freedom
Multiple R-squared: 0.7482, Adjusted R-squared: 0.7309
F-statistic: 43.09 on 2 and 29 DF, p-value: 2.062e-09

Among other things, summary shows us the coefficient estimates and associated standard errors. It also
displays the t-value (Estimate / SE) and associated p-value for a test of the null hypothesis H0 : β = 0 versus
H1 : β 6= 0. Farther down in the output, summary provides the residual standard error and R-squared. It
turns out the summary command itself returns a list. In particular,

str(summary(reg1))

List of 11
$ call : language lm(formula = mpg ~ disp + hp, data = mtcars)
$ terms :Classes 'terms', 'formula' language mpg ~ disp + hp
.. ..- attr(*, "variables")= language list(mpg, disp, hp)
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:3] "mpg" "disp" "hp"
..$: chr [1:2] "disp" "hp"
.. ..- attr(*, "term.labels")= chr [1:2] "disp" "hp"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(mpg, disp, hp)
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
..- attr(*, "names")= chr [1:3] "mpg" "disp" "hp"

$ residuals : Named num [1:32] -2.15 -2.15 -2.35 1.23 3.24 ...
..- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" "Hornet 4 Drive" ...

$ coefficients : num [1:3, 1:4] 30.7359 -0.0303 -0.0248 1.3316 0.0074 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:3] "(Intercept)" "disp" "hp"
.. ..$: chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"

$ aliased : Named logi [1:3] FALSE FALSE FALSE
..- attr(*, "names")= chr [1:3] "(Intercept)" "disp" "hp"

$ sigma : num 3.13
$ df : int [1:3] 3 29 3
$ r.squared : num 0.748
$ adj.r.squared: num 0.731
$ fstatistic : Named num [1:3] 43.1 2 29
..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"

$ cov.unscaled : num [1:3, 1:3] 1.81e-01 -1.18e-04 -8.38e-04 -1.18e-04 5.61e-06 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:3] "(Intercept)" "disp" "hp"
.. ..$: chr [1:3] "(Intercept)" "disp" "hp"

- attr(*, "class")= chr "summary.lm"

6

This fact can come in handy when you want to extract some of the values from the regression summary table
to use for some other purpose. For example, we can display only the R-squared as follows: We could do this
as follows:

summary(reg1)$r.squared

[1] 0.7482402

and only the F-statistic with its associated degrees of freedom as follows:

summary(reg1)$fstatistic

value numdf dendf
43.09458 2.00000 29.00000

Exercise #3

1. Use summary to display the results of the regression you ran in Exercise #1 above.
2. Figure out how to extract and display only the regression standard error from the results of summary in

part 1 of this exercise.
3. Calculate the regression standard error for the regression from part 1 of this exercise “by hand” and

make sure that your answer matches part 2. Hint: use resid

Solution to Exercise #3

1. Store the result of lm and use summary:

myreg <- lm(mpg ~ disp + hp + cyl + wt, mtcars)
summary(myreg)

Call:
lm(formula = mpg ~ disp + hp + cyl + wt, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.0562 -1.4636 -0.4281 1.2854 5.8269

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.82854 2.75747 14.807 1.76e-14 ***
disp 0.01160 0.01173 0.989 0.331386
hp -0.02054 0.01215 -1.691 0.102379
cyl -1.29332 0.65588 -1.972 0.058947 .
wt -3.85390 1.01547 -3.795 0.000759 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.513 on 27 degrees of freedom
Multiple R-squared: 0.8486, Adjusted R-squared: 0.8262
F-statistic: 37.84 on 4 and 27 DF, p-value: 1.061e-10

7

2. The appropriate list item is called sigma

summary(myreg)$sigma

[1] 2.51252

3. Let ε̂1, . . . , ε̂n denote the residuals. Then the standard error of the regression is given by√ ∑n
i=1 ε̂

2
i

n− p− 1

where p is the number of X-variables in the regression. We can implement this in R using resid and
compare it to the results calculated automatically by summary as follows:

ehat <- resid(myreg)
n <- length(ehat)
p <- length(coef(myreg)) - 1
sqrt(sum(ehat^2) / (n - p - 1))

[1] 2.51252

summary(myreg)$sigma

[1] 2.51252

Regression Without an Intercept

More than 99% of the time, it makes sense for us to include an intercept β0 in a linear regression. To see
why, consider the meaning of β0: this is the value of Y that we would predict if X1 = X2 = . . . = Xp = 0.
Unless we have some very strong a priori knowledge, there is no reason to suppose that the mean of Y should
be zero when all of the predictors are zero. In some very special cases, however, we do have such special
knowledge. To force the intercept in a regression to be zero we use the syntax -1, for example

summary(lm(mpg ~ disp - 1, mtcars))

Call:
lm(formula = mpg ~ disp - 1, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-17.471 -2.900 7.034 14.799 29.702

Coefficients:
Estimate Std. Error t value Pr(>|t|)

disp 0.059049 0.009765 6.047 1.07e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.42 on 31 degrees of freedom
Multiple R-squared: 0.5412, Adjusted R-squared: 0.5264
F-statistic: 36.57 on 1 and 31 DF, p-value: 1.073e-06

8

Exercise #4

What do you get if you run the regression lm(mpg ~ 1, mtcars)?

Solution to Exercise #4

This calculates the sample mean of mpg

lm(mpg ~ 1, mtcars)

Call:
lm(formula = mpg ~ 1, data = mtcars)

Coefficients:
(Intercept)

20.09

with(mtcars, mean(mpg))

[1] 20.09062

F-tests

Suppose we want to test the joint null hypothesis H0 : β1 = β2 = · · · = βp = 0 versus the alternative that at
least one of these coefficients is non-zero. This is equivalent to testing the null hypothesis that none of the
predictors X1, · · · , Xp is helpful in predicting Y . This test is automatically carried out by summary. Consider
a regression that uses disp, hp, wt and cyl to predict mpg

reg2 <- lm(mpg ~ disp + hp + wt + cyl, mtcars)
summary(reg2)

Call:
lm(formula = mpg ~ disp + hp + wt + cyl, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.0562 -1.4636 -0.4281 1.2854 5.8269

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.82854 2.75747 14.807 1.76e-14 ***
disp 0.01160 0.01173 0.989 0.331386
hp -0.02054 0.01215 -1.691 0.102379
wt -3.85390 1.01547 -3.795 0.000759 ***
cyl -1.29332 0.65588 -1.972 0.058947 .

9

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.513 on 27 degrees of freedom
Multiple R-squared: 0.8486, Adjusted R-squared: 0.8262
F-statistic: 37.84 on 4 and 27 DF, p-value: 1.061e-10

At the very bottom of the summary output is a line that begins F-statistic. This line contains the results
of the F-test of the joint null described above. In this case the p-value is miniscule: there is very strong
evidence that at least one of the predictors is helpful in predicting mpg. To get a better understanding of
what’s involved here, we can calculate the p-value “by hand” as follows:

summary(reg2)$fstatistic

value numdf dendf
37.84413 4.00000 27.00000

curve(expr = df(x, 4, 27), 0, 40, n = 1001,
ylab = 'density',
main = 'Is 37.8 an F(2,29) random draw?')

abline(v = 37.84413, lty = 2, col = 'red')

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

Is 37.8 an F(2,29) random draw?

x

de
ns

ity

1 - pf(37.84413, 4, 27)

[1] 1.061086e-10

Under the null hypothesis, the F-statistic is a draw from an F random variable with numerator degrees of
freedom 2 and denominator degrees of freedom 29. (If you are unfamiliar with the F-distribution see my
Tutorial Friends of the Normal Distribution.) So is is plausible that the value 37.8 came from an F (2, 29)
distribution? From my plot of the corresponding density function, the answer is clearly no. We have very
strong evidence against the null hypothesis.

Sometimes we only want to test the null that a subset of our predictors is unhelpful for predicting Y .
For example, in reg2 we might ask whether wt and cyl provide extra information for predicting mpg

10

http://ditraglia.com/Econ103Public/Rtutorials/friends_of_normal.html

after we have already included disp and hp in our model. To carry out this test, we use the function
linearHypothesis from the package car. Make sure to install this package before proceeding. Note the
syntax: linearHypothesis([lm object], c('[first restriction]', ..., '[last restriction]')

library(car)

Loading required package: carData

linearHypothesis(reg2, c('wt = 0', 'cyl = 0'))

Linear hypothesis test

Hypothesis:
wt = 0
cyl = 0

Model 1: restricted model
Model 2: mpg ~ disp + hp + wt + cyl

Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 283.49
2 27 170.44 2 113.05 8.954 0.00104 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The two key numbers to look for in the output are F, the value of the F-statistic, and Pr(>F), the p-value.
The other values are the inputs used to calculate F. (See Equation 3.24 in ISL.) In this instance we strongly
reject the null hypothesis that wt and cyl are irrelevant for predicting mpg after controlling for disp and hp.

Exercise #5

Generate two vectors of independent standard normal draws x and z. Each vector should contain as many
elements as there are rows in mtcars. Use the command set.seed(1234) before making your random draws
so that they are replicable. (By first setting the seed to a fixed number, you ensure that the same random
draws will be made any time that you re-run this code chunk.) Carry out a new regression, reg3, that
augments reg2 by adding the predictors x and z. Then carry out an F-test the null hypothesis that x and z
are irrelevant for predicting mpg after controlling for disp, hp, wt, and cyl. Interpret your findings. Do the
results of the test make sense?

Solution to Exercise #5

set.seed(1234)
n <- nrow(mtcars)
x <- rnorm(n)
z <- rnorm(n)
reg3 <- lm(mpg ~ disp + hp + wt + cyl + x + z, mtcars)
linearHypothesis(reg3, c('x = 0', 'z = 0'))

11

Linear hypothesis test

Hypothesis:
x = 0
z = 0

Model 1: restricted model
Model 2: mpg ~ disp + hp + wt + cyl + x + z

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 170.44
2 25 169.95 2 0.4917 0.0362 0.9645

Plotting the Regression Line

To get an idea of whether our regression model looks reasonable, it’s always a good idea to make some plots.
When we have a single predictor X, it is common to plot the raw X and Y observations along with the
regression line. It’s easy to do this using ggplot. Suppose we wanted to predict mpg using disp. Here’s the
ggplot way to plot the data and regression line:

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
geom_smooth(method = 'lm')

10

15

20

25

30

35

100 200 300 400

disp

m
pg

Notice that I specified aes inside of ggplot. This ensures that both geom_point and geom_smooth “know”
which variable is x and which variable is y. Notice moreover, that the ggplot way of doing this includes
error bounds for the regression line. This is a handy way of visualizing the uncertainty in the line we’ve fit.

12

Exercise #6

Make a ggplot with hp on the x-axis and mpg on the y-axis that includes the regression line for predicting
mpg from hp.

Solution to Exercise #6

ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point() +
geom_smooth(method = 'lm')

10

20

30

100 200 300

hp

m
pg

Polynomial Regression

In your next reading assignment, you’ll learn about polynomial regression. The “linear” in linear regression
does not actually refer to the relationship between Y and the predictors X; it refers to the relationship
between Y and the coefficients β0, β1, ..., βp. In the expression Y = β0 + β1X + ε, Y is a linear function of β0
and β1 and it is also a linear function of X. In the expression Y = β0 + β1X + β2X

2 + ε, Y is still a linear
function of the coefficients, but a quadratic function of X. This is a simple example of polynomial regression,
which allows us to model more complicated relationships between X and Y . Notice, for example, that the
relationship between mpg and disp looks like it might be curved. To accommodate such a relationship, let’s
try a polynomial regression that includes includes disp and dispˆ2. To do this we use the syntax I([some
transformation of a predictor)

reg3 <- lm(mpg ~ disp + I(disp^2), mtcars)
summary(reg3)

13

Call:
lm(formula = mpg ~ disp + I(disp^2), data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.9112 -1.5269 -0.3124 1.3489 5.3946

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.583e+01 2.209e+00 16.221 4.39e-16 ***
disp -1.053e-01 2.028e-02 -5.192 1.49e-05 ***
I(disp^2) 1.255e-04 3.891e-05 3.226 0.0031 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.837 on 29 degrees of freedom
Multiple R-squared: 0.7927, Adjusted R-squared: 0.7784
F-statistic: 55.46 on 2 and 29 DF, p-value: 1.229e-10

Notice that the coefficient on the quadratic term is highly statistically significant, which is strong evidence of
curvature in the relationship between mpg and disp. We can plot the polynomial regression as follows:

ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point() +
geom_smooth(method = 'lm', formula = y ~ x + I(x^2))

10

15

20

25

30

35

100 200 300 400

disp

m
pg

Notice that this requires us to specify the formula argument so that ggplot knows that we want to plot a
quadratic relationship.

14

Exercise #7

In my code above, I considered a quadratic relationship between mpg and disp. Add a cubic term to the
regression, plot the points and regression function, and display the results using summary. Comment on the
results.

Solution to Exercise #7

reg4 <- lm(mpg ~ disp + I(disp^2) + I(disp^3), mtcars)
ggplot(mtcars, aes(x = disp, y = mpg)) +

geom_point() +
geom_smooth(method = 'lm', formula = y ~ x + I(x^2) + I(x^3))

10

15

20

25

30

35

100 200 300 400

disp

m
pg

summary(reg4)

Call:
lm(formula = mpg ~ disp + I(disp^2) + I(disp^3), data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.0896 -1.5653 -0.3619 1.4368 4.7617

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.070e+01 3.809e+00 13.310 1.25e-13 ***
disp -3.372e-01 5.526e-02 -6.102 1.39e-06 ***
I(disp^2) 1.109e-03 2.265e-04 4.897 3.68e-05 ***

15

I(disp^3) -1.217e-06 2.776e-07 -4.382 0.00015 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.224 on 28 degrees of freedom
Multiple R-squared: 0.8771, Adjusted R-squared: 0.8639
F-statistic: 66.58 on 3 and 28 DF, p-value: 7.347e-13

Interaction Effects

An idea closely related to polynomial regression that will also be discussed in your next reading assignment
is that of an interaction. In the model Y = β0 + β1X1 + β2X2 + β3X1X3 + ε, Y is a linear function of
β0, β1, β2, and β3 but a nonlinear function of X1 and X2. The term X1 ×X2 is called an interaction. To run
a regression with an interaction, we use the syntax [One Predictor]:[Another Predictor] for example

lm(mpg ~ disp + hp + disp:hp, mtcars)

Call:
lm(formula = mpg ~ disp + hp + disp:hp, data = mtcars)

Coefficients:
(Intercept) disp hp disp:hp

39.67426 -0.07337 -0.09789 0.00029

Exercise #8

Fit a regression using disp, dispˆ2, wt, wtˆ2 and the interaction between wt and disp to predict mpg and
display the coefficient estimates.

Solution to Exercise #8

reg5 <- lm(mpg ~ disp + wt + I(disp^2) + I(wt^2) + disp:wt, mtcars)
coef(reg5)

(Intercept) disp wt I(disp^2) I(wt^2)
4.692786e+01 -3.172401e-02 -1.062827e+01 2.019044e-04 2.079131e+00

disp:wt
-2.660633e-02

Predicting New Observations

To predict new observations based on a fitted linear regression model in R, we use the predict function. For
example, consider three hypothetical cars with the following values of displacement and horsepower

16

mydat <- data.frame(disp = c(100, 200, 300),
hp = c(150, 100, 200))

mydat

disp hp
1 100 150
2 200 100
3 300 200

Based on the results of reg1, we would predict that these cars have the following values of mpg

predict(reg1, mydat)

1 2 3
23.97526 22.18264 16.66401

Note the syntax: the first argument of predict is a set of regression results while the second is a dataframe
(or tibble) with column names that match the variables in the regression we carried out.

Exercise #9

1. Check the predictions of predict in the preceding chunk “by hand” using mydat, coef, and reg1.
2. Consider three cars with disp equal to 125, 175, and 225, respectively. Predict mpg for each of these

based on the regression from Exercise #7.

Solution to Exercise #9

1. Many possibilities. Here’s one:

b <- coef(reg1)
b0 <- b[1]
b1 <- b[2]
b2 <- b[3]
b0 + b1 * mydat$disp + b2 * mydat$hp

[1] 23.97526 22.18264 16.66401

2. Use the following:

mydat <- data.frame(disp = c(125, 175, 225))
predict(reg4, mydat)

1 2 3
23.50258 19.13630 17.12228

17

	Introduction
	The mtcars Dataset
	The lm Command
	Exercise #1
	Getting More Information from lm

	Exercise # 2
	Solution to Exercise #2
	Summarizing Regression Output
	Exercise #3
	Solution to Exercise #3
	Regression Without an Intercept
	Exercise #4
	Solution to Exercise #4
	F-tests
	Exercise #5
	Solution to Exercise #5
	Plotting the Regression Line
	Exercise #6
	Solution to Exercise #6
	Polynomial Regression
	Exercise #7
	Solution to Exercise #7
	Interaction Effects
	Exercise #8
	Solution to Exercise #8
	Predicting New Observations
	Exercise #9
	Solution to Exercise #9

