Lecture #1 – Introduction

Overview – Population vs. Sample, Probability vs. Statistics

Polling – Sampling vs. Non-sampling Error, Random Sampling

Causality – Observational vs. Experimental Data, RCTs
Racial Discrimination in the Labor Market

Source: Bureau of Labor Statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>3.0</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Black/African American</td>
<td>6.2</td>
<td>5.8</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Table: Unemployment rate in percentage points for men aged 20 and over in the last quarter of 2018.

The unemployment rate for African Americans has historically been much higher than for whites. What can this information by itself tell us about racial discrimination in the labor market?
This Course: Use Sample to Learn About Population

Population
Complete set of all items that interest investigator

Sample
Observed subset, or portion, of a population

Sample Size
of items in the sample, typically denoted \(n \)

Examples...
In Particular: Use Statistic to Learn about Parameter

Parameter

Numerical measure that describes specific characteristic of a population.

Statistic

Numerical measure that describes specific characteristic of sample.

Examples...
Essential Distinction You Must Remember!

Population

Sample

Numerical Summary

Statistic

Parameter

Numerical Summary
This Course

1. Descriptive Statistics: summarize data
 - Summary Statistics
 - Graphics

2. Probability: Population → Sample
 - deductive: “safe” argument
 - All ravens are black. Mordecai is a raven, so Mordecai is black.

3. Inferential Statistics: Sample → Population
 - inductive: “risky” argument
 - I’ve only every seen black ravens, so all ravens must be black.
Sampling and Nonsampling Error

In statistics we use samples to learn about populations, but samples almost never be exactly like the population they are drawn from.

1. Sampling Error
 - Random differences between sample and population
 - Cancel out on average
 - Decreases as sample size grows

2. Nonsampling Error
 - Systematic differences between sample and population
 - Does not cancel out on average
 - Does not decrease as sample size grows
Literary Digest – 1936 Presidential Election Poll

FDR versus Kansas Gov. Alf Landon

Huge Sample

Sent out over 10 million ballots; 2.4 million replies! (Compared to less than 45 million votes cast in actual election)

Prediction

Landslide for Landon: *Landonslide*, if you will.
Spectacularly Mistaken!

FDR versus Kansas Gov. Alf Landon

<table>
<thead>
<tr>
<th>Roosevelt</th>
<th>Landon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literary Digest Prediction:</td>
<td>41%</td>
</tr>
<tr>
<td>Actual Result:</td>
<td>61%</td>
</tr>
</tbody>
</table>
What Went Wrong? Non-sampling Error (aka Bias)

Source: Squire (1988)

Biased Sample

Some units more likely to be sampled than others.

- Ballots mailed those on auto reg. list and in phone books.

Non-response Bias

Even if sample is unbiased, can’t force people to reply.

- Among those who received a ballot, Landon supporters were more likely to reply.

In this case, neither effect *alone* was enough to throw off the result but together they did.
Randomize to Get an Unbiased Sample

Simple Random Sample

Each member of population is chosen strictly by chance, so that:
(1) selection of one individual doesn’t influence selection of any other, (2) each individual is just as likely to be chosen, (3) every possible sample of size n has the same chance of selection.

What about non-response bias? – we’ll come back to this...
Ahead of Donald Trump’s scheduled press conference in New York City on Wednesday, the public continues to give the president-elect low marks for how he is handling the transition process... The latest national survey by Pew Research Center, conducted Jan. 4-9 among 1,502 adults, finds that 39% approve of the job President-elect Trump has done so far explaining his policies and plans for the future to the American people, while a larger share (55%) say they disapprove.
Quantifying Sampling Error

95% Confidence Interval for Poll Based on Random Sample

Margin of Error a.k.a. ME

We report \(P \pm ME \) where \(ME \approx 2\sqrt{P(1-P)/n} \)

Trump Transition Approval Rate

\(P = 0.39 \) and \(n = 1502 \) so \(ME \approx 0.025 \). We’d report 39\% plus or minus 2.5\% if the poll were based on a simple random sample. . .

But Pew Reports an ME of 2.9\% which doesn’t agree with our calculation. What’s going on here?!
Non-response bias is a huge problem...

Source: Pew Research Center

<table>
<thead>
<tr>
<th>Surveys Face Growing Difficulty Reaching, Persuading Potential Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact rate</td>
</tr>
<tr>
<td>(percent of households in which an adult was reached)</td>
</tr>
<tr>
<td>Cooperation rate</td>
</tr>
<tr>
<td>(percent of households contacted that yielded an interview)</td>
</tr>
<tr>
<td>Response rate</td>
</tr>
<tr>
<td>(percent of households sampled that yielded an interview)</td>
</tr>
</tbody>
</table>

PEW RESEARCH CENTER 2012 Methodology Study. Rates computed according to American Association for Public Opinion Research (AAPOR) standard definitions for CON2, COOP3 and RR3. Rates are typical for surveys conducted in each year.
The combined landline and cell phone sample are weighted using an iterative technique that matches gender, age, education, race, Hispanic origin and nativity and region to parameters from the 2015 Census Bureau's American Community Survey and population density to parameters from the Decennial Census. The sample also is weighted to match current patterns of telephone status (landline only, cell phone only, or both landline and cell phone), based on extrapolations from the 2016 National Health Interview Survey. The weighting procedure also accounts for the fact that respondents with both landline and cell phones have a greater probability of being included in the combined sample and adjusts for household size among respondents with a landline phone. The margins of error reported and statistical tests of significance are adjusted to account for the survey's design effect, a measure of how much efficiency is lost from the weighting procedures.
Simple Example of Weighting a Survey

Post-stratification

- Women make up 49.6% of the population but suppose they are less likely to respond to your survey than men.
- If women have different opinions of Trump, this will skew the survey.
- Calculate Trump approval rate separately for men P_M vs. women P_W.
- Report $0.496 \times P_W + 0.504 \times P_M$, not the raw approval rate P.

Caveats

- Post-stratification isn’t a magic bullet: you have to figure out what factors could skew your poll to adjust for them.
- Calculating the ME is more complicated. Since this is an intro class we'll focus on simple random samples.
Survey to find effect of Polio Vaccine

Ask random sample of parents if they vaccinated their kids or not and if the kids later developed polio. Compare those who were vaccinated to those who weren’t.

Would this procedure:

(a) Overstate effectiveness of vaccine
(b) Correctly identify effectiveness of vaccine
(c) Understate effectiveness of vaccine
Confounding

Parents who vaccinate their kids may differ systematically from those who don’t in *other ways* that impact child’s chance of contracting polio!

Wealth is related to vaccination *and* whether child grows up in a hygenic environment.

Confounder

Factor that influences both outcomes and whether subjects are treated or not. Masks true effect of treatment.
Experiment Using Random Assignment: Randomized Experiment

Treatment Group Gets Vaccine, Control Group Doesn’t

Essential Point!

Random assignment neutralizes effect of all confounding factors: since groups are initially equal, on average, any difference that emerges must be the treatment effect.

Placebo Effect and Randomized Double Blind Experiment
Pool of Experimental Subjects

Randomly divided into two groups

- Treatment
 - Evaluation
- Subjects Blind
 - Experimenters Blind
- Control
 - Evaluation
Gold Standard: Randomized, Double-blind Experiment

Randomized blind experiments ensure that on average the two groups are initially equal, and continue to be treated equally. Thus a fair comparison is possible.

Randomized, double-blind experiments are considered the “gold standard” for untangling causation.

Sugar Doesn’t Make Kids Hyper

http://www.youtube.com/watch?v=mkr9YsmrPAI
Randomization is not always possible, practical, or ethical.

Observational Data
Data that do not come from a randomized experiment.

It much more challenging to untangle cause and effect using observational data because of confounders. But sometimes it’s all we have.
Racial Bias in the Labor Market

When faced with observably similar African-American and White applicants, do they [employers] favor the White one? Some argue yes, citing either employer prejudice or employer perception that race signals lower productivity. Others argue that differential treatment by race is a relic of the past . . . Data limitations make it difficult to empirically test these views. Since researchers possess far less data than employers do, White and African-American workers that appear similar to researchers may look very different to employers. So any racial difference in labor market outcomes could just as easily be attributed to differences that are observable to employers but unobservable to researchers.
To circumvent this difficulty, we conduct a field experiment . . . We send resumes in response to help-wanted ads in Chicago and Boston newspapers and measure call-back for interview for each sent resume. We experimentally manipulate the perception of race via the name of the fictitious job applicant. We randomly assign very White-sounding names (such as Emily Walsh or Greg Baker) to half the resumes and very African-American-sounding names (such as Lakisha Washington or Jamal Jones) to the other half.
Racial Bias in the Labor Market: continued . . .

<table>
<thead>
<tr>
<th>Sample</th>
<th>White Names</th>
<th>African-American Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sent resumes</td>
<td>9.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Females</td>
<td>9.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Males</td>
<td>8.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Table: % Callback by racial soundingness of names.

Later this semester: if there were no racial bias in callbacks, what is the chance that we would observe such large differences?
Lecture #2 – Summary Statistics Part I

Class Survey

Types of Variables

Frequency, Relative Frequency, & Histograms

Measures of Central Tendency

Measures of Variability / Spread
Class Survey

- Collect some data to analyze later in the semester.
- None of the questions are sensitive and your name will not be linked to your responses. I will post an anonymized version of the dataset on my website.
- The survey is strictly voluntary – if you don’t want to participate, you don’t have to.
Multiple Choice Entry – What is your biological sex?

(a) Male
(b) Female
Multiple Choice – What is Your Eye Color?

Please enter your eye color using your remote.

(a) Black
(b) Blue
(c) Brown
(d) Green
(e) Gray
(f) Hazel
(g) Other
How Right-Handed are You?

The sheet in front of you contains a handedness inventory. Please complete it and calculate your handedness score:

\[
\frac{\text{Right} - \text{Left}}{\text{Right} + \text{Left}}
\]

When finished, enter your score using your remote.
What is your Height in Inches?

Using your remote, please enter your height in inches, rounded to the nearest inch:

4ft = 48in
5ft = 60in
6ft = 72in
7ft = 84in
What is your Hand Span (in cm)?

On the sheet in front of you is a ruler. Please use it to measure the span of your right hand in centimeters, to the nearest 1/2 cm.

Hand Span: the distance from thumb to little finger when your fingers are spread apart

When ready, enter your measurement using your remote.
We chose (by computer) a random number between 0 and 100. The number selected and assigned to you is written on the slip of paper in front of you. Please do not show your number to anyone else or look at anyone else’s number.

Please enter your number now using your remote.
Call your random number X. Do you think that the percentage of countries, among all those in the United Nations, that are in Africa is higher or lower than X?

(a) Higher

(b) Lower

Please answer using your remote.
What is your best estimate of the percentage of countries, among all those that are in the United Nations, that are in Africa?

Please enter your answer using your remote.
Types of Variables

Categorical = Qualitative

Numeric value either meaningless or indicates order only

Nominal unordered: eye color, sex

Ordinal ordered: course evaluations (0 = Poor, 1 = Fair)

Numerical = Quantitative

Numerical value is meaningful

Discrete # of credits you are taking this semester

Continuous height, handspan, handedness score
Handspan - Frequency and Relative Frequency

<table>
<thead>
<tr>
<th>cm</th>
<th>Freq.</th>
<th>Rel. Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>17.0</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>17.5</td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td>18.0</td>
<td>5</td>
<td>0.06</td>
</tr>
<tr>
<td>18.5</td>
<td>5</td>
<td>0.06</td>
</tr>
<tr>
<td>19.0</td>
<td>6</td>
<td>0.07</td>
</tr>
<tr>
<td>19.5</td>
<td>10</td>
<td>0.11</td>
</tr>
<tr>
<td>20.0</td>
<td>10</td>
<td>0.11</td>
</tr>
<tr>
<td>20.5</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>21.0</td>
<td>8</td>
<td>0.09</td>
</tr>
<tr>
<td>21.5</td>
<td>5</td>
<td>0.06</td>
</tr>
<tr>
<td>22.0</td>
<td>9</td>
<td>0.10</td>
</tr>
<tr>
<td>22.5</td>
<td>6</td>
<td>0.07</td>
</tr>
<tr>
<td>23.0</td>
<td>6</td>
<td>0.07</td>
</tr>
<tr>
<td>24.0</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>24.5</td>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>27.0</td>
<td>1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\[n = 88 \]
1.00

Barchart

- **Handspan (cm)**
- **Frequency**

- Heights of bars represent frequencies.
- X-axis shows handspan in cm, ranging from 14 to 27.
- Y-axis shows frequency, ranging from 0 to 10.

F.J. DiTraglia, Econ 103
Histogram – Density Estimate by Smoothing Barchart

<table>
<thead>
<tr>
<th>Bins</th>
<th>Freq.</th>
<th>Rel. Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14, 16)</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>[16, 18)</td>
<td>6</td>
<td>0.07</td>
</tr>
<tr>
<td>[18, 20)</td>
<td>26</td>
<td>0.30</td>
</tr>
<tr>
<td>[20, 22)</td>
<td>26</td>
<td>0.30</td>
</tr>
<tr>
<td>[22, 24)</td>
<td>21</td>
<td>0.24</td>
</tr>
<tr>
<td>[24, 26)</td>
<td>7</td>
<td>0.08</td>
</tr>
<tr>
<td>[26, 28)</td>
<td>1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\[n = 88 \]

- Group data into non-overlapping bins of equal width.
The number of histogram bins controls the degree of *smoothing*.
Histogram - Density Estimate by Smoothing Barchart

Why Histogram?
Summarize numerical data, especially continuous (few repeats)

Too Many Bins – Undersmoothing
No longer a summary (lose the shape of distribution)

Too Few Bins – Oversmoothing
Miss important detail

Don’t confuse with barchart!
Read data

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'
survey <- read.csv(data_url)

Make plot

plot(table(survey$height), main = 'Barchart of Height (inches)',
 xlab = '', ylab = 'Count')
```r
hist(survey$height, freq = FALSE, main = 'Histogram of Height',
     xlab = 'Height (in)', ylab = 'Relative Frequency')
```
Summary Statistic = Numerical Summary of Sample

Categories of Summary Statistic

1. Central Tendency: mean and median
2. Spread: range, interquartile range, variance, and std. dev.
3. Symmetry: skewness
4. Linear Dependence: covariance, correlation, and regression

Questions ask yourself about each summary statistic

1. What does it measure?
2. What are its units compared to those of the data?
3. (How) do its units change if those of the data change?
What is an Outlier?

Outlier

A very unusual observation relative to the other observations in the dataset (i.e. very small or very big).
Measures of Central Tendency

Suppose we have a dataset with observations x_1, x_2, \ldots, x_n

Sample Mean

- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Only for numeric data
- Sensitive to asymmetry and outliers

Sample Median

- Middle observation if n is odd, otherwise the mean of the two observations closest to the middle.
- Applicable to numerical or ordinal data
- Insensitive to outliers and skewness
Mean is Sensitive to Outliers, Median Isn’t

First Dataset: 1 2 3 4 5
Mean = 3, Median = 3

Second Dataset: 1 2 3 4 4990
Mean = 1000, Median = 3

When Does the Median Change?
Ranks would have to change so that 3 is no longer in the middle.
Percentage of UN Countries that are in Africa

You Were a Subject in a Randomized Experiment!

- There were only two numbers in the bag: 10 and 65
- Randomly assigned to Low group (10) or High group (65)

Anchoring Heuristic (Kahneman and Tversky, 1974)

Subjects’ estimates of an unknown quantity are influenced by an irrelevant previously supplied starting point.

Are Penn students subject to this cognitive bias?
Results from Anchoring Experiment (Previous Semester)

```r
low <- subset(survey, rand.num == 10)$africa.percent
high <- subset(survey, rand.num == 65)$africa.percent
c(low = mean(low), high = mean(high))
```

```r
c(low = median(low), high = median(high))
```

```r
# low high
# 17.09302 30.71739
```

```r
c(low = median(low), high = median(high))
```

```r
# low high
# 17 30
```
Percentiles (aka Quantiles) – Generalization of Median

Percentiles (aka Quantiles)

Approx. \(P \% \) of the data are at or below the \(P^{th} \) percentile/quantile

Quartiles

Q1 = 25th Percentile
Q2 = Median (i.e. 50th Percentile)
Q3 = 75th Percentile

There are some slightly tricky issues involved in actually calculating quantiles, but these only make a difference for very small datasets. We’ll always use R to calculate quantiles...
```r
quantile(survey$handspan, na.rm = TRUE)

## 0% 25% 50% 75% 100%
## 14.0 19.0 20.5 22.0 27.0

quantile(survey$handspan, 0.3, na.rm = TRUE)

## 30%
## 19.5

quantile(survey$handspan, c(0.1, 0.5, 0.9), na.rm = TRUE)

## 10% 50% 90%
## 18.0 20.5 23.0
```
The `boxplot` command in R treats any observation more than 1.5 times the width of the box away from the box as an outlier.
boxplot(survey$handspan, main = 'Boxplot of Handspan', ylab = 'Handspan (cm)')
boxplot(survey$africa.percent ~ survey$rand.num,
 main = 'Boxplot for Anchoring Experiment',
 ylab = 'Answer (% UN Countries from Africa)',
 xlab = 'Random Number')
Measures of Variability/Spread – 1

Range

- Range = Maximum Observation - Minimum Observation
- Very sensitive to outliers.
- Displayed in boxplot.

Interquartile Range (IQR)

- $IQR = Q_3 - Q_1$
- IQR = Range of middle 50% of the data.
- Insensitive to outliers.
- Displayed in boxplot.
Measures of Variability/Spread – 2

Variance

\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

- Essentially the average squared distance from the mean.
- (We’ll talk about \(n-1 \) versus \(n \) later in the semester)
- Sensitive to both skewness and outliers.

Standard Deviation

\[s = \sqrt{s^2} \]

- Same information as variance but more convenient since it has the same units as the data
Measures of Spread for Handspan

\[
diff(range(survey$handspan, na.rm = TRUE))
\]

[1] 13

\[
IQR(survey$handspan, na.rm = TRUE)
\]

[1] 3

\[
var(survey$handspan, na.rm = TRUE)
\]

[1] 4.753788

\[
sd(survey$handspan, na.rm = TRUE)
\]

[1] 2.180318
Lecture #3 – Summary Statistics Part II

Why squares in the definition of variance?

Skewness & Symmetry

Sample versus Population, Empirical Rule

Centering, Standardizing, & Z-Scores

Relating Two Variables: Cross-tabs, Covariance, & Correlation
Why Squares?

\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

What's Wrong With This?

\[
\frac{1}{n-1} \sum_{i=1}^{N} (x_i - \bar{x}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x} \right] = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i - n\bar{x} \right] \\
= \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i - n \cdot \frac{1}{n} \sum_{i=1}^{n} x_i \right] \\
= \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i \right] = 0
\]
Skewness – A Measure of Symmetry

\[\text{Skewness} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \]

What do the values indicate?
Zero ⇒ symmetry, positive right-skewed, negative left-skewed.

Why cubed?
To get the desired sign.

Why divide by \(s^3 \)?
So that skewness is unitless

Rule of Thumb
Typically (but not always), right-skewed ⇒ mean > median
left-skewed ⇒ mean < median
Load Survey Data

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'
survey <- read.csv(data_url)

A Function to Calculate Skewness

get_skewness <- function(x) {
 x <- na.omit(x)
 n <- length(x)
 xbar <- mean(x)
 s <- sd(x)
 skewness <- sum((x - xbar)^3) / (n * s^3)
 return(skewness)
}
Handedness is left-skewed, handspan is symmetric

c(get_skewness(survey$handedness), get_skewness(survey$handspan))

[1] -2.21905550 0.04331997

par(mfrow = c(1, 2))
hist(survey$handedness, main = 'Handedness', xlab = 'Handedness Score')
hist(survey$handspan, main = 'Handspan', xlab = 'Handspan (cm)')
Sample vs. Population and Parameter vs. Statistic

Sample vs. Population

For now, think of the population as a list of \(N \) objects \((x_1, x_2, \ldots, x_N)\) from which we draw a sample of \(n < N \) objects.

Parameter vs. Statistic

Use a sample to calculate statistics (e.g. \(\bar{x}, s^2, s \)) that estimate the corresponding population parameters (e.g. \(\mu, \sigma^2, \sigma \)).

<table>
<thead>
<tr>
<th>Parameter (Population)</th>
<th>Statistic (Sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\mu = \frac{1}{N} \sum_{i=1}^{N} x_i)</td>
<td>Mean (\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i)</td>
</tr>
<tr>
<td>Var. (\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2)</td>
<td>Var. (s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2)</td>
</tr>
<tr>
<td>S.D. (\sigma = \sqrt{\sigma^2})</td>
<td>S.D. (s = \sqrt{s^2})</td>
</tr>
</tbody>
</table>
Why Mean and Variance (and Std. Dev.)?

Empirical Rule

For large populations that are approximately bell-shaped, std. dev. tells where most observations will be relative to the mean:

- \(\approx 68\% \) of observations are in the interval \(\mu \pm \sigma \)
- \(\approx 95\% \) of observations are in the interval \(\mu \pm 2\sigma \)
- Almost all of observations are in the interval \(\mu \pm 3\sigma \)

This is a key reason why we will be interested in \(\bar{x} \) as an estimate of \(\mu \) and \(s \) as an estimate of \(\sigma \).
Which is more “extreme?”

(a) Handspan of 27cm
(b) Height of 78in
Centering: Subtract the Mean

<table>
<thead>
<tr>
<th>Handspan</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>27cm − 20.6cm = 6.4cm</td>
<td>78in − 67.6in = 10.4in</td>
</tr>
</tbody>
</table>
Standardizing: Divide by S.D.

<table>
<thead>
<tr>
<th>Handspan</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>27cm − 20.6cm = 6.4cm</td>
<td>78in − 67.6in = 10.4in</td>
</tr>
<tr>
<td>6.4cm/2.2cm ≈ 2.9</td>
<td>10.4in/4.5in ≈ 2.3</td>
</tr>
</tbody>
</table>

The units have disappeared!
Z-scores: How many standard deviations from the mean?

Best for Symmetric Distribution, No Outliers (Why?)

\[z_i = \frac{x_i - \bar{x}}{s} \]

Unitless

Allows comparison of variables with different units.

Detecting Outliers

Measures how “extreme” one observation is relative to the others.

Linear Transformation
What is the sample mean of the z-scores?

\[\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s} = \frac{1}{n \cdot s} \sum_{i=1}^{n} (x_i - \bar{x}) = 0 \]

...using the same argument as on Slide 2 of this lecture!
What is the variance of the z-scores?

\[
\begin{align*}
 s_z^2 &= \frac{1}{n-1} \sum_{i=1}^{n} (z_i - \bar{z})^2 = \frac{1}{n-1} \sum_{i=1}^{n} z_i^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right)^2 \\
 &= \frac{1}{s_x^2} \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] = \frac{s_x^2}{s_x^2} = 1
\end{align*}
\]

So what is the standard deviation of the z-scores?
Population Z-scores and the Empirical Rule: $\mu \pm 2\sigma$

If μ and σ were known, we could create a *population version* of a z-score. This lets us re-write the Empirical Rule as follows:

Bell-shaped population \Rightarrow approx. 95% of observations x_i satisfy

$$\mu - 2\sigma \leq x_i \leq \mu + 2\sigma$$

$$-2 \leq \frac{x_i - \mu}{\sigma} \leq 2$$
Crosstabs – Show Relationship between Categorical Vars.

```r
table(survey$eye.color, survey$sex)
```

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Blue</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Brown</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Copper</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Hazel</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maroon</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Who Supported the Vietnam War?

In January 1971 the Gallup poll asked: “A proposal has been made in Congress to require the U.S. government to bring home all U.S. troops before the end of this year. Would you like to have your congressman vote for or against this proposal?”

Guess the results, for respondents in each education category, and fill out this table (the two numbers in each column should add up to 100%):

<table>
<thead>
<tr>
<th>Adults with:</th>
<th>Grade school education</th>
<th>High school education</th>
<th>College education</th>
<th>Total adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>% for withdrawal of U.S. troops (doves)</td>
<td></td>
<td></td>
<td></td>
<td>73%</td>
</tr>
<tr>
<td>% against withdrawal of U.S. troops (hawks)</td>
<td></td>
<td></td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Who Were the Doves?

Which group do you think was most strongly in favor of the withdrawal of US troops from Vietnam?

(a) Adults with only a Grade School Education
(b) Adults with a High School Education
(c) Adults with a College Education

Please respond with your remote.
Who Were the Hawks?

Which group do you think was most strongly opposed to the withdrawal of US troops from Vietnam?

(a) Adults with only a Grade School Education
(b) Adults with a High School Education
(c) Adults with a College Education

Please respond with your remote.
Who *Really* Supported the Vietnam War

Gallup Poll, January 1971

<table>
<thead>
<tr>
<th>% for withdrawal of U.S. troops (doves)</th>
<th>Adults with:</th>
<th></th>
<th></th>
<th>Total adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade school education</td>
<td>High school education</td>
<td>College education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>75%</td>
<td>60%</td>
<td>73%</td>
</tr>
<tr>
<td>% against withdrawal of U.S. troops (hawks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>25%</td>
<td>40%</td>
<td>27%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Covariance and Correlation: Linear Dependence Measures

Two Samples of Numeric Data

x_1, \ldots, x_n and y_1, \ldots, y_n with means (\bar{x}, \bar{y}) and std. devs. (s_x, s_y)

Dependence

Do x and y both tend to be large (or small) at the same time?

Key Point

Use the idea of centering and standardizing to decide what “big” or “small” means in this context.
Covariance

\[s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

- Centers each observation around its mean and multiplies.
- Zero ⇒ no linear dependence
- Positive ⇒ positive linear dependence
- Negative ⇒ negative linear dependence
- Population parameter: \(\sigma_{xy} \)
- Units?
Correlation

\[r_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{s_{xy}}{s_x s_y} \]

- Centers *and* standardizes each observation
- Bounded between -1 and 1
- Zero \(\Rightarrow\) no linear dependence
- Positive \(\Rightarrow\) positive linear dependence
- Negative \(\Rightarrow\) negative linear dependence
- Population parameter: \(\rho_{xy}\)
- Unitless
Height and Handspan: Strongly Positively Associated

cov(survey$height, survey$handspan, use = 'complete.obs')

[1] 5.910786

cor(survey$height, survey$handspan, use = 'complete.obs')

[1] 0.6042423
Essential Distinction: Parameter vs. Statistic

And Population vs. Sample

N individuals in the Population, n individuals in the Sample:

<table>
<thead>
<tr>
<th></th>
<th>Parameter (Population)</th>
<th>Statistic (Sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$</td>
<td>$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$</td>
</tr>
<tr>
<td>Var.</td>
<td>$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$</td>
<td>$s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$</td>
</tr>
<tr>
<td>S.D.</td>
<td>$\sigma_x = \sqrt{\sigma_x^2}$</td>
<td>$s_x = \sqrt{s_x^2}$</td>
</tr>
<tr>
<td>Cov.</td>
<td>$\sigma_{xy} = \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y) / N$</td>
<td>$s_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) / (n-1)$</td>
</tr>
<tr>
<td>Corr.</td>
<td>$\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$</td>
<td>$r = \frac{s_{xy}}{s_x s_y}$</td>
</tr>
</tbody>
</table>
Overview / Intuition for Linear Regression

Deriving the Regression Equations

Relating Regression, Covariance and Correlation
Predict Second Midterm given 81 on First

Score on Midterm 1 (%) vs. Score on Midterm 2 (%) chart.
Predict Second Midterm given 81 on First
But if they’d only gotten 79 we’d predict higher?!
No one who took both exams got 89 on the first!
Regression: “Best Fitting” Line Through Cloud of Points
Least Squares Regression – Predict Using a Line

The Prediction

Predict score \(\hat{y} = a + bx \) on 2nd midterm if you scored \(x \) on 1st

How to choose \((a, b)\)?

Linear regression chooses the slope \((b)\) and intercept \((a)\) that minimize the sum of squared vertical deviations

\[
\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2
\]

Why Squared Deviations?
Important Point About Notation

\[
\min_{a,b} \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2
\]

\[
\hat{y} = a + bx
\]

- \((a, b)\) are our choice variables
- \((x_1, y_1), \ldots, (x_n, y_n)\) are the observed data
- \(\hat{y}\) is our prediction for a given value of \(x\)
- Neither \(x\) nor \(\hat{y}\) needs to be in our dataset!
Try choosing \((a, b)\) to minimize the sum of squared vertical deviations...
Running the Regression in R

```r
# Read data
data_url <- 'http://ditraglia.com/econ103/midterms.csv'
exams <- read.csv(data_url)

# Drop students who missed an exam
exams <- na.omit(exams)

# Run the regression and display the slope and intercept
reg <- lm(Midterm2 ~ Midterm1, data = exams)
coef(reg)

## (Intercept)   Midterm1
## 32.5745441    0.6130357
```
By hand

$$32.5745441 + 0.6130357 \times 89$$

[1] 87.13472

Using predict()

```r
missing_student <- data.frame(Midterm1 = 89)
predict(reg, newdata = missing_student)
```

1

87.13472
You Need to Know How To Derive This

Minimize the sum of squared vertical deviations from the line:

\[
\min_{a,b} \sum_{i=1}^{n} (y_i - a - bx_i)^2
\]

How should we proceed?

(a) Differentiate with respect to \(x\)

(b) Differentiate with respect to \(y\)

(c) Differentiate with respect to \(x, y\)

(d) Differentiate with respect to \(a, b\)

(e) Can’t solve this with calculus.
Objective Function

\[
\min_{a,b} \sum_{i=1}^{n} (y_i - a - bx_i)^2
\]

FOC with respect to \(a\)

\[-2 \sum_{i=1}^{n} (y_i - a - bx_i) = 0\]

\[\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a - b \sum_{i=1}^{n} x_i = 0\]

\[\frac{1}{n} \sum_{i=1}^{n} y_i - \frac{n}{n} a - \frac{b}{n} \sum_{i=1}^{n} x_i = 0\]

\[\bar{y} - a - b\bar{x} = 0\]
Regression Line Goes Through the Means!

\[\bar{y} = a + b\bar{x} \]

If your score equaled the class average on Midterm #1, we predict that your score will equal the class average on Midterm #2.
Substitute \(a = \bar{y} - b\bar{x} \)

\[
\sum_{i=1}^{n} (y_i - a - bx_i)^2 = \sum_{i=1}^{n} (y_i - \bar{y} + b\bar{x} - bx_i)^2
\]

\[
= \sum_{i=1}^{n} [(y_i - \bar{y}) - b(x_i - \bar{x})]^2
\]

FOC wrt \(b \)

\[-2\sum_{i=1}^{n} [(y_i - \bar{y}) - b(x_i - \bar{x})](x_i - \bar{x}) = 0\]

\[
\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) - b\sum_{i=1}^{n} (x_i - \bar{x})^2 = 0
\]

\[
b = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
Simple Linear Regression

Problem

\[\min_{a, b} \sum_{i=1}^{n} (y_i - a - bx_i)^2 \]

Solution

\[b = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

\[a = \bar{y} - b\bar{x} \]
Relating Regression to Covariance and Correlation

\[b = \frac{\sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x}) \] = \frac{s_{xy}}{s_x^2}

\[r = \frac{s_{xy}}{s_x s_y} = b \frac{s_x}{s_y} \]
Comparing Regression, Correlation and Covariance

Units
Correlation is unitless, covariance and regression coefficients \((a, b)\) are not. (What are the units of these?)

Symmetry
Correlation and covariance are symmetric, regression isn’t. (Switching \(x\) and \(y\) \(a\) and \(b\): Review Exercise.)

Extension Problem
Regression with z-scores rather than raw data gives \(a = 0, b = r_{xy}\)
\[s_{xy} = 6, \quad s_x = 5, \quad s_y = 2, \quad \bar{x} = 68, \quad \bar{y} = 21 \]

What is the sample correlation between height \((x)\) and handspan \((y)\)?

\[
r = \frac{s_{xy}}{s_x s_y} = \frac{6}{5 \times 2} = 0.6
\]
\[s_{xy} = 6, \quad s_x = 5, \quad s_y = 2, \quad \bar{x} = 68, \quad \bar{y} = 21 \]

What is the value of \(b \) for the regression:

\[\hat{y} = a + bx \]

where \(x \) is height and \(y \) is handspan?

\[b = \frac{s_{xy}}{s_x^2} = \frac{6}{5^2} = \frac{6}{25} = 0.24 \]
\[s_{xy} = 6, \quad s_x = 5, \quad s_y = 2, \quad \bar{x} = 68, \quad \bar{y} = 21 \]

What is the value of \(a \) for the regression:

\[\hat{y} = a + bx \]

where \(x \) is height and \(y \) is handspan?

(prev. slide \(b = 0.24 \))

\[a = \bar{y} - b\bar{x} = 21 - 0.24 \times 68 = 4.68 \]
```r
x <- seq(from = -1, to = 1, by = 0.1)
y <- x^2
cor(x, y)

## [1] 1.216307e-16

plot(x, y); abline(lm(y ~ x))
```
Extremely Important Points to Remember!

- Regression, covariance, and correlation are all measures of linear dependence.
- Linear dependence need not imply a causal relationship.
- Dependence could be non-linear: always plot your data!
Lecture #5 – Basic Probability I

Probability as Long-run Relative Frequency

Sets, Events and Axioms of Probability

“Classical” Probability
Our Definition of Probability for this Course

Probability = Long-run Relative Frequency

That is, relative frequencies settle down to probabilities if we carry out an experiment over, and over, and over...
Rolling a Fair, Six-Sided Die in R

```r
# Function to plot relative frequencies
plot_freq <- function(x) {
  n <- length(x)
  rel_freq <- prop.table(table(x))
  plot(rel_freq, ylab = 'Relative Frequency',
       xlab = bquote(n == .(n)))
}

# Roll a fair die 1 Million times
set.seed(1234567890)
dice <- sample(1:6, size = 1e6, replace = TRUE)
```
plot_freq(dice[1:10])
plot_freq(dice[1:50])

n = 50

Relative Frequency

1 2 3 5 6
plot_freq(dice[1:1000])

n = 1000
Relative Frequency
1 2 3 4 5 6

F.J. DiTraglia, Econ 103
plot_freq(dice)

n = 1000000

Relative Frequency

1 2 3 4 5 6

n = 1000000
What do you think of this argument?

- The probability of flipping heads is 1/2: if we flip a coin many times, about half of the time it will come up heads.
- The last ten throws in a row the coin has come up heads.
- The coin is bound to come up tails next time – it would be very rare to get 11 heads in a row.

(a) Agree
(b) Disagree
The Gambler’s Fallacy

Relative frequencies settle down to probabilities, but this does not mean that the trials are dependent.

Dependent = “Memory” of Prev. Trials

Independent = No “Memory” of Prev. Trials
Terminology

Random Experiment
An experiment whose outcomes are random.

Basic Outcomes
Possible outcomes (mutually exclusive) of random experiment.

Sample Space: S
Set of all basic outcomes of a random experiment.

Event: E
A subset of the Sample Space (i.e. a collection of basic outcomes).
In set notation we write $E \subseteq S$.
Example

Random Experiment
Tossing a pair of dice.

Basic Outcome
An ordered pair \((a, b)\) where \(a, b \in \{1, 2, 3, 4, 5, 6\}\), e.g. \((2, 5)\)

Sample Space: \(S\)
All ordered pairs \((a, b)\) where \(a, b \in \{1, 2, 3, 4, 5, 6\}\)

Event: \(E = \{\text{Sum of two dice is less than 4}\}\)
\[\{(1, 1), (1, 2), (2, 1)\}\]
The event E contains the basic outcomes O_3 and O_2 but not O_1.
Probability is Defined on Sets, and Events are Sets
Complement of an Event: $A^c = \neg A$

Figure: The complement A^c of an event $A \subseteq S$ is the collection of all basic outcomes from S not contained in A.
Intersection of Events: \(A \cap B = A \) and \(B \)

Figure: The intersection \(A \cap B \) of two events \(A, B \subseteq S \) is the collection of all basic outcomes from \(S \) contained in both \(A \) and \(B \)
Union of Events: $A \cup B = A \text{ or } B$

Figure: The union $A \cup B$ of two events $A, B \subseteq S$ is the collection of all basic outcomes from S contained in A, B or both.
Mutually Exclusive and Collectively Exhaustive

Mutually Exclusive Events

A collection of events E_1, E_2, E_3, \ldots is mutually exclusive if the intersection $E_i \cap E_j$ of any two different events is empty.

Collectively Exhaustive Events

A collection of events E_1, E_2, E_3, \ldots is collectively exhaustive if, taken together, they contain all of the basic outcomes in S. Another way of saying this is that the union $E_1 \cup E_2 \cup E_3 \cup \cdots$ is S.
Implications

Mutually Exclusive Events
If one of the events occurs, then none of the others did.

Collectively Exhaustive Events
One of these events must occur.
Mutually Exclusive but *not* Collectively Exhaustive

Figure: Although A and B don’t overlap, they also don’t cover S.
Collectively Exhaustive but *not Mutually Exclusive*

Figure: Together A, B, C and D cover S, but D overlaps with B and C.
Collectively Exhaustive \textit{and} Mutually Exclusive

\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
A & B & C \\
\hline
\end{tabular}
\end{center}
\end{figure}

\textbf{Figure:} A, B, and C cover S and don’t overlap.
Axioms of Probability

We assign every event A in the sample space S a real number $P(A)$ called the probability of A such that:

Axiom 1 $0 \leq P(A) \leq 1$

Axiom 2 $P(S) = 1$

Axiom 3 If A_1, A_2, A_3, \ldots are mutually exclusive events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$
“Classical” Probability

When all of the basic outcomes are equally likely, calculating the probability of an event is simply a matter of counting – count up all the basic outcomes that make up the event, and divide by the total number of basic outcomes.
Recall from High School Math:

Multiplication Rule for Counting

n_1 ways to make first decision, n_2 ways to make second, . . . , n_k ways to make kth $\Rightarrow n_1 \times n_2 \times \cdots \times n_k$ total ways to decide.

Corollary – Number of Possible Orderings

$k \times (k - 1) \times (k - 2) \times \cdots \times 2 \times 1 = k!$

Permutations – Order n people in k slots

$P^n_k = \frac{n!}{(n-k)!}$ \hspace{1cm} (Order Matters)

Combinations – Choose committee of k from group of n

\[
{n \choose k} = \frac{n!}{k!(n-k)!}, \text{ where } 0! = 1 \hspace{1cm} \text{(Order Doesn’t Matter)}
\]
Poker – Deal 5 Cards, Order Doesn’t Matter

Basic Outcomes
\[\binom{52}{5} \text{ possible hands} \]

How Many Hands have Four Aces?
48 (\# of ways to choose the single card that is not an ace)

Probability of Getting Four Aces
\[\frac{48}{\binom{52}{5}} \approx 0.00002 \]
Roger Federer and Novak Djokovic have agreed to play in a tennis tournament against six Penn professors. Each player in the tournament is randomly allocated to one of the eight rungs in the ladder (next slide). Federer always beats Djokovic and, naturally, either of the two pros always beats any of the professors. What is the probability that Djokovic gets second place in the tournament?
Solution: Order Matters!

Denominator
8! basic outcomes – ways to arrange players on tournament ladder.

Numerator
Sequence of three decisions:

1. Which rung to put Federer on? (8 possibilities)
2. Which rung to put Djokovic on?
 ▶ For any given rung that Federer is on, only 4 rungs prevent Djokovic from meeting him until the final.
3. How to arrange the professors? (6! ways)

\[
\frac{8 \times 4 \times 6!}{8!} = \frac{8 \times 4}{7 \times 8} = \frac{4}{7} \approx 0.57
\]
Lecture #6 – Basic Probability II

Complement Rule, Logical Consequence Rule, Addition Rule

Conditional Probability

Independence, Multiplication Rule

Law of Total Probability
Recall: Axioms of Probability

Let S be the sample space. With each event $A \subseteq S$ we associate a real number $P(A)$ called the probability of A, satisfying the following conditions:

Axiom 1 \[0 \leq P(A) \leq 1 \]

Axiom 2 \[P(S) = 1 \]

Axiom 3 If A_1, A_2, A_3, \ldots are mutually exclusive events, then

\[P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots \]
The Complement Rule: $P(A^c) = 1 - P(A)$

Since A, A^c are mutually exclusive and collectively exhaustive:

$$P(A \cup A^c) = P(A) + P(A^c) = P(S) = 1$$

Rearranging:

$$P(A^c) = 1 - P(A)$$

Figure: $A \cap A^c = \emptyset$, $A \cup A^c = S$
Another Important Rule – Equivalent Events

If A and B are Logically Equivalent, then $P(A) = P(B)$.

In other words, if A and B contain exactly the same basic outcomes, then $P(A) = P(B)$.

Although this seems obvious it’s important to keep in mind...
The Logical Consequence Rule

If B Logically Entails A, then $P(B) \leq P(A)$

For example, the probability that someone comes from Texas cannot exceed the probability that she comes from the USA.

In Set Notation

$B \subseteq A \Rightarrow P(B) \leq P(A)$

Why is this so?

If $B \subseteq A$, then all the basic outcomes in B are also in A.
Proof of Logical Consequence Rule

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

$$= P(B) + P(A \cap B^c)$$

$$\geq P(B)$$

because $0 \leq P(A \cap B^c) \leq 1$.

Figure:

$B = A \cap B$, and $A = B \cup (A \cap B^c)$
Pia is thirty-one years old, single, outspoken, and smart. She was a philosophy major. When a student, she was an ardent supporter of Native American rights, and she picketed a department store that had no facilities for nursing mothers. Rank the following statements in order from most probable to least probable.

(A) Pia is an active feminist.
(B) Pia is a bank teller.
(C) Pia works in a small bookstore.
(D) Pia is a bank teller and an active feminist.
(E) Pia is a bank teller and an active feminist who takes yoga classes.
(F) Pia works in a small bookstore and is an active feminist who takes yoga classes.
Using the Logical Consequence Rule...

(A) Pia is an active feminist.
(B) Pia is a bank teller.
(C) Pia works in a small bookstore.
(D) Pia is a bank teller and an active feminist.
(E) Pia is a bank teller and an active feminist who takes yoga classes.
(F) Pia works in a small bookstore and is an active feminist who takes yoga classes.

Any Correct Ranking Must Satisfy:

\[P(A) \geq P(D) \geq P(E) \]
\[P(A) \geq P(D) \geq P(E) \]
\[P(A) \geq P(F) \]
\[P(C) \geq P(F) \]
Throw a Fair Die Once

\[E = \text{roll an even number} \]

What are the basic outcomes?
\{1, 2, 3, 4, 5, 6\}

What is \(P(E) \)?

\(E = \{2, 4, 6\} \) and the basic outcomes are equally likely (and mutually exclusive), so

\[P(E) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \]
Throw a Fair Die Once

\(E = \text{roll an even number} \quad M = \text{roll a 1 or a prime number} \)

What is \(P(E \cup M) \)?

Key point: \(E \) and \(M \) are not mutually exclusive!

\[
P(E \cup M) = P(\{1, 2, 3, 4, 5, 6\}) = 1
\]
\[
P(E) = P(\{2, 4, 6\}) = 1/2
\]
\[
P(M) = P(\{1, 2, 3, 5\}) = 4/6 = 2/3
\]

\[
P(E) + P(M) = 1/2 + 2/3 = 7/6 \neq P(E \cup M) = 1
\]
The Addition Rule – Don’t Double-Count!

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

Construct a formal proof as an optional homework problem.
Who’s on the other side?
Three Cards, Each with a Face on the Front and Back

1. Gaga/Gaga
2. Obama/Gaga
3. Obama/Obama

I draw a card at random and look at one side: it’s Obama. What is the probability that the other side is also Obama?
Let’s Try The Method of Monte Carlo...

When you don’t know how to calculate, simulate.

Procedure

1. Close your eyes and thoroughly shuffle your cards.
2. Keeping eyes closed, draw a card and place it on your desk.
3. Stand if Obama is face-up on your chosen card.
4. We’ll count those standing and call the total N
5. Of those standing, sit down if Obama is not on the back of your chosen card.
6. We’ll count those still standing and call the total m.

Monte Carlo Approximation of Desired Probability $= \frac{m}{N}$
draw_simulation <- function() {
 cards <- c('GG', 'OG', 'OO')
 random_card <- sample(cards, size = 1)
 if(random_card == 'GG') {
 faces <- c('G', 'G')
 } else if(random_card == 'OO') {
 faces <- c('O', 'O')
 } else {
 faces <- c('O', 'G')
 }
 out <- sample(faces)
 names(out) <- c('front', 'back')
 return(out)
}
```r
set.seed(54321)
simulations <- replicate(n = 1000, draw_simulation())
simulations <- data.frame(t(simulations))
head(simulations)

##   front back
## 1     O   G
## 2     G   G
## 3     G   G
## 4     O   G
## 5     G   G
## 6     O   O

Obama_on_front <- subset(simulations, front == 'O')
mean(Obama_on_front$back == 'O')

## [1] 0.6633065
```
Conditional Probability – Reduced Sample Space

Set of relevant outcomes restricted by condition

\[P(A|B) = \frac{P(A \cap B)}{P(B)}, \text{ provided } P(B) > 0 \]

Figure: \(B \) becomes the “new sample space” so we need to re-scale by \(P(B) \) to keep probabilities between zero and one.
Who’s on the other side?

Let \(F \) be the event that Obama is on the front of the card of the card we draw and \(B \) be the event that he is on the back.

\[
P(B|F) = \frac{P(B \cap F)}{P(F)} = \frac{1/3}{1/2} = \frac{2}{3}
\]
Conditional Versions of Probability Axioms

1. \(0 \leq P(A|B) \leq 1\)

2. \(P(B|B) = 1\)

3. If \(A_1, A_2, A_3, \ldots\) are mutually exclusive given \(B\), then
\[
P(A_1 \cup A_2 \cup A_3 \cup \cdots | B) = P(A_1|B) + P(A_2|B) + P(A_3|B) \ldots
\]

Conditional Versions of Other Probability Rules

- \(P(A|B) = 1 - P(A^c|B)\)
- \(A_1\) logically equivalent to \(A_2 \iff P(A_1|B) = P(A_2|B)\)
- \(A_1 \subseteq A_2 \implies P(A_1|B) \leq P(A_2|B)\)
- \(P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B) - P(A_1 \cap A_2|B)\)

However: \(P(A|B) \neq P(B|A)\) and \(P(A|B^c) \neq 1 - P(A|B)\)
Independence and The Multiplication Rule

The Multiplication Rule

Rearrange the definition of conditional probability:
\[P(A \cap B) = P(A|B)P(B) \]

Statistical Independence

\[P(A \cap B) = P(A)P(B) \]

By the Multiplication Rule

Independence \iff \[P(A|B) = P(A) \]

Interpreting Independence

Knowledge that \(B \) has occurred tells nothing about whether \(A \) will.
Will Having 5 Children Guarantee a Boy?

A couple plans to have five children. Assuming that each birth is independent and male and female children are equally likely, what is the probability that they have at least one boy?

By Independence and the Complement Rule,

\[
P(\text{no boys}) = P(5 \text{ girls})
\]

\[
= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
\]

\[
= \frac{1}{32}
\]

\[
P(\text{at least 1 boy}) = 1 - P(\text{no boys})
\]

\[
= 1 - \frac{1}{32} = \frac{31}{32} = 0.97
\]
The Law of Total Probability

If E_1, E_2, \ldots, E_k are mutually exclusive, collectively exhaustive events and A is another event, then

$$P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + \ldots + P(A|E_k)P(E_k)$$
Example of Law of Total Probability

Define the following events:

\[F = \text{Obama on front of card} \]
\[A = \text{Draw card with two Gagas} \]
\[B = \text{Draw card with two Obamas} \]
\[C = \text{Draw card with BOTH Obama and Gaga} \]

\[
P(F) = P(F|A)P(A) + P(F|B)P(B) + P(F|C)P(C)
\]
\[
= 0 \times \frac{1}{3} + 1 \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3}
\]
\[
= \frac{1}{2}
\]
Deriving the Law of Total Probability For $k = 2$

Since $A \cap B$ and $A \cap B^c$ are mutually exclusive and their union equals A,

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

But by the multiplication rule:

$$P(A \cap B) = P(A|B)P(B)$$
$$P(A \cap B^c) = P(A|B^c)P(B^c)$$

Combining,

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

Figure:

$A = (A \cap B) \cup (A \cap B^c)$, $(A \cap B) \cap (A \cap B^c) = \emptyset$
Bayes’ Rule and the Base Rate Fallacy

Overview of Random Variables

Probability Mass Functions
Four Volunteers Please!
The Lie Detector Problem

From accounting records, we know that 10% of employees in the store are stealing merchandise.

The managers want to fire the thieves, but their only tool in distinguishing is a lie detector test that is 80% accurate:

- Innocent ⇒ Pass test with 80% Probability
- Thief ⇒ Fail test with 80% Probability

What is the probability that someone is a thief given that she has failed the lie detector test?
Monte Carlo Simulation – Roll a 10-sided Die Twice

Managers will split up and visit employees. Employees roll the die twice but keep the results secret!

First Roll – Thief or not?
0 ⇒ Thief, 1 – 9 ⇒ Innocent

Second Roll – Lie Detector Test
0, 1 ⇒ Incorrect Test Result, 2 – 9 Correct Test Result

<table>
<thead>
<tr>
<th></th>
<th>0 or 1</th>
<th>2–9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thief</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>Innocent</td>
<td>Fail</td>
<td>Pass</td>
</tr>
</tbody>
</table>
What percentage of those who failed the test are guilty?

Who Failed Lie Detector Test:

Of Thieves Among Those Who Failed:
draw_simulation <- function() {
 guilty <- FALSE
 fail <- FALSE
 die1 <- sample(0:9, size = 1)
 die2 <- sample(0:9, size = 1)
 if(die1 == 0) { # Thief
 guilty <- TRUE
 if(die2 >= 2) fail <- TRUE
 } else { # Innocent
 if(die2 < 2) fail <- TRUE
 }
 return(c(guilty = guilty, fail = fail))
}
set.seed(123456)
simulations <- replicate(n = 1000, draw_simulation())
simulations <- data.frame(t(simulations))
head(simulations)

guilty fail
1 FALSE FALSE
2 FALSE FALSE
3 FALSE TRUE
4 FALSE TRUE
5 FALSE TRUE
6 FALSE FALSE

failed_test <- subset(simulations, fail)
mean(failed_test$guilty)

[1] 0.311828
Base Rate Fallacy – Failure to Consider Prior Information

Base Rate – Prior Information

Before the test we know that 10% of Employees are stealing.

People tend to focus on the fact that the test is 80% accurate and ignore the fact that only 10% of the employees are theives.
Table: Thief (Y/N), Lie Detector (P/F)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>YP</td>
<td>YP</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
<td>YF</td>
</tr>
<tr>
<td>1</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>2</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>3</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>4</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>6</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>7</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>8</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>9</td>
<td>NF</td>
<td>NF</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
</tbody>
</table>

Each outcome in the table is equally likely. The 26 given in red correspond to failing the test, but only 8 of these (YF) correspond to being a thief.
Base Rate of Thievery is 10%

Figure: Although \(\frac{9}{50} + \frac{4}{50} = \frac{13}{50} \) fail the test, only \(\frac{4/50}{13/50} = \frac{4}{13} \approx 0.31 \) are actually theives!
Deriving Bayes’ Rule

Intersection is symmetric: \(A \cap B = B \cap A \) so \(P(A \cap B) = P(B \cap A) \)

By the definition of conditional probability,

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

And by the multiplication rule:

\[
P(B \cap A) = P(B|A)P(A)
\]

Finally, combining these

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]
Understanding Bayes’ Rule

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

Reversing the Conditioning

Express \(P(A|B) \) in terms of \(P(B|A) \). *Relative magnitudes* of the two conditional probabilities determined by the ratio \(P(A)/P(B) \).

Base Rate

\(P(A) \) is called the “base rate” or the “prior probability.”

Denominator

Typically, we calculate \(P(B) \) using the law of total probability
In General \(P(A|B) \neq P(B|A) \)

Question

Most college students are Democrats. Does it follow that most Democrats are college students? \((A = \text{YES}, \ B = \text{NO}) \)

Answer

There are many more Democrats than college students:

\[P(\text{Dem}) > P(\text{Student}) \]

so \(P(\text{Student}|\text{Dem}) \) is small even though \(P(\text{Dem}|\text{Student}) \) is large.
Solving the Lie Detector Problem with Bayes’ Rule

\[T = \text{Employee is a Thief}, \quad F = \text{Employee Fails Lie Detector Test} \]

\[P(T|F) = \frac{P(F|T)P(T)}{P(F)} \]

\[P(F) = P(F|T)P(T) + P(F|T^c)P(T^c) \]
\[= 0.8 \times 0.1 + 0.2 \times 0.9 \]
\[= 0.08 + 0.18 = 0.26 \]

\[P(T|F) = \frac{0.08}{0.26} = \frac{8}{26} = \frac{4}{13} \approx 0.31 \]
Random Variables
Random Variables

A random variable is neither random nor a variable.

Random Variable (RV): X

A fixed function that assigns a number to each basic outcome of a random experiment.

Realization: x

A particular numeric value that an RV could take on. We write $\{X = x\}$ to refer to the event that the RV X took on the value x.

Support Set (aka Support)

The set of all possible realizations of a RV.
Random Variables (continued)

Notation
Capital latin letters for RVs, e.g. X, Y, Z, and the corresponding lowercase letters for their realizations, e.g. x, y, z.

Intuition
A RV is machine that spits out random numbers. The machine is deterministic: outputs are random because inputs are random.

Why Random Variables?
Different random experiments can have the same structure: e.g. flipping a fair coin vs. drawing a ball from an urn with 5 red and 5 blue. RVs abstract from coin vs. urn and let us study both at once.
Example: Coin Flip Random Variable

Figure: This random variable assigns numeric values to the random experiment of flipping a fair coin once: Heads is assigned 1 and Tails 0.
Which of these is a realization of the Coin Flip RV?

(a) Tails
(b) 2
(c) 0
(d) Heads
(e) 1/2
What is the support set of the Coin Flip RV?

(a) \{\text{Heads, Tails}\}
(b) \frac{1}{2}
(c) 0
(d) \{0, 1\}
(e) 1
Let X denote the Coin Flip RV

What is $P(X = 1)$?

(a) 0
(b) 1
(c) $1/2$
(d) Not enough information to determine
Two Kinds of RVs: Discrete and Continuous

Discrete support set is discrete, e.g. \{0, 1, 2\},
\{\ldots, -2, -1, 0, 1, 2, \ldots\}

Continuous support set is continuous, e.g. \([-1, 1]\), \(\mathbb{R}\).

Start with the discrete case since it's easier, but most of the ideas we learn will carry over to the continuous case.
Discrete Random Variables I
Probability Mass Function (pmf)

A function that gives $P(X = x)$ for any realization x in the support set of a discrete RV X. We use the following notation for the pmf:

$$p(x) = P(X = x)$$

Plug in a realization x, get out a probability $p(x)$.
Probability Mass Function for Coin Flip RV

\[X = \begin{cases}
0, & \text{Tails} \\
1, & \text{Heads}
\end{cases} \]

\[p(0) = \frac{1}{2} \]

\[p(1) = \frac{1}{2} \]

Figure: Plot of pmf for Coin Flip Random Variable
Important Note about Support Sets

Whenever you write down the pmf of a RV, it is crucial to also write down its Support Set. Recall that this is the set of all possible realizations for a RV. Outside of the support set, all probabilities are zero. In other words, the pmf is only defined on the support.
Properties of Probability Mass Functions

If \(p(x) \) is the pmf of a random variable \(X \), then

(i) \(0 \leq p(x) \leq 1 \) for all \(x \)

(ii) \(\sum \text{ all } x \) \(p(x) = 1 \)

where “all \(x \)” is shorthand for “all \(x \) in the support of \(X \).”
Lecture #8 – Discrete RVs II

Cumulative Distribution Functions (CDFs)

The Bernoulli Random Variable

Definition of Expected Value

Expected Value of a Function

Linearity of Expectation
Recall: Properties of Probability Mass Functions

If $p(x)$ is the pmf of a random variable X, then

(i) $0 \leq p(x) \leq 1$ for all x

(ii) $\sum_{\text{all } x} p(x) = 1$

where “all x” is shorthand for “all x in the support of X."

F.J. DiTraglia, Econ 103
Cumulative Distribution Function (CDF)

This Def. is the same for continuous RVs.

The CDF gives the probability that a RV \(X \) does not exceed a specified threshold \(x_0 \), as a function of \(x_0 \)

\[
F(x_0) = P(X \leq x_0)
\]

Important!

The threshold \(x_0 \) is allowed to be any real number. In particular, it doesn’t have to be in the support of \(X \)!
Discrete RVs: Sum the pmf to get the CDF

\[F(x_0) = \sum_{x \leq x_0} p(x) \]

Why?

The events \(\{X = x\} \) are mutually exclusive, so we sum to get the probability of their union for all \(x \leq x_0 \):

\[
F(x_0) = P(X \leq x_0) = P \left(\bigcup_{x \leq x_0} \{X = x\} \right) = \sum_{x \leq x_0} P(X = x) = \sum_{x \leq x_0} p(x)
\]
Probability Mass Function

\[p(x) \]

\[p(0) = \frac{1}{2} \]

\[p(1) = \frac{1}{2} \]

Cumulative Dist. Function

\[F(x_0) = \begin{cases}
0, & x_0 < 0 \\
\frac{1}{2}, & 0 \leq x_0 < 1 \\
1, & x_0 \geq 1
\end{cases} \]
Properties of CDFs
These are also true for continuous RVs.

1. \(\lim_{x_0 \to \infty} F(x_0) = 1 \)
2. \(\lim_{x_0 \to -\infty} F(x_0) = 0 \)
3. Non-decreasing: \(x_0 < x_1 \Rightarrow F(x_0) \leq F(x_1) \)
4. Right-continuous ("open" versus "closed" on prev. slide)

Since \(F(x_0) = P(X \leq x_0) \), we have \(0 \leq F(x_0) \leq 1 \) for all \(x_0 \)
Bernoulli Random Variable – Generalization of Coin Flip

Support Set

\{0, 1\} – 1 traditionally called “success,” 0 “failure”

Probability Mass Function

\[
p(0) = 1 - p \\
p(1) = p
\]

Cumulative Distribution Function

\[
F(x_0) = \begin{cases}
0, & x_0 < 0 \\
1 - p, & 0 \leq x_0 < 1 \\
1, & x_0 \geq 1
\end{cases}
\]
http://fditraglia.shinyapps.io/binom_cdf/

Set the second slider to 1 and play around with the others.
If the realizations of the coin-flip RV were payoffs, how much would you expect to win per play *on average* in a long sequence of plays?

\[X = \begin{cases}
 \$0, & \text{Tails} \\
 \$1, & \text{Heads}
\end{cases} \]
Expected Value (aka Expectation)

The expected value of a discrete RV X is given by

$$E[X] = \sum_{\text{all } x} x \cdot p(x)$$

In other words, the expected value of a discrete RV is the probability-weighted average of its realizations.

Notation

We sometimes write μ as shorthand for $E[X]$.
Expected Value of Bernoulli RV

\[X = \begin{cases}
0, & \text{Failure: } 1 - p \\
1, & \text{Success: } p
\end{cases} \]

\[\sum_{\text{all } x} x \cdot p(x) = 0 \cdot (1 - p) + 1 \cdot p = p \]
Let X be a random variable with support set $\{1, 2, 3\}$ where $p(1) = p(2) = 1/3$. Calculate $E[X]$.

$$E[X] = \sum_{\text{all } x} x \cdot p(x) = 1 \times 1/3 + 2 \times 1/3 + 3 \times 1/3 = 2$$
Notation: $X \sim \text{Bernoulli}(p)$

Means X is a Bernoulli RV with $P(X = 1) = p$ and $P(X = 0) = 1 - p$. The tilde is read “distributes as.”

Parameter

Any constant that appears in the definition of a RV, here p.
Constants Versus Random Variables

This is a crucial distinction that students sometimes miss:

Random Variables

- Suppose X is a RV – the values it takes on are random
- A function $g(X)$ of a RV is itself a RV as we’ll learn today.

Constants

- $E[X]$ is a constant (you should convince yourself of this)
- Realizations x are constants. What is random is *which* realization the RV takes on.
- Parameters are constants (e.g. p for Bernoulli RV)
- Sample size n is a constant
How Much Would You Pay?

How much would you be willing to pay for the right to play the following game?

Imagine a fair coin. The coin is tossed once. If it falls heads, you receive a prize of $2 and the game stops. If not, it is tossed again. If it falls heads on the second toss, you get $4 and the game stops. If not, it is tossed again. If it falls heads on the third toss, you get $8 and the game stops, and so on. The game stops after the first head is thrown. If the first head is thrown on the \(x^{th} \) toss, the prize is $2^x.$
$X = \text{Trial Number of First Head}$

<table>
<thead>
<tr>
<th>x</th>
<th>2^x</th>
<th>$p(x)$</th>
<th>$2^x \cdot p(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1/4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1/8</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>2^n</td>
<td>1/2n</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$$E[Y] = \sum_{\text{all } x} 2^x \cdot p(x) = 1 + 1 + 1 + \ldots = \infty$$
Functions of Random Variables are Themselves Random Variables
Example: \(X \sim \text{Bernoulli}(p), \ Y = (X + 1)^2 \)

Support Set for \(Y \)
\[
\{(0 + 1)^2, (1 + 1)^2\} = \{1, 4\}
\]

Probability Mass Function for \(Y \)
\[
p_Y(y) = \begin{cases}
1 - p & y = 1 \\
p & y = 4 \\
0 & \text{otherwise}
\end{cases}
\]

Expected Value of \(Y \)
\[
\sum_{y \in \{1, 4\}} y \times p_Y(y) = 1 \times (1 - p) + 4 \times p = 1 + 3p
\]
Example: \(X \sim \text{Bernoulli}(p), \ Y = (X + 1)^2 \)

\[
E[g(X)] = E[(X + 1)^2]
\]

\[
\sum_{y \in \{1,4\}} y \times p_Y(y) = 1 \times (1 - p) + 4 \times p = 1 + 3p
\]

\[
g(E[X]) = (E[X] + 1)^2
\]

\[
(E[X] + 1)^2 = (p + 1)^2 = 1 + 2p + p^2
\]

In general: \(1 + 3p \neq 1 + 2p + p^2! \)
\[E[g(X)] \neq g(E[X]) \]

(Expected value of Function \(\neq \) Function of Expected Value)
Expectation of a Function of a Discrete RV

Let X be a random variable and g be a function. Then:

$$E[g(X)] = \sum_{\text{all } x} g(x)p(x)$$

This is how we proceeded in the St. Petersburg Game Example
Your Turn: Calculate $E[X^2]$

X has support $\{-1, 0, 1\}$, $p(-1) = p(0) = p(1) = \frac{1}{3}$.

$$E[X^2] = \sum_{x \in \{-1, 0, 1\}} x^2 p(x) = \sum_{x \in \{-1, 0, 1\}} x^2 p(x)$$

$$= (-1)^2 \cdot \frac{1}{3} + (0)^2 \cdot \frac{1}{3} + (1)^2 \cdot \frac{1}{3}$$

$$= \frac{1}{3} + \frac{1}{3}$$

$$= \frac{2}{3} \approx 0.67$$
```r
set.seed(794729)
sims <- sample(c(-1, 0, 1), size = 1e6, replace = TRUE,
               prob = c(1/3, 1/3, 1/3))
head(sims)

## [1] 1 -1 0 0 1 1

mean(sims)

## [1] -0.001182

mean(sims^2)

## [1] 0.66682
```
Linearity of Expectation

Holds for Continuous RVs as well, but proof is different.

Let X be a RV and a, b be constants. Then:

$$E[a + bX] = a + bE[X]$$

This is a Crucial Exception

In general $E[g(X)]$ does not equal $g(E[X])$. But in the special case where g is a linear function, $g(X) = a + bX$, the two are equal.
Example: Linearity of Expectation

Let $X \sim \text{Bernoulli}(1/3)$ and define $Y = 3X + 2$

1. What is $E[X]$? \[E[X] = 0 \times \frac{2}{3} + 1 \times \frac{1}{3} = \frac{1}{3} \]

Proof: Linearity of Expectation For Discrete RV

\[E[a + bX] = \sum_{all \ x} (a + bx) p(x) \]

\[= \sum_{all \ x} p(x) \cdot a + \sum_{all \ x} p(x) \cdot bx \]

\[= a \sum_{all \ x} p(x) + b \sum_{all \ x} x \cdot p(x) \]

\[= a + bE[X] \]
Variance and Standard Deviation of a Random Variable

Binomial Random Variable
Variance and Standard Deviation of a RV

TheDefs are the same for continuous RVs, but the method of calculating will differ.

Variance (Var)

\[\sigma^2 = \text{Var}(X) = E [(X - \mu)^2] = E [(X - E[X])^2] \]

Standard Deviation (SD)

\[\sigma = \sqrt{\sigma^2} = \text{SD}(X) \]
Key Point

Variance and std. dev. are *expectations of functions of a RV*

It follows that:

1. Variance and SD are constants
2. To derive facts about them you can use the facts you know about expected value
How To Calculate Variance for Discrete RV?

Remember: it's just a function of X!

Recall that $\mu = E[X] = \sum_{\text{all } x} x p(x)$

$$\text{Var}(X) = E \left[(X - \mu)^2 \right] = \sum_{\text{all } x} (x - \mu)^2 p(x)$$
Shortcut Formula For Variance

This is not the definition, it’s a shortcut for doing calculations:

\[\text{Var}(X) = E \left[(X - \mu)^2 \right] = E[X^2] - (E[X])^2 \]

We’ll prove this in an upcoming lecture.
Example: The Shortcut Formula

Let \(X \sim \text{Bernoulli}(1/2) \). Calculate \(\text{Var}(X) \).

\[
E[X] = 0 \times 1/2 + 1 \times 1/2 = 1/2
\]
\[
E[X^2] = 0^2 \times 1/2 + 1^2 \times 1/2 = 1/2
\]

\[
E[X^2] - (E[X])^2 = 1/2 - (1/2)^2 = 1/4
\]
Variance of Bernoulli RV – via the Shortcut Formula

Step 1 – $E[X]$

$$
\mu = E[X] = \sum_{x \in \{0, 1\}} p(x) \cdot x = (1 - p) \cdot 0 + p \cdot 1 = p
$$

Step 2 – $E[X^2]$

$$
E[X^2] = \sum_{x \in \{0, 1\}} x^2 p(x) = 0^2(1 - p) + 1^2 p = p
$$

Step 3 – Combine with Shortcut Formula

$$
\sigma^2 = \text{Var}[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)
$$
Variance of a Linear Transformation

\[
\text{Var}(a + bX) = E \left\{ (a + bX) - E(a + bX) \right\}^2
\]

\[
= E \left\{ (a + bX) - (a + bE[X]) \right\}^2
\]

\[
= E \left\{ (bX - bE[X]) \right\}^2
\]

\[
= E[b^2(X - E[X])^2]
\]

\[
= b^2 E[(X - E[X])^2]
\]

\[
= b^2 \text{Var}(X) = b^2 \sigma^2
\]

The key point here is that variance is defined in terms of expectation and expectation is linear.
Variance and SD are \textit{NOT} Linear

\begin{align*}
\text{Var}(a + bX) &= b^2 \sigma^2 \\
\text{SD}(a + bX) &= |b| \sigma
\end{align*}

These should look familiar from the related results for sample variance and std. dev. that you worked out on an earlier problem set.
Binomial Random Variable

Let X = the sum of n independent Bernoulli trials, each with probability of success p. Then we say that: $X \sim \text{Binomial}(n, p)$

Parameters

$p = \text{probability of “success,” } n = \# \text{ of trials}$

Support

$\{0, 1, 2, \ldots, n\}$

Probability Mass Function (pmf)

$$p(x) = \binom{n}{x} p^x (1 - p)^{n-x}$$
Try playing around with all three sliders. If you set the second to 1 you get a Bernoulli.
Question
Suppose we flip a fair coin 3 times. What is the probability that we get exactly 2 heads?

Answer
Three basic outcomes make up this event: \(\{HHT, HTH, THH\} \), each has probability \(1/8 = 1/2 \times 1/2 \times 1/2 \). Basic outcomes are mutually exclusive, so sum to get \(3/8 = 0.375 \)
Where does the Binomial pmf come from?

Question
Suppose we flip an *unfair* coin 3 times, where the probability of heads is 1/3. What is the probability that we get exactly 2 heads?

Answer
No longer true that *all* basic outcomes are equally likely, but those with exactly two heads *still are*

\[
P(HHT) = (1/3)^2(1 - 1/3) = 2/27
\]
\[
P(THH) = 2/27
\]
\[
P(HTH) = 2/27
\]
Summing gives \(2/9 \approx 0.22\)
Where does the Binomial pmf come from?

Starting to see a pattern?

Suppose we flip an unfair coin 4 times, where the probability of heads is 1/3. What is the probability that we get exactly 2 heads?

Six equally likely, mutually exclusive basic outcomes make up this event:

\[\binom{4}{2}(1/3)^2(2/3)^2 \]
R Commands for Binomial(n, p) RV

Probability Mass Function
\[\text{dbinom}(x, \text{size}, \text{prob}), \text{where size is } n \text{ and prob is } p \]

Cumulative Distribution Function
\[\text{pbinom}(q, \text{size}, \text{prob}), \text{where } q \text{ is } x_0, \text{size is } n \text{ and prob is } p \]

Make Random Draws
\[\text{rbinom}(n, \text{size}, \text{prob}), \text{where } n \text{ is the number of draws, size is } n \text{ and prob is } p \]
x <- 0:10
px <- dbinom(x, size = 10, prob = 0.3)
x0 <- seq(from = -2, to = 12, by = 0.01)
Fx <- pbinom(x0, size = 10, prob = 0.3)
par(mfrow = c(1, 2))
plot(x, px, type = 'h', ylab = 'p(x)', main = 'Binom(10, 0.3) pmf')
plot(x0, Fx, type = 'l', ylab = 'F(x)', main = 'Binom(10, 0.3) CDF')
```r
set.seed(5545)
sims <- rbinom(100, size = 10, prob = 0.3)
par(mfrow = c(1, 2))
rel_freq <- prop.table(table(sims))
plot(rel_freq, main = '100 Binom(10, 0.3) sims',
     ylab = 'Relative Frequency')
plot(x, px, type = 'h', ylab = 'p(x)', main = 'Binomial(10, 0.3) pmf')
```
Lecture #10 – Discrete RVs IV

Joint vs. Marginal Probability Mass Functions

Conditional Probability Mass Function & Independence

Expectation of a Function of Two Discrete RVs, Covariance

Linearity of Expectation Reprise, Properties of Binomial RV
Multiple RVs at once - Definition of Joint PMF

Let X and Y be discrete random variables. The joint probability mass function $p_{XY}(x, y)$ gives the probability of each pair of realizations (x, y) in the support:

$$p_{XY}(x, y) = P(X = x \cap Y = y)$$
Example: Joint PMF in Tabular Form

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/4</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.J. DiTraglia, Econ 103
Plot of Joint PMF
What is $p_{XY}(1, 2)$?

\[
p_{XY}(1, 2) = P(X = 1 \cap Y = 2) = \frac{1}{4}
\]

\[
p_{XY}(2, 1) = P(X = 2 \cap Y = 1) = 0
\]
Properties of Joint PMF

1. $0 \leq p_{XY}(x, y) \leq 1$ for any pair (x, y)

2. The sum of $p_{XY}(x, y)$ over all pairs (x, y) in the support is 1:

$$\sum_x \sum_y p(x, y) = 1$$
Joint versus Marginal PMFs

Joint PMF
\[p_{XY}(x, y) = P(X = x \cap Y = y) \]

Marginal PMFs
\[p_X(x) = P(X = x) \]
\[p_Y(y) = P(Y = y) \]

You can’t calculate a joint pmf from marginals alone but you can calculate marginals from the joint!
Marginals from Joint

\[p_X(x) = \sum_{\text{all } y} p_{XY}(x, y) \]

\[p_Y(y) = \sum_{\text{all } x} p_{XY}(x, y) \]

Why?

\[p_Y(y) = P(Y = y) = P \left(\bigcup_{\text{all } x} \{X = x \cap Y = y\} \right) \]

\[= \sum_{\text{all } x} P(X = x \cap Y = y) = \sum_{\text{all } x} p_{XY}(x, y) \]
To get the marginals sum “into the margins” of the table.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1/8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/4</td>
<td>1/8</td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/4</td>
<td>1/8</td>
<td></td>
<td>3/8</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1/8</td>
</tr>
</tbody>
</table>

$p_X(0) = \frac{1}{8} + 0 + 0 = \frac{1}{8}$

$p_X(1) = 0 + \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$

$p_X(2) = 0 + \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$

$p_X(3) = \frac{1}{8} + 0 + 0 = \frac{1}{8}$
What is $p_Y(2)$?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>$1/8$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$1/4$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$1/4$</td>
</tr>
<tr>
<td>3</td>
<td>$1/8$</td>
<td>0</td>
</tr>
</tbody>
</table>

$$p_Y(1) = 1/8 + 0 + 0 + 1/8 = 1/4$$

$$p_Y(2) = 0 + 1/4 + 1/4 + 0 = 1/2$$

$$p_Y(3) = 0 + 1/8 + 1/8 + 0 = 1/4$$
Definition of Conditional PMF

How does the distribution of \(y \) change with \(x \)?

\[
p_{Y|X}(y|x) = P(Y = y | X = x) = \frac{P(Y = y \cap X = x)}{P(X = x)} = \frac{p_{XY}(x, y)}{p_X(x)}
\]
Conditional PMF of Y given $X = 2$

| X | Y | $p_Y|X(Y|X=2)$ |
|-----|-----|----------------|
| 0 | 1 | 1/8 |
| 1 | 2 | 1/4 |
| 2 | 3 | 1/4 |
| 3 | 1 | 1/8 |

\[
p_{Y|X}(1|2) = \frac{p_{X|Y}(2|1)}{p_X(2)} = \frac{0}{\frac{3}{8}} = 0
\]

\[
p_{Y|X}(2|2) = \frac{p_{X|Y}(2|2)}{p_X(2)} = \frac{1/4}{\frac{3}{8}} = \frac{2}{3}
\]

\[
p_{Y|X}(3|2) = \frac{p_{X|Y}(2|3)}{p_X(2)} = \frac{1/8}{\frac{3}{8}} = \frac{1}{3}
\]
What is $p_{X|Y}(1|2)$?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>$1/8$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$1/4$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$1/4$</td>
</tr>
<tr>
<td>3</td>
<td>$1/8$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>

$$p_{X|Y}(1|2) = \frac{p_{XY}(1,2)}{p_Y(2)} = \frac{1/4}{1/2} = 1/2$$

Similarly:

$$p_{X|Y}(0|2) = 0, \quad p_{X|Y}(2|2) = 1/2, \quad p_{X|Y}(3|2) = 0$$
Independent RVs: Joint Equals Product of Marginals

Definition

Two discrete RVs are independent if and only if

\[p_{XY}(x, y) = p_X(x)p_Y(y) \]

for all pairs \((x, y)\) in the support.

Equivalent Definition

\[p_{Y|X}(y|x) = p_Y(y) \text{ and } p_{X|Y}(x|y) = p_X(x) \]

for all pairs \((x, y)\) in the support.
Are X and Y Independent?

(A = YES, B = NO)

\[
\begin{array}{c|c|c|c|c}
& 1 & 2 & 3 \\
\hline
0 & 1/8 & 0 & 0 \\
1 & & 1/4 & 1/8 \\
2 & & 1/4 & 1/8 \\
3 & 1/8 & 0 & 0 \\
\hline
& 1/4 & 1/2 & 1/4 \\
\end{array}
\]

\[p_{XY}(2,1) = 0\]
\[p_X(2) \times p_Y(1) = (3/8) \times (1/4) \neq 0\]

Therefore X and Y are not independent.
Expectation of Function of Two Discrete RVs

\[E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{XY}(x, y) \]
Some Extremely Important Examples

Same For Continuous Random Variables

Let \(\mu_X = E[X], \mu_Y = E[Y] \)

Covariance

\[
\sigma_{XY} = Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]
\]

Correlation

\[
\rho_{XY} = Corr(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}
\]
Shortcut Formula for Covariance

Much easier for calculating:

$$ Cov(X, Y) = E[XY] - E[X]E[Y] $$

I’ll mention this again in a few slides...
Calculating $\text{Cov}(X, Y)$

$$E[X] = \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = \frac{3}{2}$$

$$E[Y] = \frac{1}{4} + 2 \times \frac{1}{2} + 3 \times \frac{1}{4} = 2$$

$$E[XY] = \frac{1}{4} \times (2 + 4) + \frac{1}{8} \times (3 + 6 + 3) = 3$$

$$\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 3 - \frac{3}{2} \times 2 = 0$$

$$\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\text{SD}(X)\text{SD}(Y)} = 0$$

Hence, zero covariance (correlation) does not imply independence!
Zero Covariance versus Independence

While zero covariance (correlation) does not imply independence, independence does imply zero covariance (correlation).

You will prove this in an extension problem...
Linearity of Expectation, Again

Holds for Continuous RVs as well, but different proof.

In general \(E[g(X, Y)] \neq g(E[X], E[Y]) \). But if \(g \) is linear, then:

\[
E[aX + bY + c] = aE[X] + bE[Y] + c
\]

where \(X, Y \) are random variables and \(a, b, c \) are constants.

There’s an optional proof on the course website.
By the Linearity of Expectation,

\[
\text{Var}(X) = E[(X - \mu)^2] = E[X^2 - 2\mu X + \mu^2]
\]
\[
= E[X^2] - 2\mu E[X] + \mu^2
\]
\[
= E[X^2] - 2\mu^2 + \mu^2
\]
\[
= E[X^2] - \mu^2
\]
Expected Value of Sum $= \text{Sum of Expected Values}$

Repeatedly applying the linearity of expectation,

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

regardless of how the RVs X_1, \ldots, X_n are related to each other. In particular it doesn’t matter if they’re dependent or independent.
Independent and Identically Distributed (iid) RVs

Example

\[X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p) \]

Independent

Realization of one of the RVs gives no information about the others.

Identically Distributed

Each \(X_i \) is the same kind of RV, with the same values for any parameters. (Hence same pmf, cdf, mean, variance, etc.)
Recall: Binomial(n, p) Random Variable

Definition
Sum of n independent Bernoulli RVs, each with probability of “success,” i.e. 1, equal to p

Using Our New Notation
Let $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p)$, $Y = X_1 + X_2 + \ldots + X_n$.
Then $Y \sim \text{Binomial}(n, p)$.
Expected Value of Binomial RV

Use the fact that a Binomial(n, p) RV is defined as the sum of n iid Bernoulli(p) Random Variables and the Linearity of Expectation:

$$E[Y] = E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

$$= p + p + \ldots + p$$

$$= np$$
Variance of a Sum \neq Sum of Variances!

$$Var(aX + bY) = E \left[\{(aX + bY) - E[aX + bY]\}^2 \right]$$

$$= a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$$

You’ll fill in the missing steps as an extension problem…

Since $\sigma_{XY} = \rho \sigma_X \sigma_Y$, this is sometimes written as:

$$Var(aX + bY) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \rho \sigma_X \sigma_Y$$
Independence $\Rightarrow Var(X + Y) = Var(X) + Var(Y)$

$\quad X$ and Y independent $\Rightarrow Cov(X, Y) = 0$. Hence:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$= Var(X) + Var(Y)$$

Also true for three or more RVs

If X_1, X_2, \ldots, X_n are independent, then

$$Var(X_1 + X_2 + \ldots X_n) = Var(X_1) + Var(X_2) + \ldots + Var(X_n)$$
Crucial Distinction

Expected Value

Always true that
\[E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n] \]

Variance

Not true in general that
\[Var[X_1 + X_2 + \ldots + X_n] = Var[X_1] + Var[X_2] + \ldots + Var[X_n] \]
except in the special case where \(X_1, \ldots, X_n \) are independent (or at least uncorrelated).
Variance of Binomial Random Variable

Definition from Sequence of Bernoulli Trials

If $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p)$ then

$$Y = X_1 + X_2 + \ldots + X_n \sim \text{Binomial}(n, p)$$

Using Independence

$$\text{Var}[Y] = \text{Var}[X_1 + X_2 + \ldots + X_n]$$

$$= \text{Var}[X_1] + \text{Var}[X_2] + \ldots + \text{Var}[X_n]$$

$$= p(1-p) + p(1-p) + \ldots + p(1-p)$$

$$= np(1-p)$$
Lecture #11 – Continuous RVs I

Introduction: Probability as Area

Probability Density Function (PDF)

Relating the PDF to the CDF

Calculating the Probability of an Interval

Calculating Expected Value for Continuous RVs
Continuous RVs – What Changes?

1. Probability Density Functions replace Probability Mass Functions

2. Integrals Replace Sums

Everything Else is Essentially Unchanged!
What is the probability of “Yellow?”
For continuous RVs, probability is defined as *area under a curve*. Zero area means zero probability!
Probability Density Function (PDF)

For a continuous random variable X,

$$P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx$$

where $f(x)$ is the probability density function for X.

Extremely Important

For any realization x, $P(X = x) = 0$ since $\int_{a}^{a} f(x) \, dx = 0$. In other words, zero area means zero probability!
For a Continuous RV, Zero Probability ≠ Impossible

It is *crucial* to specify the support set of a continuous RV:

- Any x outside the support set of X is *impossible*.
- Any x in the support set of X is a *possible outcome* even though $P(X = x) = 0$ for all x.

There is no way around this slightly awkward situation: it is a consequence of defining probability as the *area under a curve*.
Properties of PDFs

1. $f(x) \geq 0$ for all x in the support of X and zero otherwise.

2. $\int_{-\infty}^{\infty} f(x) \, dx = 1$

Warning: $f(x)$ is not a probability

Can have $f(x) > 1$ for some x as long as $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

Relating the CDF to the PDF

$$F(x_0) \equiv P(X \leq x_0) = \int_{-\infty}^{x_0} f(x) \, dx$$
Example: Suppose X has Support Set $[0, 1]$

Let $f(x) = 6x(1 - x)$ for $x \in [0, 1]$ and zero otherwise.

```r
curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)')
abline(h = 1, lty = 2)
```
Example: Suppose X has Support Set $[0, 1]$

Let $f(x) = 6x(1 - x)$ for $x \in [0, 1]$ and zero otherwise.

Is f a valid PDF?

1. Is $f(x) \geq 0$ for $x \in [0, 1]$ and zero otherwise?

2. Does the total area under f equal one?

\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{1} 6x(1 - x) \, dx = 6 \int_{0}^{1} (x - x^2) \, dx
\]

\[
= 6 \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \bigg|_{0}^{1} = 1
\]

So yes, f is a valid PDF ✓
Integrating a Function in R

```r
define a function pdf in R

\[ f(x) = 6x(1-x) \]

Integrate the function-pdf between 0 and 1

```
integrate(pdf, lower = 0, upper = 1)
```

You can use this to check your work!
Example: \( f(x) = 6x(1-x) \) for \( x \in [0, 1] \), zero otherwise.

What is the CDF of \( X \)?

\[
F(x_0) \equiv P(X \leq x_0) = \int_{-\infty}^{x_0} f(x) \, dx = \int_0^{x_0} 6x(1-x) \, dx
\]

\[
= 6 \left( \frac{x^2}{2} - \frac{x^3}{3} \right) \bigg|_{0}^{x_0} = 3x_0^2 - 2x_0^3
\]

\[
F(x_0) = \begin{cases} 
0, & x_0 < 0 \\
3x_0^2 - 2x_0^3, & 0 \leq x_0 \leq 1 \\
1, & x_0 > 1
\end{cases}
\]
par(mfrow = c(1,2))
curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)')
curve(3 * x^2 - 2 * x^3, from = 0, to = 1, ylab = 'F(x)')

par(mfrow = c(1,1))
Relationship between PDF and CDF

Integrate PDF to get CDF

\[ F(x_0) = P(X \leq x_0) = \int_{-\infty}^{x_0} f(x) \, dx \]

Differentiate CDF to get PDF

\[ f(x) = \frac{d}{dx} F(x) \]

This is just the First Fundamental Theorem of Calculus.
Example: \( f(x) = 6x(1 - x) \) for \( x \in [0, 1] \), zero otherwise.

Differentiate CDF to get PDF

\[
f(x) = \frac{d}{dx} F(x) = \frac{d}{dx} (3x^2 - 2x^3)
\]
\[
= 6x - 6x^2
\]
\[
= 6x(1 - x)
\]
Key Idea: Probability of an Interval for a Continuous RV

\[ P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx = F(b) - F(a) \]

This is just the Second Fundamental Theorem of Calculus.
Example: \( f(x) = 6x(1 - x) \) for \( x \in [0, 1] \), zero otherwise.

Two equivalent ways of calculating \( P(0.2 \leq X \leq 0.6) \)

```r
library(ggplot2)

Define the function

cdf <- function(x0) {
 3 * x0^2 - 2 * x0^3
}

Calculate the cdf

cdf(0.6) - cdf(0.2)

[1] 0.544

Use integrate from stats package

integrate(pdf, lower = 0.2, upper = 0.6)

0.544 with absolute error < 6e-15
```
Example: \( f(x) = 6x(1 - x) \) for \( x \in [0, 1] \), zero otherwise.

\[
P(0.2 \leq X \leq 0.6) = 0.544
\]
Expected Value for Continuous RVs

\[ E[X] = \int_{-\infty}^{\infty} xf(x) \, dx \]

\[ E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \, dx \]

Integrals Replace Sums!
What about all those rules for expected value?

- The only difference between expectation for continuous versus discrete is how we do the *calculation*.
- Sum for discrete; integral for continuous.
- All *properties* of expected value *continue to hold*!
- Includes linearity, shortcut for variance, etc.
Variance of Continuous RV

\[ Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx \]

where

\[ \mu = E[X] = \int_{-\infty}^{\infty} xf(x) \, dx \]

Shortcut formula still holds for continuous RVs!

\[ Var(X) = E[X^2] - (E[X])^2 \]
Example: \( f(x) = 6x(1 - x) \) for \( x \in [0, 1] \), zero otherwise.

\[
E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{1} x \cdot 6x(1 - x) \, dx = 6 \left( \frac{x^3}{3} - \frac{x^4}{4} \right) \bigg|_{0}^{1} = \frac{1}{2}
\]

\[
E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) \, dx = \int_{0}^{1} x^2 \cdot 6x(1 - x) \, dx = 6 \left( \frac{x^4}{4} - \frac{x^5}{5} \right) \bigg|_{0}^{1} = \frac{3}{10}
\]

\[
Var(X) = E[X^2] - (E[X])^2 = \frac{3}{10} - \left( \frac{1}{2} \right)^2 = 1/20
\]

Complete the algebra at home and check using \texttt{integrate} in R.
Simulating a Beta(2, 2) Random Variable

Our example from above is a special case of the Beta distribution. The command `rbeta(n, 2, 2)` makes `n` draws for this RV. These simulations agree with our calculations from above:

```r
set.seed(12345)
sims <- rbeta(10000, 2, 2)
mean(sims)
[1] 0.5007002

var(sims)
[1] 0.05012776
```
Simulating a Beta(2, 2) Random Variable

```r
mean(sims^2)
```

```r
[1] 0.3008234
```

```r
hist(sims, freq = FALSE)
```

Histogram of `sims`
The Uniform Random Variable

Several of your review questions along with one of your extension questions will involve the so-called *Uniform Random Variable*:

**Uniform(0,1) Random Variable**

\[ f(x) = 1 \text{ for } x \in [0, 1], \text{ zero otherwise.} \]

**Uniform(a,b) Random Variable**

\[ f(x) = \frac{1}{b - a} \text{ for } x \in [a, b], \text{ zero otherwise.} \]

**Simulating from a Uniform RV**

`runif(n, a, b)` makes \( n \) draws from a Uniform\((a, b)\) RV.
Simulating Uniform Random Variables

```r
sims1 <- runif(10000, 0, 1)
sims2 <- runif(10000, -1, 2)
par(mfrow = c(1, 2))
hist(sims1, freq = FALSE)
hist(sims2, freq = FALSE)
```

![Histogram of sims1](image1)

![Histogram of sims2](image2)
We don’t have time to cover these in Econ 103:

Joint Density

\[ P(a \leq X \leq b \cap c \leq Y \leq d) = \int_c^d \int_a^b f(x, y) \, dx \, dy \]

Marginal Densities

\[ f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx \]

Independence in Terms of Joint and Marginal Densities

\[ f_{XY}(x, y) = f_X(x)f_Y(y) \]

Conditional Density

\[ f_{Y|X} = \frac{f_{XY}(x, y)}{f_X(x)} \]
So where does that leave us?

What We’ve Accomplished
We’ve covered all the basic properties of RVs on this Handout.

Where are we headed next?
Next up is the most important RV of all: the normal RV. After that it’s time to do some statistics!

How should you be studying?
If you master the material on RVs (both continuous and discrete) and in particular the normal RV the rest of the semester will seem easy. If you don’t, you’re in for a rough time...
Lecture #12 – Continuous RVs II: The Normal RV

The Standard Normal RV

Linear Combinations and the $N(\mu, \sigma^2)$ RV

Transforming to a Standard Normal

Percentiles/Quantiles for Continuous RVs

Symmetric Intervals for the $N(0, 1)$ RV
Available on Etsy, Made using R!

Figure: Standard Normal RV (PDF)
Standard Normal RV: PDF at left, CDF at right

- Notation: $X \sim N(0, 1)$
- Support Set = $(-\infty, \infty)$
- PDF symmetric about 0, bell-shaped
- $E[X] = 0$, $Var[X] = 1$
- For Econ 103, don’t need formula for PDF.
- No closed-form expression for CDF.
CDF of a Standard Normal Random Variable

Probability Density Function (pdf)

Cumulative Distribution Function (CDF)
R Commands for the Standard Normal RV

<table>
<thead>
<tr>
<th>PDF $f(x)$</th>
<th>dnorm(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF $F(x)$</td>
<td>pnorm(x)</td>
</tr>
<tr>
<td>Make $n$ Random Draws</td>
<td>rnorm(n)</td>
</tr>
</tbody>
</table>

Mnemonic

- norm = “Normal”
- d = “density”
- p = “probability”
- r = “random”
par(mfrow = c(1, 2))

curve(dnorm(x), -4, 4, main = 'N(0,1) PDF')
curve(pnorm(x), -4, 4, main = 'N(0,1) CDF')

par(mfrow = c(1, 1))

F.J. DiTraglia, Econ 103
set.seed(1234)

normal_sims <- rnorm(10000)

mean(normal_sims)

## [1] 0.006115893

var(normal_sims)

## [1] 0.9752143
hist(normal_sims, freq = FALSE)
\[ Y \sim N(\mu, \sigma^2) \] Random Variable

**Linear Function of** \( N(0, 1) \)

Let \( X \sim N(0, 1) \) and define \( Y = \mu + \sigma X \) where \( \mu, \sigma \) are constants.

**Properties of** \( N(\mu, \sigma^2) \)

- **Parameters**: \( \mu, \sigma^2 \).
- **Support Set**: \( (-\infty, \infty) \)
- **PDF symmetric about** \( \mu \), bell-shaped.
- **Special case**: \( N(0, 1) \) has \( \mu = 0 \) and \( \sigma^2 = 1 \).

What are the mean and variance of a \( N(\mu, \sigma^2) \)? How do we know?
Expected Value: $\mu$ shifts PDF

all of these have $\sigma = 1$

Figure: Blue $\mu = -1$, Black $\mu = 0$, Red $\mu = 1$
Standard Deviation: $\sigma$ scales PDF

all of these have $\mu = 0$

Figure: Blue $\sigma^2 = 4$, Black $\sigma^2 = 1$, Red $\sigma^2 = 1/4$
Linear Function of Normal RV is a Normal RV

Let $a, b$ be constants with $b \neq 0$

$$X \sim N(\mu, \sigma^2) \implies (a + bX) \sim N(a + b\mu, b^2\sigma^2)$$

Key Point

Linear transformation of a normal RV is also a normal RV!
Example

Suppose $X \sim N(\mu, \sigma^2)$ and let $Z = (X - \mu)/\sigma$. What is the distribution of $Z$?

(a) $N(\mu, \sigma^2)$
(b) $N(\mu, \sigma)$
(c) $N(0, \sigma^2)$
(d) $N(0, \sigma)$
(e) $N(0, 1)$
Linear Combinations of *Multiple Independent* Normals

Let $a$, $b$, $c$ be constants and at least one of $a$, $b$ nonzero.

$X \sim N(\mu_x, \sigma^2_x)$ is independent of $Y \sim N(\mu_y, \sigma^2_y)$ then

$$aX + bY + c \sim N(a\mu_x + b\mu_y + c, a^2\sigma^2_x + b^2\sigma^2_y)$$

**Key Points**

- Result assumes independence
- Extends to more than two Normal RVs
Suppose $X_1, X_2, \sim \text{iid } N(\mu, \sigma^2)$

Let $\bar{X} = \frac{X_1 + X_2}{2}$. What is the distribution of $\bar{X}$?

(a) $N(\mu, \sigma^2/2)$
(b) $N(0, 1)$
(c) $N(\mu, \sigma^2)$
(d) $N(\mu, 2\sigma^2)$
(e) $N(2\mu, 2\sigma^2)$
The “Empirical Rule” Gives Probabilities for a Normal RV!

Empirical Rule

Approximately 68% of observations within $\mu \pm \sigma$
Approximately 95% of observations within $\mu \pm 2\sigma$
Nearly all observations within $\mu \pm 3\sigma$

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then:

$$P(\mu - \sigma \leq X \leq \mu + \sigma) \approx 0.683$$
$$P(\mu - 2\sigma \leq X \leq \mu + 2\sigma) \approx 0.954$$
$$P(\mu - 3\sigma \leq X \leq \mu + 3\sigma) \approx 0.997$$
For a continuous RV, \( P(a \leq X \leq b) = \int_a^b f(x) \, dx = F(b) - F(a) \)

\( \text{pnorm}(1) - \text{pnorm}(-1) \)  # Approx. 68% Prob. in \((-1,1)\)

## [1] 0.6826895

\( \text{pnorm}(2) - \text{pnorm}(-2) \)  # Approx. 95% Prob. in \((-2,2)\)

## [1] 0.9544997

\( \text{pnorm}(3) - \text{pnorm}(-3) \)  # > 99% Prob. in \((-3,3)\)

## [1] 0.9973002
$\text{pnorm}(1) \approx 0.84$
\[ \text{pnorm}(1) - \text{pnorm}(-1) \approx 0.84 - 0.16 \]
$\text{pnorm}(1) - \text{pnorm}(-1) \approx 0.68$
Middle 68% of $N(0,1) \Rightarrow$ approx. $(-1,1)$
Transforming to a Standard Normal: Example #1

Suppose $X \sim N(\mu = 1, \sigma^2 = 4)$. What is $P(-1 \leq X \leq 3)$?

Key Point

If $X \sim N(\mu, \sigma^2)$ then $\frac{X - \mu}{\sigma} \sim N(0, 1)$.

$$
\begin{align*}
P(-1 \leq X \leq 3) &= P(-2 \leq X - 1 \leq 2) \\
&= P \left( -1 \leq \frac{X - 1}{2} \leq 1 \right) \\
&= \text{pnorm}(1) - \text{pnorm}(-1) \\
\approx 0.68
\end{align*}
$$
Transforming to a Standard Normal: Example #2

Suppose $X \sim N(3, 16)$. What is $P(X \geq 10)$?

Key Point

If $X \sim N(\mu, \sigma^2)$ then $\frac{X-\mu}{\sigma} \sim N(0, 1)$.

\[
P(X \geq 10) = 1 - P(X \leq 10)
\]
\[
= 1 - P(X - 3 \leq 7)
\]
\[
= 1 - P\left(\frac{X - 3}{4} \leq \frac{7}{4}\right)
\]
\[
= 1 - \text{pnorm}(7/4) \approx 0.04
\]
Quantile Function of a Continuous RV

Quantiles are also known as Percentiles

CDF $F(x_0)$

$\>
F(x_0) \equiv P(X \leq x_0) = \int_{-\infty}^{x_0} f(x) \, dx$

$\>
$Input threshold $x_0$, get probability that $X \leq x_0$.

Quantile Function $Q(p)$

$\>
Q(p) = F^{-1}(p)$

$\>
$Input probability $p$, get threshold $x_0$ such that $P(X \leq x_0) = p$.

$\>
$In other words: $p = \int_{-\infty}^{x_0} f(x) \, dx$
The Median of a Continuous RV

Median = \( Q(0.5) \)

Median is the threshold \( x_0 \) such that \( P(X \leq x_0) = 0.5 \).

Median of \( N(\mu, \sigma^2) \) RV

Normal RV is symmetric about \( \mu \) so its median is \( \mu \).

Figure: Median of \( N(0, 1) \) is zero.
R Commands for the Standard Normal RV

<table>
<thead>
<tr>
<th></th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF $f(x)$</td>
<td>dnorm(x)</td>
</tr>
<tr>
<td>CDF $F(x)$</td>
<td>pnorm(x)</td>
</tr>
<tr>
<td>Quantile Function $Q(p)$</td>
<td>qnorm(p)</td>
</tr>
<tr>
<td>Make $n$ Random Draws</td>
<td>rnorm(n)</td>
</tr>
</tbody>
</table>

Mnemonic

- norm = “Normal”
- d = “density”
- p = “probability”
- r = “random.”
- q = “quantile”
\texttt{qnorm(0.9)} \# 90th Percentile of Standard Normal

\#
\[1\] \ 1.281552

\texttt{pnorm(1.281552)} \# Check our answer using the CDF

\#
\[1\] \ 0.9000001
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

50% Probability in Blue; 50% Probability in Red

Boundaries of blue region are $(-c, c)$
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

Symmetric Interval: each red region has 25% probability

Boundaries of blue region are $(-c, c)$
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

Let’s find the right-hand boundary: $c$
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$? 

25% Probability to the right of $c$ 

Hence, 75% to the left of $c$
If $X \sim N(0,1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

For what $c$ is 75% of the probability to the left of $c$?
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

$qnorm(0.75) \approx 0.67$

Therefore $c = 0.67$!
If $X \sim N(0, 1)$, for what $c$ is $P(-c \leq X \leq c) = 0.5$?

Checking our work: $\text{pnorm}(0.67) - \text{pnorm}(-0.67) \approx 0.5$ ✔
Candy Weighing Experiment

Random Sampling Redux

Unbiasedness of Sample Mean

Standard Error of the Mean

Some More Intuition for Sampling Distributions

Estimator versus Estimate
Weighing a Random Sample

Bag Contains 100 Candies

Estimate total weight of candies by weighing a random sample of size 5 and multiplying the result by 20.

Your Chance to Win

The bag of candies and a digital scale will make their way around the room during the lecture. Each student gets a chance to draw 5 candies and weigh them.

Student with closest estimate wins the bag of candy!
Weighing a Random Sample

Procedure

When the bag and scale reach you, do the following:

1. Fold the top of the bag over and shake to randomize.
2. Randomly draw 5 candies without replacement.
3. Weigh your sample and record the result in grams along with your name on the sign-up sheet.
4. Replace your sample and shake again to re-randomize.
5. Pass bag and scale to next person.
Sampling and Estimation

Questions to Answer

1. How accurately do sample statistics estimate population parameters?
2. How can we quantify the uncertainty in our estimates?
3. What’s so good about random sampling?
Random Sample

Verbal Definition from Lecture #1

Each member of population is chosen strictly by chance, so that:
(1) selection of one individual doesn’t influence selection of any other, (2) each individual is just as likely to be chosen, (3) every possible sample of size $n$ has the same chance of selection.

Mathematical Definition

$X_1, X_2, \ldots, X_n \sim \text{iid } f(x)$ if continuous

$X_1, X_2, \ldots, X_n \sim \text{iid } p(x)$ if discrete
Random Sample Means *Sample With Replacement*

- Sampling *without replacement* creates dependence between samples (Extension Problem #11).
- But if the population is large relative to the sample, this dependence is negligible: candy experiment isn’t bogus!
Example: Sampling from Econ 103 Class List

- Pretend the students in this class are a population of interest.
- What is the population mean height?
- In reality I know this since I know all of your heights!
- Suppose I didn’t: I could take a random sample of \( n \) students and use the sample mean to estimate the population mean.
- I know all of your heights, so I can simulate this in R.

Use this idea to explore the properties of random sampling...
Example: Sampling from the Econ 103 Class List

```r
survey <- read.csv('http://ditraglia.com/econ103/old_survey.csv')
height <- na.omit(survey$height)
hist(height, freq = FALSE, xlab = '',
 main = 'Population Dist. of Height (inches)')
```

![Histogram of Population Distribution of Height (inches)]
# What is the population mean?

```r
mean(height)
```

```r
[1] 67.54545
```

# Draw a random sample of n = 5 and compute the sample mean

```r
set.seed(3827)
random_sample <- sample(height, 5, replace = TRUE)
random_sample
```

```r
[1] 65 75 69 67 69
```

```r
mean(random_sample)
```

```r
[1] 69
```
Sampling Distribution of $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$

Choose 5 Students from Class List with Replacement

Sample 1 \hspace{1cm} Sample 2 \hspace{1cm} \ldots \hspace{1cm} Sample M

$\bar{x}_1$ \hspace{1cm} $\bar{x}_2$ \hspace{1cm} \ldots \hspace{1cm} $\bar{x}_M$

Repeat $M$ times → get $M$ different sample means

Sampling Dist: relative frequencies of the $\bar{x}_i$ when $M = \infty$
set.seed(2985)

# Function: take a random sample of size n, compute sample mean

draw_xbar <- function(n) {
  random_sample <- sample(height, size = n, replace = TRUE)
  mean(random_sample)
}

# Calculate the mean of 10000 random samples with n = 5

M <- 10000

xbar_5 <- replicate(M, draw_xbar(5))

# Compare simulated sample means to population mean: 67.5454 in.

head(xbar_5)

## [1] 65.0 64.6 69.6 68.6 64.6 65.8
# Compare popn. dist. of height to histogram of the simulated x-bars

```r
par(mfrow = c(1,2))
hist(height, freq = FALSE, main = 'Population')
hist(xbar_5, freq = FALSE, main = 'Sampling Dist. of Xbar (n = 5)')
```

```
par(mfrow = c(1,1))
```
# Population mean height

```r
mean(height)
```

```r
[1] 67.54545
```

# Mean of sampling dist. of x-bar (n = 5)

```r
mean(xbar_5)
```

```r
[1] 67.55678
```

# Population variance

```r
var(height)
```

```r
[1] 19.74504
```

# Variance of sampling dist of x-bar (n = 5)

```r
var(xbar_5)
```

```r
[1] 3.780202
```
Random Sampling With Replacement, 10000 Reps. Each

- Mean = 67.6, Var = 3.6
- Mean = 67.5, Var = 1.8
- Mean = 67.5, Var = 0.8
- Mean = 67.5, Var = 0.2
Population Distribution vs. Sampling Distribution of $\bar{X}_n$

Things to Notice:

1. Sampling dist. “correct on average”
2. Sampling variability decreases with $n$
3. Sampling dist. bell-shaped even though population isn’t!
Mean of Sampling Distribution of $\bar{X}_n$

$X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E \left[ \frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{n\mu}{n} = \mu$$

Hence, sample mean is “correct on average.” The formal term for this is **unbiased**.
Variance of Sampling Distribution of $\bar{X}_n$

$X_1, \ldots, X_n \sim \text{iid with mean } \mu \text{ and variance } \sigma^2$

\[
\text{Var}[\bar{X}_n] = \text{Var} \left[ \frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i)
\]

\[
= \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}
\]

The sampling variance of $\bar{X}_n$ decreases linearly with sample size.
Standard Error

Std. Dev. of a sampling distribution is called a standard error.

**Standard Error of the Sample Mean**

\[
SE(\bar{X}_n) = \sqrt{\text{Var} (\bar{X}_n)} = \sqrt{\sigma^2/n} = \sigma/\sqrt{n}
\]
Step 1: Population as RV rather than List of Objects

---

**Old Way**

In the 2016 election, 65,853,625 out of 137,100,229 voters voted for Hillary Clinton

**New Way**

Bernoulli($p = 0.48$) RV

---

**Old Way**

List of heights for 97 million US adult males with mean 69 in and std. dev. 6 in

**New Way**

$N(\mu = 69, \sigma^2 = 36)$ RV

---

Second example assumes distribution of height is bell-shaped.
Step 2: iid RVs Represent Random Sampling from Popn.

Hillary Voters Example
Poll random sample of 1000 people who voted in 2016:
\[ X_1, \ldots, X_{1000} \sim \text{iid Bernoulli}(p = 0.48) \]

Height Example
Measure the heights of random sample of 50 US males:
\[ Y_1, \ldots, Y_{50} \sim \text{iid } N(\mu = 69, \sigma^2 = 36) \]

Key Question
What do the properties of the population imply about the properties of the sample?
The rest of the probabilities...

Suppose that exactly half of US voters plan to vote for Hillary Clinton and we poll a random sample of 4 voters.

\[
\begin{align*}
P(\text{Exactly 0 Hillary Voters in the Sample}) & = 0.0625 \\
P(\text{Exactly 1 Hillary Voters in the Sample}) & = 0.25 \\
P(\text{Exactly 2 Hillary Voters in the Sample}) & = 0.375 \\
P(\text{Exactly 3 Hillary Voters in the Sample}) & = 0.25 \\
P(\text{Exactly 4 Hillary Voters in the Sample}) & = 0.0625
\end{align*}
\]

You should be able to work these out yourself. If not, review the lecture slides on the Binomial RV.
Population Size is Irrelevant Under Random Sampling

Crucial Point

None of the preceding calculations involved the population size: I didn’t even tell you what it was! We’ll never talk about population size again in this course.

Why?

Draw with replacement $\implies$ only the sample size and the proportion of Hillary supporters in the population matter.
Any function of the data *alone*, e.g. sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Used to estimate a population parameter: e.g. $\bar{x}$ estimates of $\mu$. 
Step 3: Random Sampling $\Rightarrow$ Sample Statistics are RVs

This is *the crucial point of the course*: if we draw a random sample, the dataset we get is random. Since a statistic is a function of the data, it is a random variable!
Sampling Distribution

Under random sampling, a statistic is a RV so it has a PDF if continuous or PMF if discrete: this is its sampling distribution.

Sampling Dist. of Sample Mean in Polling Example

\[
\begin{align*}
p(0) & = 0.0625 \\
p(0.25) & = 0.25 \\
p(0.5) & = 0.375 \\
p(0.75) & = 0.25 \\
p(1) & = 0.0625
\end{align*}
\]
Contradiction? No, but we need better terminology.

- Under random sampling, a statistic is a RV
- Given dataset is fixed so statistic is a constant number
- Distinguish between: Estimator vs. Estimate

**Estimator**

Description of a general procedure.

**Estimate**

Particular result obtained from applying the procedure.
\( \bar{X}_n \) is an Estimator = Procedure = Random Variable

1. Take a random sample: \( X_1, \ldots, X_n \)

2. Average what you get: \( \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \)

\( \bar{x} \) is an Estimate = Result of Procedure = Constant

- Result of taking a random sample was the dataset: \( x_1, \ldots, x_n \)
- Result of averaging the observed data was \( \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)

Sampling Distribution of \( \bar{X}_n \)

Thought experiment: suppose I were to repeat the procedure of taking the mean of a random sample over and over forever. What relative frequencies would I get for the sample means?
Lecture #14 – Sampling Distributions and Estimation II

Bias of an Estimator

Why divide by \( n - 1 \) in sample variance?

Biased Sampling and the Candy-Weighing Experiment

Efficiency: Choosing between Unbiased Estimators

Mean-Squared Error: Choosing Between Biased Estimators

Consistency and the Law of Large Numbers
Unbiased means “Right on Average”

Bias of an Estimator
Let $\hat{\theta}_n$ be a sample estimator of a population parameter $\theta_0$. The bias of $\hat{\theta}_n$ is $E[\hat{\theta}_n] - \theta_0$.

Unbiased Estimator
A sample estimator $\hat{\theta}_n$ of a population parameter $\theta_0$ is called unbiased if $E[\hat{\theta}_n] = \theta_0$.
Why \((n - 1)\) for sample variance?

We will show that having \(n - 1\) in the denominator ensures:

\[
E[S^2] = E \left[ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \sigma^2
\]

under random sampling.
Why \((n - 1)\) for sample variance?

Step #1 – Steps similar to Extension Problem #3 give:

\[
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \left[ \sum_{i=1}^{n} (X_i - \mu)^2 \right] - n(\bar{X} - \mu)^2
\]
Why \((n - 1)\) for sample variance?

Step \# 2 – Take Expectations of Step \# 1:

\[
E \left[ \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = E \left[ \left\{ \sum_{i=1}^{n} (X_i - \mu)^2 \right\} - n(\bar{X} - \mu)^2 \right] \\
= E \left[ \sum_{i=1}^{n} (X_i - \mu)^2 \right] - E \left[ n(\bar{X} - \mu)^2 \right] \\
= \sum_{i=1}^{n} E \left[ (X_i - \mu)^2 \right] - n E \left[ (\bar{X} - \mu)^2 \right]
\]

Where we have used the linearity of expectation.
Why \((n - 1)\) for sample variance?

Step # 3 – Use assumption of random sampling:

\[X_1, \ldots, X_n \sim\text{ iid with mean } \mu\text{ and variance } \sigma^2\]

\[
E \left[ \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \sum_{i=1}^{n} E \left[ (X_i - \mu)^2 \right] - n E \left[ (\bar{X} - \mu)^2 \right]
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) - n E \left[ (\bar{X} - E[\bar{X}])^2 \right]
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) - n \text{Var}(\bar{X}) = n\sigma^2 - \sigma^2
\]

\[
= (n - 1)\sigma^2
\]

Since \(E[\bar{X}] = \mu\) and \(\text{Var}(\bar{X}) = \sigma^2/n\) under random sampling.
Why \((n - 1)\) for sample variance?

Finally – Divide Step \# 3 by \((n - 1)\):

\[
E[S^2] = E \left[ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \frac{(n - 1)\sigma^2}{n - 1} = \sigma^2
\]

Hence, having \((n - 1)\) in the denominator ensures that the sample variance is “correct on average,” that is unbiased.
A Different Estimator of the Population Variance

\[ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

\[ E[\hat{\sigma}^2] = E \left[ \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \frac{1}{n} E \left[ \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \frac{(n - 1)\sigma^2}{n} \]

Bias of \( \hat{\sigma}^2 \)

\[ E[\hat{\sigma}^2] - \sigma^2 = \frac{(n - 1)\sigma^2}{n} - \sigma^2 = \frac{(n - 1)\sigma^2}{n} - \frac{n\sigma^2}{n} = -\sigma^2/n \]
How Large is the Average Family?

How many brothers and sisters are in your family, including yourself?
Twenty years ago the average number of children per family was about 2.0. But our average was much higher!

**Biased Sample!**

- Zero children ⇒ didn’t send any to college
- Sampling by *children* so large families *oversampled*
Candy Weighing: 80 Estimates, Each With $n = 5$

\[
\hat{\theta} = 20 \times (X_1 + \ldots + X_5)
\]

<table>
<thead>
<tr>
<th>Summary of Sampling Dist.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overestimates</td>
<td>63</td>
</tr>
<tr>
<td>Exactly Correct</td>
<td>0</td>
</tr>
<tr>
<td>Underestimates</td>
<td>17</td>
</tr>
</tbody>
</table>

- \(E[\hat{\theta}] = 1194\) grams
- \(SD(\hat{\theta}) = 206\) grams

Actual Mass: \(\theta_0 = 1004\) grams

Histogram

Est. Weight of All Candies (grams)
What was in the bag?

100 Candies Total:

- 20 Fun Size Snickers Bars (large)
- 30 Reese’s Miniatures (medium)
- 50 Tootsie Roll “Midgees” (small)

So What Happened?

Not a random sample! The Snickers bars were *oversampled*.

Could we have avoided this? How?
Let $X_1, X_2, \ldots, X_n \sim iid$ mean $\mu$, variance $\sigma^2$. True or False:

$X_1$ is an unbiased estimator of $\mu$

(a) True  
(b) False

TRUE!
How to choose between two unbiased estimators?

Suppose $X_1, X_2, \ldots, X_n \sim iid$ with mean $\mu$ and variance $\sigma^2$

From Last Lecture:

$$E[\bar{X}_n] = \mu, \quad \text{Var}(\bar{X}_n) = \sigma^2 / n$$

Compared To:

$$E[X_1] = \mu, \quad \text{Var}(X_1) = \sigma^2$$

Both $\bar{X}_n$ and $X_1$ are unbiased estimators of $\mu$, but $\bar{X}_n$ has a lower variance!
Efficiency - Compare Unbiased Estimators by Variance

Let \( \hat{\theta}_1 \) and \( \hat{\theta}_2 \) be unbiased estimators of \( \theta_0 \). We say that \( \hat{\theta}_1 \) is more efficient than \( \hat{\theta}_2 \) if \( \text{Var}(\hat{\theta}_1) < \text{Var}(\hat{\theta}_2) \).
Bias and Variance are Both Bad Things

Low Bias, Low Variance

Low Bias, High Variance

High Bias, Low Variance

High Bias, High Variance
Mean-Squared Error: Trading Bias Against Variance

- Unbiased estimator with a huge variance is bad.
- Highly biased estimator with a low variance is bad.
- Often there is a “tradeoff” between bias and variance:
  - Low bias estimators often have high variance.
  - Low variance estimators often have high bias.

Mean-Squared Error (MSE):

Compare estimators accounting for both bias and variance:

\[ MSE(\hat{\theta}) = \text{Bias}(\hat{\theta})^2 + \text{Var}(\hat{\theta}) \]

Root Mean-Squared Error (RMSE): \( \sqrt{\text{MSE}} \)
Calculate MSE for Candy Experiment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[\hat{\theta}]$</td>
<td>1194 grams</td>
</tr>
<tr>
<td>$\theta_0$</td>
<td>1004 grams</td>
</tr>
<tr>
<td>$SD(\hat{\theta})$</td>
<td>206 grams</td>
</tr>
</tbody>
</table>

Bias = $E[\hat{\theta}] - \theta_0$

Bias = 1194 grams - 1004 grams

Bias = 190 grams

MSE = Bias^2 + Variance

MSE = (190^2 + 206^2) grams^2

MSE = 7.8536 \times 10^4 grams^2

RMSE = \sqrt{MSE} = 280 grams
Finite Sample versus Asymptotic Properties of Estimators

Finite Sample Properties

For *fixed sample size* $n$ what are the properties of the sampling distribution of $\hat{\theta}_n$? (E.g. bias and variance.)

Asymptotic Properties

What happens to the sampling distribution of $\hat{\theta}_n$ *as the sample size $n$ gets larger and larger*?

1. Law of Large Numbers (today)
2. Central Limit Theorem (Lecture 16)
Consistency

Definition

We say that an estimator \( \hat{\theta}_n \) is consistent for a parameter \( \theta_0 \) if \( \lim_{n \to \infty} \text{MSE}(\hat{\theta}_n) = 0 \), in other words, if both the bias and variance of \( \hat{\theta}_n \) disappear as the sample size grows.

Intuitively, this means \( \hat{\theta}_n \) becomes “less random” as the sample size increases, eventually converging to a constant: \( \theta_0 \).
Law of Large Numbers

Let $X_1, X_2, \ldots, X_n \sim iid$ mean $\mu$, variance $\sigma^2$. Then the sample mean $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ is consistent for the population mean $\mu$.

How do we know this?

From our last lecture:

$$E[\bar{X}_n] = \mu, \quad Var(\bar{X}_n) = \sigma^2/n$$

and hence:

$$MSE(\bar{X}_n) = \text{Bias}(\bar{X}_n)^2 + Var(\bar{X}_n)$$

$$= (E[\bar{X}_n] - \mu)^2 + Var(\bar{X}_n)$$

$$= 0 + \sigma^2/n \to 0$$
set.seed(12345)
n <- 10000
x <- rnorm(n, mean = 0, sd = 10)
xbar_n <- cumsum(x) / (1:n)
plot(xbar_n, type = 'l', xlab = 'n', ylab = 'Sample Mean')
Confidence Interval for Mean of Normal Population ($\sigma^2$ Known)

Interpreting a Confidence Interval

Margin of Error and Width
Today – Simplest Example of a Confidence Interval

- Suppose the population is $N(\mu, \sigma^2)$
- We know $\sigma^2$ but not $\mu$
- Draw random sample $X_1, X_2, \ldots, X_n \sim$ iid $N(\mu, \sigma^2)$
- Observe value of sample mean $\bar{x}_n$ (e.g. 69 inches)
- What is a plausible range for $\mu$?
- How confident are we? Can we make this precise?

Next time we’ll look at more realistic and interesting examples...
Suppose $X_1, X_2, \ldots, X_n \sim \text{iid } \mathcal{N}(\mu, \sigma^2)$. What is the sampling distribution of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$?

(a) $\mathcal{N}(\mu, \sigma^2)$
(b) $\mathcal{N}(0, 1)$
(c) $\mathcal{N}(0, \sigma)$
(d) $\mathcal{N}(\mu, 1)$
(e) Not enough information to determine.
\(X_1, X_2, \ldots, X_n \sim \text{iid } \mathcal{N}(\mu, \sigma^2)\)

\[
\sqrt{n}(\bar{X}_n - \mu)/\sigma = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\bar{X}_n - E[\bar{X}_n]}{SD(\bar{X}_n)} \sim \mathcal{N}(0, 1)
\]

Remember that we call the standard deviation of a sampling distribution the standard error, written \(SE\), so

\[
\frac{\bar{X}_n - \mu}{SE(\bar{X}_n)} \sim \mathcal{N}(0, 1)
\]
What happens if I rearrange?

\[ P \left( -2 \leq \frac{\bar{X}_n - \mu}{SE(\bar{X}_n)} \leq 2 \right) = 0.95 \]

\[ P \left( -2 \cdot SE \leq \bar{X}_n - \mu \leq 2 \cdot SE \right) = 0.95 \]

\[ P \left( -2 \cdot SE - \bar{X}_n \leq -\mu \leq 2 \cdot SE - \bar{X}_n \right) = 0.95 \]

\[ P \left( \bar{X}_n - 2 \cdot SE \leq \mu \leq \bar{X}_n + 2 \cdot SE \right) = 0.95 \]
Confidence Intervals

Confidence Interval (CI)
Range \((A, B)\) constructed from the sample data with specified probability of containing a population parameter:

\[ P(A \leq \theta_0 \leq B) = 1 - \alpha \]

Confidence Level
The specified probability, typically denoted \(1 - \alpha\), is called the confidence level. For example, if \(\alpha = 0.05\) then the confidence level is 0.95 or 95%.
Confidence Interval for Mean of Normal Population
Population Variance Known

The interval $\bar{X}_n \pm \frac{2\sigma}{\sqrt{n}}$ has approximately 95% probability of containing the population mean $\mu$, provided that:

$$X_1, X_2, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2)$$

But how are we supposed to interpret this?
Confidence Interval is a Random Variable!

1. $X_1, \ldots, X_n$ are RVs $\Rightarrow \bar{X}_n$ is a RV (repeated sampling)
2. $\mu$, $\sigma$ and $n$ are constants
3. Confidence Interval $\bar{X}_n \pm 2\sigma/\sqrt{n}$ is also a RV!
Meaning of Confidence Interval

Formal Meaning
If we sampled many times we’d get many different sample means, each leading to a different confidence interval. Approximately 95% of these intervals will contain \( \mu \).

Rough Intuition
What values of \( \mu \) are consistent with the data?
CI for Population Mean: Repeated Sampling

\[ X_1, X_2, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2) \]

Sample 1

\[ \bar{x}_1 \]

\[ \bar{x}_1 \pm \frac{2\sigma}{\sqrt{n}} \]

Sample 2

\[ \bar{x}_2 \]

\[ \bar{x}_2 \pm \frac{2\sigma}{\sqrt{n}} \]

..., ...

Sample M

\[ \bar{x}_M \]

\[ \bar{x}_M \pm \frac{2\sigma}{\sqrt{n}} \]

Repeat \( M \) times \( \rightarrow \) get \( M \) different intervals

Large \( M \) \( \Rightarrow \) Approx. 95% of these Intervals Contain \( \mu \)
Simulation Example: $X_1, \ldots, X_5 \sim \text{iid } \mathcal{N}(0, 1), M = 20$

Figure: Twenty confidence intervals of the form $\bar{X}_n \pm 2\sigma/\sqrt{n}$ where $n = 5, \sigma^2 = 1$ and the true population mean is 0.
Meaning of Confidence Interval for $\theta_0$

\[
P(A \leq \theta_0 \leq B) = 1 - \alpha
\]

Each time we sample we’ll get a different confidence interval, corresponding to different realizations of the random variables $A$ and $B$. If we sample many times, approximately $100 \times (1 - \alpha)\%$ of these intervals will contain the population parameter $\theta_0$. 
Confidence Intervals: Some Terminology

Margin of Error
When a CI takes the form $\hat{\theta} \pm ME$, $ME$ is the Margin of Error.

Lower and Upper Confidence Limits
The lower endpoint of a CI is the lower confidence limit (LCL), while the upper endpoint is the upper confidence limit (UCL).

Width of a Confidence Interval
The distance $|UCL - LCL|$ is called the width of a CI. This means exactly what it says.
What is the Margin of Error

In the preceding example of a 95% confidence interval for the mean of a normal population when the population variance is known, which of these is the margin of error?

(a) $\frac{\sigma}{\sqrt{n}}$
(b) $\bar{X}_n$
(c) $\sigma$
(d) $2\sigma/\sqrt{n}$
(e) $1/\sqrt{n}$

$2\sigma/\sqrt{n}$, since the CI is $\bar{X}_n \pm 2\sigma/\sqrt{n}$
What is the Width?

In the preceding example of a 95% confidence interval for the mean of a normal population when the population variance is known, which of these is the width of the interval?

(a) $\frac{\sigma}{\sqrt{n}}$

(b) $2\frac{\sigma}{\sqrt{n}}$

(c) $3\frac{\sigma}{\sqrt{n}}$

(d) $4\frac{\sigma}{\sqrt{n}}$

(e) $5\frac{\sigma}{\sqrt{n}}$

$4\frac{\sigma}{\sqrt{n}}$, since the CI is $\bar{X}_n \pm 2\frac{\sigma}{\sqrt{n}}$
Example: Calculate the Margin of Error

$X_1, \ldots, X_{100} \sim \text{iid } N(\mu, 1)$ but we don’t know $\mu$.

Want to create a 95% confidence interval for $\mu$.

What is the margin of error?

The confidence interval is $\bar{X}_n \pm 2\sigma/\sqrt{n}$ so

$$ME = 2\sigma/\sqrt{n} = 2 \cdot 1/\sqrt{100} = 2/10 = 0.2$$
Example: Calculate the Lower Confidence Limit

\[ X_1, \ldots, X_{100} \sim N(\mu, 1) \text{ but we don't know } \mu. \]

Want to create a 95% confidence interval for \( \mu \).

We found that \( ME = 0.2 \). The sample mean \( \bar{x} = 4.9 \). What is the lower confidence limit?

\[ LCL = \bar{x} - ME = 4.9 - 0.2 = 4.7 \]
Example: Similarly for the Upper Confidence Limit.

\[ X_1, \ldots, X_{100} \sim N(\mu, 1) \text{ but we don’t know } \mu. \]

Want to create a 95% confidence interval for \( \mu \).

We found that \( ME = 0.2 \). The sample mean \( \bar{x} = 4.9 \). What is the upper confidence limit?

\[
UCL = \bar{x} + ME = 4.9 + 0.2 = 5.1
\]
Example: 95% CI for Normal Mean, Popn. Var. Known

\[ X_1, \ldots, X_{100} \sim N(\mu, 1) \] but we don’t know \( \mu \).

95% CI for \( \mu = [4.7, 5.1] \)

What values of \( \mu \) are plausible?

The data actually came from a \( N(5, 1) \) Distribution.
Want to be more certain? Use higher confidence level.

What value of $c$ should we use to get a $100 \times (1 - \alpha)$% CI for $\mu$?

$$P \left( -c \leq \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \leq c \right) = 1 - \alpha$$

$$P \left( \bar{X}_n - c\sigma/\sqrt{n} \leq \mu \leq \bar{X}_n + c\sigma/\sqrt{n} \right) = 1 - \alpha$$

Take $c = \text{qnorm}(1 - \alpha/2)$

$$\bar{X}_n \pm \text{qnorm}(1 - \alpha/2) \times \sigma/\sqrt{n}$$
What Affects the Margin of Error?

\[ \bar{X}_n \pm q\text{norm}(1 - \alpha/2) \times \sigma/\sqrt{n} \]

**Sample Size \( n \)**

ME decreases with \( n \): bigger sample \( \implies \) tighter interval

**Population Std. Dev. \( \sigma \)**

ME increases with \( \sigma \): more variable population \( \implies \) wider interval

**Confidence Level \( 1 - \alpha \)**

ME increases with \( 1 - \alpha \): higher conf. level \( \implies \) wider interval

<table>
<thead>
<tr>
<th>Conf. Level</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \alpha )</td>
<td>0.1</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>( q\text{norm}(1 - \alpha/2) )</td>
<td>1.64</td>
<td>1.96</td>
<td>2.56</td>
</tr>
</tbody>
</table>
Lecture #16 – Confidence Intervals II

Comparing intervals with different confidence levels

What if the population is normal but $\sigma$ is unknown?

What if the population isn’t normal? – The Central Limit Theorem

CI for a Proportion Using the Central Limit Theorem
Figure: Each CI gives a range of “plausible” values for the population mean $\mu$, centered at the sample mean $\bar{X}_n$. Values near the middle are “more plausible” in the sense that a small reduction in confidence level gives a much shorter interval centered in the same place. This is because the sample mean is unlikely to take on values far from the population mean in repeated sampling.
Assume that: \( X_1, \ldots, X_n \sim \text{iid } \mathcal{N}(\mu, \sigma^2) \)

\( \sigma \) Known

\[
P \left[ -\text{qnorm}(1 - \alpha/2) \leq \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \leq \text{qnorm}(1 - \alpha/2) \right] = 1 - \alpha
\]

\[\implies \text{Confidence Interval: } \bar{X}_n \pm \text{qnorm}(1 - \alpha/2) \times \sigma/\sqrt{n} \]

\( \sigma \) Unknown

Idea: estimate \( \sigma \) with \( S \). Unfortunately:

\[
\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \text{ IS NOT A NORMAL RV!}
\]
50000 Simulation replications: $X_1, \ldots, X_5 \sim \text{iid } \mathcal{N}(\mu, \sigma^2)$

\begin{align*}
\sqrt{n}(\bar{X} - \mu)/\sigma \\
\sqrt{n}(\bar{X} - \mu)/S
\end{align*}

Figure: In each plot the red curve is the pdf of the standard normal RV. At left: the sampling distribution of $\sqrt{5}(\bar{X}_5 - \mu)/\sigma$ is standard normal. At right: the sampling distribution of $\sqrt{5}(\bar{X}_5 - \mu)/S$ clearly isn’t!
Student-t Random Variable

If \( X_1, \ldots, X_n \sim \text{iid } \mathcal{N}(\mu, \sigma^2) \), then

\[
\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \sim t(n - 1)
\]

- Parameter: \( \nu = n - 1 \) “degrees of freedom”
- Support = \((-\infty, \infty)\)
- Symmetric around zero, but mean and variance may not exist!
- Degrees of freedom \( \nu \) control “thickness of tails”
- As \( \nu \to \infty \), \( t \to \) Standard Normal.
Student-t PDFs

\[ f(x) \]

\( \nu = \infty \)
\( \nu = 3 \)
\( \nu = 1 \)

\( x \)
Who was “Student?”

“Guinnessometrics: The Economic Foundation of Student’s t”

“Student” is the pseudonym used in 19 of 21 published articles by William Sealy Gosset, who was a chemist, brewer, inventor, and self-trained statistician, agronomer, and designer of experiments ... [Gosset] worked his entire adult life ... as an experimental brewer for one employer: Arthur Guinness, Son & Company, Ltd., Dublin, St. Jamess Gate. Gosset was a master brewer and rose in fact to the top of the top of the brewing industry: Head Brewer of Guinness.
CI for Mean of Normal Distribution, Popn. Var. Unknown

Same argument as we used when the variance was known, except with $t(n - 1)$ rather than standard normal distribution:

$$P \left( -c \leq \frac{\bar{X}_n - \mu}{S/\sqrt{n}} \leq c \right) = 1 - \alpha$$

$$P \left( \bar{X}_n - c \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X}_n + c \frac{S}{\sqrt{n}} \right) = 1 - \alpha$$

$c = qt(1 - \alpha/2, \text{df} = n - 1)$

$$\bar{X}_n \pm qt(1 - \alpha/2, \text{df} = n - 1) \frac{S}{\sqrt{n}}$$
Comparison of CIs for Mean of Normal Distribution

100 \times (1 - \alpha)\% Confidence Level

\begin{align*}
X_1, \ldots, X_n &\sim \text{iid } \mathcal{N}(\mu, \sigma^2) \\
\bar{X}_n &\pm \text{qnorm}(1 - \alpha/2) \frac{\sigma}{\sqrt{n}} \\
\text{Unknown Population Std. Dev. } (\sigma) \\
\bar{X}_n &\pm \text{qt}(1 - \alpha/2, \text{df} = n - 1) \frac{S}{\sqrt{n}}
\end{align*}
Comparison of Normal and $t$ CIs

Table: Values of $qt(1 - \alpha/2, df = n - 1)$ for various choices of $n$ and $\alpha$.

<table>
<thead>
<tr>
<th>$n$</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>30</th>
<th>100</th>
<th>$\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0.10$</td>
<td>6.31</td>
<td>2.02</td>
<td>1.81</td>
<td>1.70</td>
<td>1.66</td>
<td>1.64</td>
</tr>
<tr>
<td>$\alpha = 0.05$</td>
<td>12.71</td>
<td>2.57</td>
<td>2.23</td>
<td>2.04</td>
<td>1.98</td>
<td>1.96</td>
</tr>
<tr>
<td>$\alpha = 0.01$</td>
<td>63.66</td>
<td>4.03</td>
<td>3.17</td>
<td>2.75</td>
<td>2.63</td>
<td>2.58</td>
</tr>
</tbody>
</table>

As $n \to \infty$, $t(n - 1) \to N(0, 1)$

In a sense, using the $t$-distribution involves making a “small-sample correction.” In other words, it is only when $n$ is fairly small that this makes a practical difference for our confidence intervals.
Am I Taller Than The Average American Male?

Source: Centers for Disease Control (pg. 16)

<table>
<thead>
<tr>
<th>Sample Mean</th>
<th>69 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Std. Dev.</td>
<td>6 inches</td>
</tr>
<tr>
<td>Sample Size</td>
<td>5647</td>
</tr>
<tr>
<td>My Height</td>
<td>73 inches</td>
</tr>
</tbody>
</table>

\[
\bar{X}_n \pm q t(1 - \alpha/2, df = n - 1) \hat{SE}(\bar{X}_n)
\]

Assuming the population is normal, what is the approximate value of \(qt(1-0.05/2, df = 5646)\)?

For large \(n\), \(t(n-1) \approx N(0,1)\), so the answer is approximately 2

What is the ME for the 95% CI?

\[ME \approx 0.16 \implies 69 \pm 0.16\]
The Central Limit Theorem

Suppose that $X_1, \ldots, X_n$ are a random sample from a some population that is not necessarily normal and has an unknown mean $\mu$. Then, provided that $n$ is sufficiently large,

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \approx N(0, 1)$$

We will use this fact to create approximate CIs for population mean even if we know nothing about the population.
Example: Uniform(0,1) Population, $n = 20$
Example: $\chi^2(5)$ Population, $n = 20$
Example: Bernoulli(0.3) Population, \( n = 20 \)
Are US Voters Really That Ignorant?

Pew: “What Voters Know About Campaign 2012”

The Data

Of 771 registered voters polled, only 39% correctly identified John Roberts as the current chief justice of the US Supreme Court.

Research Question

Is the majority of voters unaware that John Roberts is the current chief justice, or is this just sampling variation?

Assume Random Sampling...
Confidence Interval for a Proportion

What is the appropriate probability model for the sample?

\[ X_1, \ldots, X_n \sim \text{iid Bernoulli}(p), \; 1 = \text{Know Roberts is Chief Justice} \]

What is the parameter of interest?

\[ p = \text{Proportion of voters in the population who know Roberts is Chief Justice.} \]

What is our estimator?

Sample Proportion: \( \hat{p} = \left( \sum_{i=1}^{n} X_i \right) / n \)
Sample Proportion is the Sample Mean!

Let $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$. Since $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_n$,

$$E[\hat{p}] = E(\bar{X}_n) = E[X_i] = p$$

$$\text{Var}(\hat{p}) = \text{Var}(\bar{X}_n) = \text{Var}(X_i)/n$$

$$\text{SE}(\hat{p}) = \sqrt{\text{Var}(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$$

$$\hat{\text{SE}}(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})/n}$$
Central Limit Theorem Applied to Sample Proportion

Central Limit Theorem: Intuition

Sample means are approximately normally distributed provided the sample size is large even if the population is non-normal.

CLT For Sample Mean

\[
\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \approx N(0, 1)
\]

CLT for Sample Proportion

\[
\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx N(0, 1)
\]

In this example, the population is Bernoulli(\(p\)) rather than normal. The sample mean is \(\hat{p}\) and the population mean is \(p\).
Approximate 95% CI for Population Proportion

\[
\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx N(0, 1)
\]

\[
P \left( -2 \leq \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \leq 2 \right) \approx 0.95
\]

\[
P \left( \hat{p} - 2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p} + 2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right) \approx 0.95
\]
$100 \times (1 - \alpha) \text{ CI for Population Proportion } (p)$

$X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$

$$\hat{p} \pm \text{qnorm}(1 - \alpha/2) \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$$

Approximation based on the CLT. Works well provided $n$ is large and $p$ isn’t too close to zero or one.
Example: Bernoulli(0.9) Population, $n = 20$

Bernoulli(0.9) Population

Sample Mean – Ber(0.9) Pop (n = 20)
Example: Bernoulli(0.9) Population, $n = 100$
Approximate 95% CI for Population Proportion

39% of 771 Voters Polled Correctly Identified Chief Justice Roberts

\[ \hat{SE}(\hat{p}) = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = \sqrt{\frac{(0.39)(0.61)}{771}} \approx 0.018 \]

What is the ME for an approximate 95% confidence interval?

\[ ME \approx 2 \times \hat{SE}(\bar{X}_n) \approx 0.04 \]

What can we conclude?

Approximate 95% CI: (0.35, 0.43)
Lecture #17 – Confidence Intervals III

Sampling Dist. of \((\bar{X} - \bar{Y})\) – Normal Populations, Variances Known

CI for Difference of Population Means Using CLT

CI for Difference of Population Proportions Using CLT

Matched Pairs versus Independent Samples
Sampling Dist. of \((\bar{X}_n - \bar{Y}_m)\) – Normal Popns. Vars. Known

Suppose \(X_1, \ldots, X_n \sim \text{iid } N(\mu_x, \sigma_x^2)\) indep. of \(Y_1, \ldots, Y_m \sim \text{iid } N(\mu_y, \sigma_y^2)\)

\[
SE(\bar{X}_n - \bar{Y}_m) = \sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}
\]

\[
\frac{(\bar{X}_n - \bar{Y}_m) - (\mu_x - \mu_y)}{SE(\bar{X}_n - \bar{Y}_m)} \sim N(0, 1)
\]

You should be able to prove this using what we’ve learned about RVs.
CI for \((\mu_X - \mu_Y)\) – Indep. Normal Popns. \(\sigma_X^2, \sigma_Y^2\) Known

\[
(\bar{X}_n - \bar{Y}_m) \pm \text{qnorm}(1 - \alpha/2) \cdot SE(\bar{X}_n - \bar{Y}_m)
\]

\[
SE(\bar{X}_n - \bar{Y}_m) = \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}
\]
CI for Difference of Population Means Using CLT

Setup: Independent Random Samples

\[ X_1, \ldots, X_n \sim \text{iid with unknown mean } \mu_X \text{ & unknown variance } \sigma_X^2 \]
\[ Y_1, \ldots, Y_m \sim \text{iid with unknown mean } \mu_Y \text{ & unknown variance } \sigma_Y^2 \]

*where each sample is independent of the other*

*We Do Not Assume the Populations are Normal!*
Difference of Sample Means $\bar{X}_n - \bar{Y}_m$ and the CLT

What We Have

Approx. sampling dist. for individual sample means from CLT:

$$\bar{X}_n \approx N(\mu_X, S^2_X/n), \quad \bar{Y}_m \approx N(\mu_Y, S^2_Y/m)$$

What We Want

Sampling Distribution of the difference $\bar{X}_n - \bar{Y}_m$

Use Independence of the Two Samples

$$\bar{X}_n - \bar{Y}_m \approx N(\mu_X - \mu_Y, \frac{S^2_X}{n} + \frac{S^2_Y}{m})$$
CI for Difference of Pop. Means (Independent Samples)

\[
X_1, \ldots, X_n \sim \text{iid with mean } \mu_X \text{ and variance } \sigma^2_X
\]
\[
Y_1, \ldots, Y_m \sim \text{iid with mean } \mu_Y \text{ and variance } \sigma^2_Y
\]

where each sample is independent of the other

\[
(\bar{X}_n - \bar{Y}_m) \pm \text{qnorm}(1 - \alpha/2) \hat{SE}(\bar{X}_n - \bar{Y}_m)
\]

\[
\hat{SE}(\bar{X}_n - \bar{Y}_m) = \sqrt{\frac{S^2_X}{n} + \frac{S^2_Y}{m}}
\]

Approximation based on the CLT. Works well provided \( n, m \) large.
The Anchoring Experiment

At the beginning of the semester you were each shown a “random number.” In fact the numbers weren’t random: there was a “Hi” group that was shown 65 and a “Lo” group that was shown 10. You were randomly assigned to one of these two groups and shown your “random” number. You were then asked what proportion of UN member states are located in Africa.
Load Data for Anchoring Experiment

```r
survey <- read.csv(data_url)
anchoring <- survey[, c("rand.num", "africa.percent")]
head(anchoring)
```

```r
table
rand.num africa.percent
1 10 9
2 65 27
3 65 20
4 10 35
5 10 15
6 10 24
```
Boxplot of Anchoring Experiment

```r
boxplot(africa.percent ~ rand.num, data = anchoring)
```
Anchoring Experiment

Observational or Experimental Data?
Randomized Experiment drew from a bag of “random” numbers

Are the two samples independent?
Yes: I told you not to show your number to any other students or consult with them in any way.

What is the Research Question?
Does “anchoring” cause of bias in decision-making?
Past Semester’s Anchoring Experiment

“Lo” Group – Shown 10

\[ m = 43 \]
\[ \bar{y} = 17.1 \]
\[ s_y^2 = 86 \]

“Hi” Group – Shown 65

\[ n = 46 \]
\[ \bar{x} = 30.7 \]
\[ s_x^2 = 253 \]
ME for approx. 95% for Difference of Means

<table>
<thead>
<tr>
<th>“Lo” Group</th>
<th>“Hi” Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{y} = 17.1$</td>
<td>$\bar{x} = 30.7$</td>
</tr>
<tr>
<td>$m = 43$</td>
<td>$n = 46$</td>
</tr>
<tr>
<td>$s^2_y = 86$</td>
<td>$s^2_x = 253$</td>
</tr>
</tbody>
</table>

$$\hat{SE}(\bar{X}_{Hi} - \bar{Y}_{Lo}) = \sqrt{\frac{253}{46} + \frac{86}{43}} \approx 2.7 \Rightarrow ME \approx 5.4$$

Approximate 95% CI (8.2, 19)  
What can we conclude?
Confidence Interval for a Difference of Proportions via CLT

What is the appropriate probability model for the sample?

\(X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)\) independently of

\(Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)\)

What is the parameter of interest?

The difference of population proportions \(p - q\)

What is our estimator?

The difference of sample proportions: \(\hat{p} - \hat{q}\) where:

\[
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \quad \hat{q} = \frac{1}{m} \sum_{i=1}^{m} Y_i
\]
Difference of Sample Proportions $\hat{p} - \hat{q}$ and the CLT

What We Have

Approx. sampling dist. for individual sample proportions from CLT:

\[
\hat{p} \approx N \left( p, \frac{\hat{p}(1 - \hat{p})}{n} \right), \quad \hat{q} \approx N \left( q, \frac{\hat{q}(1 - \hat{q})}{m} \right)
\]

What We Want

Sampling Distribution of the difference $\hat{p} - \hat{q}$

Use Independence of the Two Samples

\[
\hat{p} - \hat{q} \approx N \left( p - q, \frac{\hat{p}(1 - \hat{p})}{n} + \frac{\hat{q}(1 - \hat{q})}{m} \right)
\]
Approximate CI for Difference of Popn. Proportions \((p - q)\)

\[X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)\]
\[Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)\]

where each sample is independent of the other

\[
(\hat{p} - \hat{q}) \pm \text{qnorm}(1 - \alpha/2) \, \hat{SE}(\hat{p} - \hat{q})
\]

\[
\hat{SE}(\hat{p} - \hat{q}) = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + \frac{\hat{q}(1 - \hat{q})}{m}}
\]

Approximation based on the CLT. Works well provided \(n, m\) large and \(p, q\) aren’t too close to zero or one.
Are Republicans Better Informed Than Democrats?

Pew: “What Voters Know About Campaign 2012”

Of the 239 Republicans surveyed, 47% correctly identified John Roberts as the current chief justice. Only 31% of the 238 Democrats surveyed correctly identified him. Is this difference meaningful or just sampling variation?

Again, assume random sampling.
ME for approx. 95% for Difference of Proportions

47% of 239 Republicans vs. 31% of 238 Democrats identified Roberts

Republicans

\[ \hat{p} = 0.47 \]
\[ n = 239 \]
\[ \text{SE}(\hat{p}) = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \approx 0.032 \]

Democrats

\[ \hat{q} = 0.31 \]
\[ m = 238 \]
\[ \text{SE}(\hat{q}) = \sqrt{\frac{\hat{q}(1 - \hat{q})}{m}} \approx 0.030 \]

Difference: (Republicans - Democrats)

\[ \hat{p} - \hat{q} = 0.47 - 0.31 = 0.16 \]
\[ \text{SE}(\hat{p} - \hat{q}) = \sqrt{\text{SE}(\hat{p})^2 + \text{SE}(\hat{q})^2} \approx 0.044 \implies ME \approx 0.09 \]

Approximate 95% CI (0.07, 0.25) What can we conclude?
Which is the Harder Exam?

Here are the scores from two midterms:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.1</td>
<td>60.7</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>77.1</td>
<td>77.9</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>83.6</td>
<td>93.6</td>
<td>10.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>69</td>
<td>75.0</td>
<td>74.3</td>
<td>−0.7</td>
</tr>
<tr>
<td>70</td>
<td>96.4</td>
<td>86.4</td>
<td>−10.0</td>
</tr>
<tr>
<td>71</td>
<td>78.6</td>
<td>82.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Sample Mean: 79.6  81.4  1.8

Is it true that students score, on average, better on Exam 2 or is this just sampling variation?
Are the two samples independent?

Suppose we treat the scores on the first midterm as one sample and the scores on the second as another. Are these samples independent?

(a) Yes
(b) No
(c) Not Sure
Matched Pairs Data – Dependent Samples

The samples are dependent: each includes the same students:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.1</td>
<td>60.7</td>
<td>3.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>71</td>
<td>78.6</td>
<td>82.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Sample Mean: 79.6  81.4  1.8

Sample Corr. 0.54

This is really a one-sample problem if we consider the difference between each student’s score on Exam 2 and Exam 1. This setup is referred to as matched pairs data.
Solving this as a One-Sample Problem

Let \(D_i = X_i - Y_i\) be the difference of student \(i\)'s exam scores.

I calculated the following in R:

\[
\bar{D}_n = \frac{1}{n} \sum_{i=1}^{n} D_i \approx 1.8
\]

\[
S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \bar{D})^2 \approx 124
\]

\[
\hat{SE}(\bar{D}_n) = \left( \frac{S_D}{\sqrt{n}} \right) \approx \sqrt{124/71} \approx 1.3
\]

Approximate 95\% CI Based on the CLT:

\[1.8 \pm 2.6 = (-0.8, 4.4)\]

What is our conclusion?
How do Independent Samples & Matched Pairs Differ?

Mean of Differences = Difference of Means

\[ \bar{D}_n \equiv \frac{1}{n} \sum_{i=1}^{n} D_i = \bar{X}_n - \bar{Y}_n \]

But Correlation Affects the Variance

\[ S^2_D \equiv \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \bar{D}_n)^2 = S^2_X + S^2_Y - 2S_X S_Y r_{XY} \]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r_{XY} &gt; 0 )</td>
<td>( S^2_D &lt; S^2_X + S^2_Y )</td>
</tr>
<tr>
<td>( r_{XY} = 0 )</td>
<td>( S^2_D = S^2_X + S^2_Y )</td>
</tr>
<tr>
<td>( r_{XY} &lt; 0 )</td>
<td>( S^2_D &gt; S^2_X + S^2_Y )</td>
</tr>
</tbody>
</table>
Mean of Differences equals Difference of Means

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.1</td>
<td>60.7</td>
<td>3.6</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>71</td>
<td>78.6</td>
<td>82.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Sample Mean: 79.6 81.4 1.8

\[
\bar{D}_n = 1.8
\]

\[
\bar{X}_n - \bar{Y}_n = 81.4 - 79.6 = 1.8 \checkmark
\]
Calculating $S_D^2$ from $S_X^2$, $S_Y^2$ and $r_{XY}$

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.1</td>
<td>60.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>78.6</td>
<td>82.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Sample Var. | 117 | 151 | 124
Sample Corr. | 0.54 |

$117 + 151 - 2 \times 0.54 \times \sqrt{117 \times 151} \approx 124 \checkmark$

This agrees with our calculations based on the differences.
The “Wrong CI” (Assuming Independence)

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>Sample Mean</td>
<td>79.6</td>
<td>81.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Sample Var.</td>
<td>117</td>
<td>151</td>
<td>124</td>
</tr>
<tr>
<td>Sample Corr.</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wrong Interval – Assumes Independence

\[ 1.8 \pm 2 \times \sqrt{117/71 + 151/71} \Rightarrow (-2.1, 5.7) \]

Correct Interval – Matched Pairs

\[ 1.8 \pm 2 \times \sqrt{124/71} \Rightarrow (-0.8, 4.4) \]

Top CI is too wide: since exam scores are positively correlated the variance of the differences is less than the sum of the variances.
CIs for a Difference of Means – Two Cases

Independent Samples

Two independent samples: $X_1, \ldots, X_n$ and $Y_1, \ldots, Y_m$.

Matched Pairs

Matched pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$ where $X_i$ is not independent of $Y_i$ but each pair $(X_i, Y_i)$ is independent of the other pairs.

Crucial Points

- Learn to recognize matched pairs and independent samples setups since the CIs are different!
- Two equivalent ways to construct matched pairs CI:
  1. Method 1: use sample mean and std. dev. of $D_i = X_i - Y_i$
  2. Method 2: use $\bar{X}_n$, $\bar{Y}_n$, along with $S_X$, $S_Y$ and $r_{XY}$
The Pepsi Challenge

Analogy between Hypothesis Testing and a Criminal Trial

Steps in a Hypothesis Test
The Pepsi Challenge

Our expert claims to be able to tell the difference between Coke and Pepsi. Let’s put this to the test!

- Eight cups of soda
  - Four contain Coke
  - Four contain Pepsi
- The cups are randomly arranged
- How can we use this experiment to tell if our expert can really tell the difference?
The Results:

# of Cokes Correctly Identified:

What do you think? Can our expert really tell the difference?

(a) Yes

(b) No
If you just guess randomly, what is the probability of identifying *all four cups of Coke correctly*?

- \( \binom{8}{4} = 70 \) ways to choose four of the eight cups.
- If guessing randomly, each of these is *equally likely*.
- Only *one* of the 70 possibilities corresponds to correctly identifying all four cups of Coke.
- Thus, the probability is \( 1/70 \approx 0.014 \).
### Probabilities if Guessing Randomly

<table>
<thead>
<tr>
<th># Correct</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob.</td>
<td>1/70</td>
<td>16/70</td>
<td>36/70</td>
<td>16/70</td>
<td>1/70</td>
</tr>
</tbody>
</table>
If you’re just guessing, what is the probability of identifying \textit{at least} three Cokes correctly?

- Probabilities of mutually exclusive events sum.
- \( P(\text{all four correct}) = \frac{1}{70} \)
- \( P(\text{exactly 3 correct}) = \frac{16}{70} \)
- \( P(\text{at least three correct}) = \frac{17}{70} \approx 0.24 \)
The Pepsi Challenge

► Even if you’re just guessing randomly, the probability of correctly identifying three or more Cokes is around 24%
► In contrast, the probability of identifying all four Cokes correctly is only around 1.4% if you’re guessing randomly.
► We should probably require the expert to get them all right. . .
► What if the expert gets them all wrong? This also has probability 1.4% if you’re guessing randomly. . .

That was a hypothesis test! We’ll go through the details in a moment, but first an analogy. . .
Criminal Trial

- The person on trial is either innocent or guilty (but not both!)
- “Innocent Until Proven Guilty”
- Only convict if evidence is “beyond a reasonable doubt”
- Not Guilty rather than Innocent
  - Acquit ≠ Innocent
- Two Kinds of Errors:
  - Convict the innocent
  - Acquit the guilty
- Convicting the innocent is a worse error. Want this to be rare even if it means acquitting the guilty.

Hypothesis Testing

- Either the null hypothesis $H_0$ or the alternative $H_1$ hypothesis is true.
- Assume $H_0$ to start
- Only reject $H_0$ in favor of $H_1$ if there is strong evidence.
- Fail to reject rather than Accept $H_0$
  - (Fail to reject $H_0) \neq (H_0 \text{ True})$
- Two Kinds of Errors:
  - Reject true $H_0$ (Type I)
  - Don’t reject false $H_0$ (Type II)
- Type I errors (reject true $H_0$) are worse: make them rare even if that means more Type II errors.
How is the Pepsi Challenge a Hypothesis Test?

Null Hypothesis $H_0$
Can’t tell the difference between Coke and Pepsi: just guessing.

Alternative Hypothesis $H_1$
Able to tell which ones are Coke and which are Pepsi.

Type I Error – Reject $H_0$ even though it’s true
Decide expert can tell the difference when she’s really just guessing.

Type II Error – Fail to reject $H_0$ even though it’s false
Decide expert just guessing when she really can tell the difference.
How do we carry out a hypothesis test?

Step 1 – Specify $H_0$ and $H_1$

- Pepsi Challenge: $H_0$ – our “expert” is guessing randomly
- Pepsi Challenge: $H_1$ – our “expert” can tell which is Coke

Step 2 – Choose a Test Statistic $T_n$

- $T_n$ uses sample data to measure the plausibility of $H_0$ vs. $H_1$
- Pepsi Challenge: $T_n = \text{Number of Cokes correctly identified}$
- Lots of Cokes correct $\Rightarrow$ implausible that you’re just guessing
Step 3 – Calculate Distribution of $T_n$ under $H_0$

- Under the null = Under $H_0 = \text{Assuming } H_0$ is true
- To carry out our test, need sampling dist. of $T_n$ under $H_0$
- $H_0$ must be “specific enough” that we can do the calculation.
- Pepsi Challenge:

<table>
<thead>
<tr>
<th># Correct</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/70</td>
<td>16/70</td>
<td>36/70</td>
<td>16/70</td>
<td>1/70</td>
</tr>
</tbody>
</table>

F.J. DiTraglia, Econ 103
Step 4 – Choose a Critical Value $c$

<table>
<thead>
<tr>
<th># Correct</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob.</td>
<td>1/70</td>
<td>16/70</td>
<td>36/70</td>
<td>16/70</td>
<td>1/70</td>
</tr>
</tbody>
</table>

- Pepsi Challenge: correctly identify many cokes ⇒ implausible you’re guessing at random.
- Decision Rule: reject $H_0$ if $T_n > c$, where $c$ is the critical value.
- Choose $c$ to ensure $P(\text{Type I Error})$ is small. But how small?
- Significance level $\alpha = \max. \text{prob. of Type I error we will allow}$
- Choose $c$ so that if $H_0$ is true $P(T_n > c) \leq \alpha$
- Pepsi Challenge: if you are guessing randomly, then
  - $P(T_n > 3) = 1/70 \approx 0.014$
  - $P(T_n > 2) = 16/70 + 1/70 \approx 0.23$
How do we carry out a hypothesis test?

<table>
<thead>
<tr>
<th># Correct</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob.</td>
<td>1/70</td>
<td>16/70</td>
<td>36/70</td>
<td>16/70</td>
<td>1/70</td>
</tr>
</tbody>
</table>

Step 1 – Specify Null Hypothesis $H_0$ and alternative Hypothesis $H_1$

Step 2 – Choose Test Statistic $T_n$

Step 3 – Calculate sampling dist of $T_n$ under $H_0$

Step 4 – Choose Critical Value $c$

Step 5 – Look at the data: if $T_n > c$, reject $H_0$.

Pepsi Challenge

If $\alpha = 0.05$ we need $c = 3$ so that $P(T_n > 3) \leq \alpha$ under $H_0$.

Based on the results for our expert, would we reject $H_0$?
Lecture #19 – Hypothesis Testing II

Test for the mean of a normal population (variance known)

Relationship Between Confidence Intervals and Hypothesis Tests

P-values
A Simple Example

Suppose $X_1, \ldots, X_{100} \sim \text{iid } N(\mu, \sigma^2 = 9)$ and we want to test

$$H_0: \mu = 2$$
$$H_1: \mu \neq 2$$

Step 1 – Specify Null Hypothesis $H_0$ and alternative Hypothesis $H_1$

Step 2 – Choose Test Statistic $T_n$

If $\bar{X}$ is far from 2 then $\mu = 2$ is implausible. Why?
Suppose $X_1, \ldots, X_{100} \sim \text{iid } N(2, \sigma^2 = 9)$. What is the sampling distribution of $\bar{X}$?

(a) $N(0, 1)$
(b) $t(99)$
(c) $N(2, 0.3)$
(d) $N(2, 1)$
(e) $N(2, 0.09)$
If $\bar{X}_n$ is far from 2, then $\mu = 2$ is implausible

Since $X_1, \ldots, X_{100} \sim \text{iid } N(\mu, 9)$, if $\mu = 2$ then $\bar{X} \sim N(2, 0.09)$

$$P(a \leq \bar{X} \leq b) = P\left(\frac{a - 2}{3/10} \leq \frac{\bar{X} - 2}{3/10} \leq \frac{b - 2}{3/10}\right)$$

$$= P\left(\frac{a - 2}{0.3} \leq Z \leq \frac{b - 2}{0.3}\right)$$

where $Z \sim N(0, 1)$ so we see that if $H_0: \mu = 2$ is true then

$$P(1.7 \leq \bar{X} \leq 2.3) = P(-1 \leq Z \leq 1) \approx 0.68$$

$$P(1.4 \leq \bar{X} \leq 2.6) = P(-2 \leq Z \leq 2) \approx 0.95$$

$$P(1.1 \leq \bar{X} \leq 2.9) = P(-3 \leq Z \leq 3) > 0.99$$
Step 2 – Choose Test Statistic $T_n$

- Reject $H_0: \mu = 2$ if the sample mean is far from 2.
- $\Rightarrow T_n$ should depend on the distance from $\bar{X}$ to 2, i.e. $|\bar{X} - 2|$.
- We can make our subsequent calculations much easier if we choose a scale for $T_n$ that is convenient under $H_0$...

$$
\mu = 2 \Rightarrow \bar{X} - 2 \sim N(0, 0.09)
$$

$$
\frac{\bar{X} - 2}{0.3} \sim N(0, 1)
$$

So we will set $T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$
A Simple Example: $X_1, \ldots, X_{100} \sim \text{iid } N(\mu, \sigma^2 = 9)$

Step 1 – $H_0: \mu = 2$, $H_1: \mu \neq 2$ ✓

Step 2 – $T_n = \left| \frac{\bar{X} - 2}{0.3} \right|$ ✓

Step 3 – If $\mu = 2$ then $\left( \frac{\bar{X} - 2}{0.3} \right) \sim N(0, 1)$ ✓

Step 4 – Choose Critical Value $c$

   (i) Specify significance level $\alpha$.

   (ii) Choose $c$ so that $P(T_n > c) = \alpha$ under $H_0: \mu = 2$. 
Choose $c$ so that $P(T_n > c) = \alpha$ under $H_0$

$$T_n = \left| \frac{\bar{X} - 2}{0.3} \right| \text{ and } \mu = 2 \implies \frac{\bar{X} - 2}{0.3} \sim N(0, 1)$$

$$P \left( \left| \frac{\bar{X} - 2}{0.3} \right| > c \right) = \alpha$$

$$1 - P \left( \left| \frac{\bar{X} - 2}{0.3} \right| \leq c \right) = \alpha$$

$$P \left( \left| \frac{\bar{X} - 2}{0.3} \right| \leq c \right) = 1 - \alpha$$

$$P \left( -c \leq \frac{\bar{X} - 2}{0.3} \leq c \right) = 1 - \alpha$$

Hence: $c = \text{qnorm}(1 - \alpha/2)$ which should look familiar!
A Simple Example: \(X_1, \ldots, X_{100} \sim \text{iid } \mathcal{N}(\mu, \sigma^2 = 9)\)

Step 1 – \(H_0: \mu = 2, \ H_1: \mu \neq 2 \)

Step 2 – \(T_n = \left| \frac{\bar{X} - 2}{0.3} \right| \)

Step 3 – If \(\mu = 2\) then \(\left( \frac{\bar{X} - 2}{0.3} \right) \sim \mathcal{N}(0, 1)\)

Step 4 – \(c = \text{qnorm}(1 - \alpha/2)\)

Step 5 – Look at the data: if \(T_n > c\), reject \(H_0\)

- Suppose I choose \(\alpha = 0.05\). Then \(c \approx 2\).
- I observe a sample of 100 observations. Suppose \(\bar{X} = 1.34\)

\[
T_n = \left| \frac{\bar{X} - 2}{0.3} \right| = \left| \frac{1.34 - 2}{0.3} \right| = 2.2
\]

- Since \(T_n > c\), I reject \(H_0: \mu = 2\).
Reporting the Results of a Test

Our Example: $X_1, \ldots, X_{100} \sim \text{iid } N(\mu, 9)$

- $H_0: \mu = 2 \text{ vs. } H_1: \mu \neq 2$
- $T_n = |(\bar{X}_n - 2)/0.3|$
- $\alpha = 0.05 \implies c \approx 2$

Suppose $\bar{x} = 1.34$

Then $T_n = 2.2$. Since this is greater than $c$ for $\alpha = 0.05$, we reject $H_0: \mu = 2$ at the 5% significance level.

Suppose instead that $\bar{x} = 1.82$

Then $T_n = 0.6$. Since this is less than $c$ for $\alpha = 0.05$, we fail to reject $H_0: \mu = 2$ at the 5% significance level.
General Version of Preceding Example

\[ X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2) \text{ with } \sigma^2 \text{ known and we want to test:} \]

\[ H_0: \mu = \mu_0 \]
\[ H_1: \mu \neq \mu_0 \]

where \( \mu_0 \) is some specified value for the population mean.

- \(|\bar{X}_n - \mu_0|\) tells how far sample mean is from \( \mu_0 \).
- Reject \( H_0: \mu = \mu_0 \) if sample mean is far from \( \mu_0 \).
- Under \( H_0: \mu = \mu_0 \), \( \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1) \).
- Test statistic \( T_n = \left| \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \right| \)
- Reject \( H_0: \mu = \mu_0 \) if \( T_n > \text{qnorm}(1 - \alpha/2) \)
Suppose $X_1, \ldots, X_{64} \sim \text{iid } N(\mu, \sigma^2 = 25)$ and we want to test $H_0: \mu = 0$ vs. $H_1: \mu \neq 0$ with $\alpha = 0.32$. If we observe $\bar{x} = 0.5$ what is our decision?

(a) Reject $H_0$

(b) Fail to Reject $H_0$

(c) Not enough information to determine.

$$T_n = \left| \frac{0.5 - 0}{5/8} \right| = 0.5 \times \frac{8}{5} = 0.8, \quad \text{qnorm}(1 - 0.32/2) \approx 1$$

Fail to reject $H_0$
What is this test telling us to do?

Return to the example where $H_0: \mu = 2$ vs. $H_1: \mu \neq 2$ and $X_1, \ldots, X_{100} \sim \text{iid } \mathcal{N}(\mu, 9)$ with $\alpha = 0.05$:

- Reject $H_0$ if $\left| \frac{\bar{X}_n - 2}{0.3} \right| > 2$
- Reject $H_0$ if $|\bar{X}_n - 2| > 0.6$
- Reject $H_0$ if $(\bar{X}_n < 1.4)$ or $(\bar{X}_n > 2.6)$

Reject $H_0: \mu = 2$ if $\bar{X}_n$ is far from 2. How far? Depends on choice of $\alpha$ along with sample size and population variance.
This looks suspiciously similar to a confidence interval.

\[ X_1, \ldots, X_n \sim \text{iid } N(\mu, \sigma^2) \text{ where } \sigma^2 \text{ is known} \]

\[ T_n = \left| \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \right|, \quad c = \text{qnorm}(1 - \alpha/2), \text{ Reject } H_0: \mu = \mu_0 \text{ if } T_n > c \]

Another way of saying this is don’t reject \( H_0 \) if:

\[
(T_n \leq c) \iff \left( \left| \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \right| \leq c \right) \iff \left( -c \leq \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \leq c \right) \\
\iff \left( \bar{X}_n - c \times \frac{\sigma}{\sqrt{n}} \leq \mu_0 \leq \bar{X}_n + c \times \frac{\sigma}{\sqrt{n}} \right)
\]

In other words, don’t reject \( H_0: \mu = \mu_0 \) at significance level \( \alpha \) if \( \mu_0 \) lies inside the \( 100 \times (1 - \alpha)\% \) confidence interval for \( \mu \).
CIs and Hypothesis Tests are Intimately Related

Our Simple Example

\( X_1, \ldots, X_{100} \sim \text{iid N}(\mu, \sigma^2 = 9) \) and observe \( \bar{x} = 1.34 \)

Test \( H_0: \mu = 2 \) vs. \( H_1: \mu \neq 2 \) with \( \alpha = 0.05 \)

\[ T_n = 2.2, \quad c = qnorm(1 - 0.05/2) \approx 2. \] Since \( T_n > c \) we reject.

95\% Confidence Interval for \( \mu \)

\[ 1.34 \pm 2 \times 3/10 \text{ i.e. } 1.34 \pm 0.6 \text{ or equivalently } (0.74, 1.94) \]

Another way to carry out the test...

Since 2 lies outside the 95\% confidence interval for \( \mu \), if our significance level is \( \alpha = 0.05 \) we reject \( H_0: \mu = 2 \).
$X_1, \ldots X_{100} \sim \text{iid } N(\mu_X, 9) \text{ and } Y_1, \ldots, Y_{100} \sim \text{iid } N(\mu_Y, 9)$

Two researchers: $H_0: \mu = 2$ vs. $H_1: \mu \neq 2$ with $\alpha = 0.05$

**Researcher 1**
- $\bar{x} = 1.34$
- $T_n = 2.2 > 2$
- Reject $H_0: \mu_X = 2$

**Researcher 2**
- $\bar{y} = 11.3$
- $T_n = 31 > 2$
- Reject $H_0: \mu_Y = 2$

Both researchers would report “reject $H_0$ at the 5% level” but Researcher 2 found much stronger evidence against $H_0$...
What if we had chosen a different significance level $\alpha$?

$$T_n = 2.2, \quad c = \text{qnorm}(1 - \alpha/2), \quad \text{Reject } H_0: \mu = 2 \text{ if } T_n > c$$

- $\alpha = 0.32 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.32/2) \approx 0.99 \quad \text{Reject}$
- $\alpha = 0.10 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.10/2) \approx 1.64 \quad \text{Reject}$
- $\alpha = 0.05 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.05/2) \approx 1.96 \quad \text{Reject}$
- $\alpha = 0.04 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.04/2) \approx 2.05 \quad \text{Reject}$
- $\alpha = 0.03 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.03/2) \approx 2.17 \quad \text{Reject}$
- $\alpha = 0.02 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.02/2) \approx 2.33 \quad \text{Fail to Reject}$
- $\alpha = 0.01 \quad \Rightarrow \quad c = \text{qnorm}(1 - 0.01/2) \approx 2.58 \quad \text{Fail to Reject}$
Result of Test Depends on Choice of $\alpha$!

$\alpha = 0.32 \Rightarrow \text{Reject}$
$\alpha = 0.10 \Rightarrow \text{Reject}$
$\alpha = 0.05 \Rightarrow \text{Reject}$
$\alpha = 0.04 \Rightarrow \text{Reject}$
$\alpha = 0.03 \Rightarrow \text{Reject}$
$\alpha = 0.02 \Rightarrow \text{Fail to Reject}$
$\alpha = 0.01 \Rightarrow \text{Fail to Reject}$

- If you reject $H_0$ at a given choice of $\alpha$, you would also have rejected at any larger choice of $\alpha$.
- If you fail to reject $H_0$ at a given choice of $\alpha$, you would also have failed to reject at any smaller choice of $\alpha$.

Question

If $\alpha$ is large enough we will reject; if $\alpha$ is small enough, we won’t.
Where is the dividing line between reject and fail to reject?
Question

Given that we observed a test statistic of 2.2, what choice of $\alpha$ would put us just at the cusp of rejecting $H_0$?

Answer

Whichever $\alpha$ makes $c = 2.2$! At this $\alpha$ we just barely fail to reject.
Calculating the P-value

Definition of a P-value

Significance level $\alpha$ such that the critical value $c$ exactly equals the observed value of the test statistic. Equivalently: $\alpha$ that lies exactly on boundary between Reject and Fail to Reject.

Our Example

The observed value of the test statistic is 2.2 and the critical value is $qnorm(1 - \alpha/2)$, so we need to solve:

\[
\begin{align*}
2.2 &= qnorm(1 - \alpha/2) \\
\text{pnorm}(2.2) &= \text{pnorm}(qnorm(1 - \alpha/2)) \\
\text{pnorm}(2.2) &= 1 - \alpha/2 \\
\alpha &= 2 \times [1 - \text{pnorm}(2.2)] \approx 0.028
\end{align*}
\]
How to use a p-value?

**Alternative to Steps 4–5**

Rather than choosing $\alpha$, computing critical value $c$ and reporting “Reject” or “Fail to Reject” at $100 \times \alpha\%$ level, just report p-value.

**Example From Previous Slide**

P-value for our test of $H_0: \mu = 2$ against $H_1: \mu \neq 2$ was $\approx 0.028$

**Using P-value to Test $H_0$**

Using the p-value we can test $H_0$ for any $\alpha$ without doing any new calculations! For p-value $< \alpha$ reject; for p-value $\geq \alpha$ fail to reject.

**Strength of Evidence Against $H_0$**

P-value measures strength of evidence against the null. Smaller p-value = stronger evidence against $H_0$. P-value does not measure size of effect.
One-Sided Tests

Two-Sample Test For Difference of Means

Matched Pairs Test for Difference of Means
One-sided Test: Different Decision Rule

Same Example as Last Time

\[ X_1, \ldots, X_{100} \sim \text{iid } N(\mu, 9) \text{ and } H_0: \mu = 2. \]

Three possible alternatives:

- Two-sided: \( H_1: \mu \neq 2 \)
- One-sided (\( < \)): \( H_1: \mu < 2 \)
- One-sided (\( > \)): \( H_1: \mu > 2 \)

Three corresponding decision rules:

- Two-sided: reject \( \mu = 2 \) whenever \( |\bar{X}_n - 2| \) is too large.
- One-sided (\( < \)): only reject \( \mu = 2 \) if \( \bar{X}_n \) is far below 2.
- One-sided (\( > \)): only reject \( \mu = 2 \) if \( \bar{X}_n \) is far above 2.
One-sided (>) Example: \( X_1, \ldots, X_{100} \sim \text{iid } \mathcal{N}(\mu, 9) \)

**Null and Alternative**
Test \( H_0: \mu = 2 \) against \( H_0: \mu > 2 \) with \( \alpha = 0.05 \).

**Test Statistic**
Drop absolute value for one-sided test: \( T_n = \frac{\bar{X}_n - 2}{0.3} \)

**Decision Rule**
Reject \( H_0: \mu = 2 \) if test statistic is large and positive: \( T_n > c \)

**Critical Value**
Choose \( c \) so that \( P(\text{type I error}) = P(T_n > c | \mu = 2) = 0.05 \)

Under \( H_0, T_n \sim \mathcal{N}(0, 1) \)

If \( Z \sim \mathcal{N}(0, 1) \) what value of \( c \) ensures \( P(Z > c) = 0.05 \)?
One-sided (<) Example: $X_1, \ldots, X_{100} \sim \text{iid } N(\mu, 9)$

Null and Alternative
Test $H_0: \mu = 2$ against $H_1: \mu < 2$ with $\alpha = 0.05$.

Test Statistic
Drop absolute value for one-sided test: $T_n = \frac{\bar{X}_n - 2}{0.3}$

Decision Rule
Reject $H_0: \mu = 2$ if test statistic is large and negative: $T_n < c$

Critical Value
Choose $c$ so that $P(\text{type I error}) = P(T_n < c|\mu = 2) = 0.05$

Under $H_0$, $T_n \sim N(0, 1)$
If $Z \sim N(0, 1)$ what value of $c$ ensures $P(Z < c) = 0.05$?
Critical Values – Two-sided vs. One-sided Tests: $\alpha = 0.05$

Two-Sided

Splits $\alpha = 0.05$ between two tails: $c = \text{qnorm}(1 - 0.05/2) \approx 1.96$

One-Sided

One tail: $c = \text{qnorm}(0.05) \approx -1.64$ for ($<$); $\text{qnorm}(0.95) \approx 1.64$ for ($>$)
Example: $X_1, \ldots, X_{100} \sim \text{iid } \mathcal{N}(\mu, 9), \alpha = 0.05$

Suppose $\bar{x} = 1.5 \implies (\bar{x} - 2)/0.3 \approx -1.67$

<table>
<thead>
<tr>
<th>Two-sided</th>
<th>One-sided ($&lt;$)</th>
<th>One-sided ($&gt;$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1: \mu \neq 2$</td>
<td>$H_1: \mu &lt; 2$</td>
<td>$H_1: \mu &gt; 2$</td>
</tr>
<tr>
<td>Reject if $</td>
<td>T_n</td>
<td>&gt; 1.96$</td>
</tr>
<tr>
<td>$T_n = 1.67$</td>
<td>$T_n = -1.67$</td>
<td>$T_n = -1.67$</td>
</tr>
<tr>
<td>Fail to reject</td>
<td>Reject</td>
<td>Fail to reject</td>
</tr>
</tbody>
</table>

- If One-sided ($<$) rejects, then one-sided ($>$) doesn’t and vice-versa.
- Two-sided and one-sided sometimes agree but sometimes disagree.
- One-sided test is “less stringent.”
Testing $H_0: \mu = \mu_0$ when $X_1, \ldots, X_n \sim \text{iid } \mathcal{N}(\mu, \sigma^2)$

Two-Sided
Reject $H_0$ whenever $\left| \frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} \right| > \text{qnorm}(1 - \alpha/2)$

One-Sided ($<$)
Reject $H_0$ whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} < \text{qnorm}(\alpha)$

One-Sided ($>$)
Reject $H_0$ whenever $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} > \text{qnorm}(1 - \alpha)$
One-sided P-value

- Only makes sense to calculate one-sided p-value when sign of test stat. agrees with alternative:
  - Preceding example: $T_n = -1.67$
  - Calculate p-value for test vs. $H_1: \mu < 2$ but not $H_1: \mu > 2$
- Just as in two-sided test, p-value equals value of $\alpha$ for which $c$ exactly equals the observed test statistic:
  - $c = \text{qnorm}(\alpha)$ for ($<$)
  - $c = \text{qnorm}(1 - \alpha)$ for ($>$)
  - Example: $-1.67 = \text{qnorm}(\alpha) \iff \alpha = 0.047$
- Use and report one-sided p-value in same way as two-sided p-value
Comparing One-sided and Two-sided Tests

- Two-sided test is the default.
- Don’t use one-sided unless you have a good reason!
- Relationship between CI and test only holds for two-sided.
- Why and when should we consider a one-sided test?
  - Suppose we know *a priori* that $\mu < 2$ is crazy/uninteresting
  - Test of $H_0: \mu = 2$ against $H_1: \mu > 2$ with significance level $\alpha$
    has lower type II error rate than test against $H_1: \mu \neq 2$.
- If you use a one-sided test you must choose (> or <) *before looking at the data*. Otherwise the results are invalid.
The Anchoring Experiment

Anchoring Experiment

Answer

F.J. DiTraglia, Econ 103
The Anchoring Experiment

Shown a “random” number and then asked what proportion of UN member states are located in Africa.

“Hi” Group – Shown 65 ($n_{Hi} = 46$)
Sample Mean: 30.7, Sample Variance: 253

“Lo” Group – Shown 10 ($n_{Lo} = 43$)
Sample Mean: 17.1, Sample Variance: 86

Proceed via the CLT...
In words, what is our null hypothesis?

(a) There is a *positive* anchoring effect: seeing a higher random number makes people report a higher answer.

(b) There is a *negative* anchoring effect: seeing a lower random number makes people report a lower answer.

(c) There *is* an anchoring effect: it could be positive or negative.

(d) There is *no* anchoring effect: people aren’t influenced by seeing a random number before answering.
In symbols, what is our null hypothesis?

(a) \( \mu_{Lo} < \mu_{Hi} \)
(b) \( \mu_{Lo} = \mu_{Hi} \)
(c) \( \mu_{Lo} > \mu_{Hi} \)
(d) \( \mu_{Lo} \neq \mu_{Hi} \)

\( \mu_{Lo} = \mu_{Hi} \) is equivalent to \( \mu_{Hi} - \mu_{Lo} = 0 \)!
Anchoring Experiment

Under the null, what should we expect to be true about the values taken on by $\bar{X}_{Lo}$ and $\bar{X}_{Hi}$?

(a) They should be similar in value.
(b) $\bar{X}_{Lo}$ should be the smaller of the two.
(c) $\bar{X}_{Hi}$ should be the smaller of the two.
(d) They should be different. We don’t know which will be larger.
What is our Test Statistic?

Sampling Distribution

\[
\frac{(\bar{X}_{Hi} - \bar{X}_{Lo}) - (\mu_{Hi} - \mu_{Lo})}{\sqrt{\frac{S^2_{Hi}}{n_{Hi}} + \frac{S^2_{Lo}}{n_{Lo}}}} \approx N(0, 1)
\]

Test Statistic: Impose the Null

Under \( H_0: \mu_{Lo} = \mu_{Hi} \)

\[
T_n = \frac{\bar{X}_{Hi} - \bar{X}_{Lo}}{\sqrt{\frac{S^2_{Hi}}{n_{Hi}} + \frac{S^2_{Lo}}{n_{Lo}}}} \approx N(0, 1)
\]
What is our Test Statistic?

\( \bar{X}_{Hi} = 30.7, \ s^2_{Hi} = 253, \ n_{Hi} = 46 \)
\( \bar{X}_{Lo} = 17.1, \ s^2_{Lo} = 86, \ n_{Lo} = 43 \)

Under \( H_0: \mu_{Lo} = \mu_{Hi} \)

\[
T_n = \frac{\bar{X}_{Hi} - \bar{X}_{Lo}}{\sqrt{\frac{S^2_{Hi}}{n_{Hi}} + \frac{S^2_{Lo}}{n_{Lo}}}} \approx N(0,1)
\]

Plugging in Our Data

\[
T_n = \frac{\bar{X}_{Hi} - \bar{X}_{Lo}}{\sqrt{\frac{S^2_{Hi}}{n_{Hi}} + \frac{S^2_{Lo}}{n_{Lo}}}} \approx 5
\]
Anchoring Experiment Example

Approximately what critical value should we use to test

\[ H_0: \mu_{Lo} = \mu_{Hi} \]

against the two-sided alternative at the 5% significance level?

<table>
<thead>
<tr>
<th>( \alpha )</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>( qnorm(1 - \alpha) )</td>
<td>1.28</td>
<td>1.64</td>
<td>2.33</td>
</tr>
<tr>
<td>( qnorm(1 - \alpha/2) )</td>
<td>1.64</td>
<td>1.96</td>
<td>2.58</td>
</tr>
</tbody>
</table>

... Approximately 2
Anchoring Experiment Example

Which of these commands would give us the p-value of our test of

\( H_0: \mu_{Lo} = \mu_{Hi} \) against \( H_1: \mu_{Lo} < \mu_{Hi} \) at significance level \( \alpha \)?

(a) \( \text{qnorm}(1 - \alpha) \)
(b) \( \text{qnorm}(1 - \alpha/2) \)
(c) \( 1 - \text{pnorm}(5) \)
(d) \( 2 \times (1 - \text{pnorm}(5)) \)
P-values for $H_0: \mu_{Lo} = \mu_{Hi}$

We plug in the value of the test statistic that we observed: 5

Against $H_1: \mu_{Lo} < \mu_{Hi}$

\[1 - \text{pnorm}(5) < 0.0000\]

Against $H_1: \mu_{Lo} \neq \mu_{Hi}$

\[2 \times (1 - \text{pnorm}(5)) < 0.0000\]

If the null is true (the two population means are equal) it would be extremely unlikely to observe a test statistic as large as this!

What should we conclude?
Which Exam is Harder?

<table>
<thead>
<tr>
<th>Student</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57.1</td>
<td>60.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>78.6</td>
<td>82.9</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Sample Mean: 79.6, 81.4, 1.8

Sample Var.: 117, 151, 124

Sample Corr.: 0.54

Again, we’ll use the CLT.
One-Sample Hypothesis Test Using Differences

Let $D_i = X_i - Y_i$ be (Midterm 2 Score - Midterm 1 Score) for student $i$

Null Hypothesis

$H_0: \mu_1 = \mu_2$, i.e. both exams were of the same difficulty

Two-Sided Alternative

$H_1: \mu_1 \neq \mu_2$, i.e. one exam was harder than the other

One-Sided Alternative

$H_1: \mu_2 > \mu_1$, i.e. the second exam was easier
Decision Rules

Let $D_i = X_i - Y_i$ be (Midterm 2 Score - Midterm 1 Score) for student $i$.

Test Statistic

\[
\frac{\bar{D}_n}{SE(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36
\]

Two-Sided Alternative

Reject $H_0: \mu_1 = \mu_2$ in favor of $H_1: \mu_1 \neq \mu_2$ if $|\bar{D}_n|$ is sufficiently large.

One-Sided Alternative

Reject $H_0: \mu_1 = \mu_2$ in favor of $H_1: \mu_2 > \mu_1$ if $\bar{D}_n$ is sufficiently large.
Reject against *Two-sided* Alternative with $\alpha = 0.1$?

$$\frac{\bar{D}_n}{\widehat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36$$

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{qnorm}(1 - \alpha)$</td>
<td>1.28</td>
<td>1.64</td>
<td>2.33</td>
</tr>
<tr>
<td>$\text{qnorm}(1 - \alpha/2)$</td>
<td>1.64</td>
<td>1.96</td>
<td>2.58</td>
</tr>
</tbody>
</table>

(a) Reject  
(b) Fail to Reject  
(c) Not Sure
Reject against *One-sided* Alternative with $\alpha = 0.1$?

\[
\frac{\bar{D}_n}{\hat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36
\]

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>qnorm$(1 - \alpha)$</td>
<td>1.28</td>
<td>1.64</td>
<td>2.33</td>
</tr>
<tr>
<td>qnorm$(1 - \alpha/2)$</td>
<td>1.64</td>
<td>1.96</td>
<td>2.58</td>
</tr>
</tbody>
</table>

(a) Reject  
(b) Fail to Reject  
(c) Not Sure
P-Values for the Test of $H_0: \mu_1 = \mu_2$

\[
\frac{\bar{D}_n}{\hat{SE}(\bar{D}_n)} = \frac{1.8}{\sqrt{124/71}} \approx 1.36
\]

**One-Sided $H_1$: $\mu_2 > \mu_1$**

\[1 - \text{pnorm}(1.36) = \text{pnorm}(-1.36) \approx 0.09\]

**Two-Sided $H_1$: $\mu_1 \neq \mu_2$**

\[2 \times (1 - \text{pnorm}(1.36)) = 2 \times \text{pnorm}(-1.36) \approx 0.18\]
Lecture #21 – Testing/CI Roundup

One-sample Test for Proportion

Test for Difference of Proportions

Statistical vs. Practical Significance

Data-Dredging
Tests for Proportions

Basic Idea
The population *can’t be* normal (it’s Bernoulli) so we use the CLT to get approximate sampling distributions (c.f. Lecture 18).

There’s a small twist!
Bernoulli has a *single* unknown parameter (\( p \)) so \( SE(\hat{p}) \) is *known* under \( H_0 \): don’t have to estimate it. (C.f. Review Question #194)
Tests for Proportions: One-Sample Example

From Pew Polling Data

54% of a random sample of 771 registered voters correctly identified 2012 presidential candidate Mitt Romney as Pro-Life.

Sampling Model

\(X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)\)

Sample Statistic

Sample Proportion: 
\[
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

Suppose I wanted to test \(H_0: p = 0.5\)
Tests for Proportions: One Sample Example

Under $H_0: p = 0.5$ what is the standard error of $\hat{p}$?

(a) 1
(b) $\sqrt{\hat{p}(1 - \hat{p})}/n$
(c) $\sigma/\sqrt{n}$
(d) $1/(2\sqrt{n})$
(e) $p(1 - p)$

$p = 0.5 \implies \sqrt{0.5(1 - 0.5)/n} = 1/(2\sqrt{n})$

*Under the null we know the SE! Don’t have to estimate it!*
One-Sample Test for a Population Proportion

Sampling Model

\[ X_1, \ldots, X_n \sim \text{iid Bernoulli}(p) \]

Null Hypothesis

\[ H_0: p = \text{Known Constant } p_0 \]

Test Statistic

\[ T_n = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \approx N(0, 1) \text{ under } H_0 \text{ provided } n \text{ is large} \]
One-Sample Example $H_0: \ p = 0.5$

54% of a random sample of 771 registered voters knew Mitt Romney is Pro-Life.

\[
T_n = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = 2\sqrt{771}(0.54 - 0.5)
\]

\[
= 0.08 \times \sqrt{771} \approx 2.2
\]

One-Sided p-value

\[
1 - \text{pnorm}(2.2) \approx 0.014
\]

Two-Sided p-value

\[
2 \times (1 - \text{pnorm}(2.2)) \approx 0.028
\]
Tests for Proportions: Two-Sample Example

From Pew Polling Data

53% of a random sample of 238 Democrats correctly identified Mitt Romney as Pro-Life versus 61% of 239 Republicans.

Sampling Model

Republicans: $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$ independent of Democrats: $Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)$

Sample Statistics

Sample Proportions: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{q} = \frac{1}{m} \sum_{i=1}^{m} Y_i$

Suppose I wanted to test $H_0: p = q$
A More Efficient Estimator of the SE Under $H_0$

Don’t Forget!

Standard Error (SE) means “std. dev. of sampling distribution” so you should know how to prove that:

$$SE(\hat{p} - \hat{q}) = \sqrt{\frac{p(1-p)}{n} + \frac{q(1-q)}{m}}$$

Under $H_0: p = q$

Don’t know values of $p$ and $q$: only that they are equal.
Pooled SE Estimator is More Efficient Under $H_0$

Unpooled SE

$$\hat{SE} = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + \frac{\hat{q}(1 - \hat{q})}{m}}$$

Pooled SE

$$\hat{SE}_{Pooled} = \sqrt{\hat{\pi}(1 - \hat{\pi}) \left( \frac{1}{n} + \frac{1}{m} \right)} \quad \text{where} \quad \hat{\pi} = \frac{n\hat{p} + m\hat{q}}{n + m}$$

Why Pool?

- Under $H_0$, $p = q$. Call their common value “$\pi$”
- More accurate to estimate 1 parameter ($\pi$) with a big sample ($n + m$) vs. 2 parameters ($p$, $q$) with smaller samples ($n$, $m$).
Two-Sample Test for Proportions

Sampling Model

\(X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)\) indep. of \(Y_1, \ldots, Y_m \sim \text{iid Bernoulli}(q)\)

Sample Statistics

Sample Proportions: 
\[
\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{q} = \frac{1}{m} \sum_{i=1}^{m} Y_i
\]

Null Hypothesis

\(H_0: p = q \Leftrightarrow \text{i.e. } p - q = 0\)

Pooled Estimator of SE under \(H_0\)

\[
\hat{\pi} = \frac{n\hat{p} + m\hat{q}}{n + m}, \quad \widehat{SE}_{\text{Pooled}} = \sqrt{\hat{\pi}(1 - \hat{\pi})(1/n + 1/m)}
\]

Test Statistic

\[
T_n = \frac{\hat{p} - \hat{q}}{\widehat{SE}_{\text{Pooled}}} \approx N(0, 1) \text{ under } H_0 \text{ provided } n \text{ and } m \text{ are large}
\]
Two-Sample Example $H_0: p = q$

53% of 238 Democrats knew Romney is Pro-Life vs. 61% of 239 Republicans

$$\hat{\pi} = \frac{n\hat{p} + m\hat{q}}{n + m} = \frac{239 \times 0.61 + 238 \times 0.53}{239 + 238} \approx 0.57$$

$$\hat{SE}_{Pooled} = \sqrt{\hat{\pi}(1 - \hat{\pi}) (1/n + 1/m)} = \sqrt{0.57 \times 0.43(1/239 + 1/238)} \approx 0.045$$

$$T_n = \frac{\hat{p} - \hat{q}}{\hat{SE}_{Pooled}} = \frac{0.61 - 0.53}{0.045} \approx 1.78$$

One-Sided P-Value

$$1 - \text{pnorm}(1.78) \approx 0.04$$

Two-Sided P-Value

$$2 \times (1 - \text{pnorm}(1.78)) \approx 0.08$$
Terminology: Statistical Significance

Definition

If we reject $H_0$ in a test with significance level $\alpha$, then we say that the results are “statistically significant at the $\alpha$% level.

Example: Anchoring Experiment

In a two-sided test, we found a difference between the “Hi” and “Lo” groups that was statistically significant at the 5% level.

Example: Previous Slide

In a two-sided test, we found a difference between the share of Republicans and Democrats who knew that Romney is pro-life that was statistically significant at the 10% level.
Statistical Significance ≠ Practical Importance

Problem

People confuse “significance” in the statistical sense with the everyday English word meaning “important.”

Statistically Significant Does Not Mean Important

- A difference can be unimportant but statistically significant.
- A difference can be important but statistically insignificant.

A p-value measures the strength of evidence against $H_0$; it does not measure the size of an effect!
I flipped a coin 10 million times (in R) and got 4990615 heads.

Test of $H_0: p = 0.5$ against $H_1: p \neq 0.5$

$$T = \frac{\hat{p} - 0.5}{\sqrt{0.5(1 - 0.5)/n}} \approx -5.9 \implies p\text{-value} \approx 0.000000003$$

Approximate 95% Confidence Interval

$$\hat{p} \pm \text{qnorm}(1 - 0.05/2)\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \implies (0.4988, 0.4994)$$

Actual $p$ was 0.499
Just before I started writing this book, a study was published reporting about a 10% lower rate of breast cancer in women who were advised to eat less fat. If this indeed the true difference, low fat diets could reduce the incidence of breast cancer by tens of thousands of women each year – astonishing health benefit for something as simple and inexpensive as cutting down on fatty foods. The p-value for the difference in cancer rates was 0.07 and here is the key point: this was widely misinterpreted as indicating that low fat diets don’t work. For example, the New York Times editorial page trumpeted that “low fat diets flub a test” and claimed that the study provided “strong evidence that the war against all fats was mostly in vain.” However failure to prove that a treatment is effective is not the same as proving it ineffective.
Data-Dredging and the Replication Crisis

Reading Assignment

Basic Idea

▶ Journals usually publish only “statistically significant” results.
▶ You test a large number of null hypotheses with $\alpha = 0.05$.
▶ Suppose all of these nulls are actually $TRUE$.
▶ You’ll reject 5% of the time: each rejection is a Type I error.
▶ Cheating in academia: carry out lots of ridiculous hypothesis tests and only report the “statistically significant” results.
Green Jelly Beans Cause Acne!

Xkcd #882

Figure: Reading this comic strip is part of your homework!

And now a simulation example of Data Dredging using R...
# Function to calculate the p-value for a two-sided
# test for difference of means

def get_p_value(x, y):
    xbar = mean(x)
    ybar = mean(y)
    n = length(x)
    m = length(y)
    s_x = sd(x)
    s_y = sd(y)
    SE = sqrt(s_x^2 / n + s_y^2 / m)
    test_stat = abs(xbar - ybar) / SE
    return 2 * (1 - pnorm(test_stat))
# Test `get_p_value` using the anchoring experiment
# example from our previous lecture

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'
survey <- read.csv(data_url)
anchoring <- survey[, c('rand.num', 'africa.percent')]
rand_num <- na.omit(anchoring$rand.num)
africa_percent <- na.omit(anchoring$africa.percent)

x <- subset(africa_percent, rand_num == 65)
y <- subset(africa_percent, rand_num == 10)
get_p_value(x, y)

## [1] 6.682931e-07
# Use *real* student test scores as the outcome

data_url <- 'http://ditraglia.com/econ103/midterms.csv'

midterms <- read.csv(data_url)

scores <- na.omit(midterms$Midterm1)

n_students <- length(scores)

# Generate fake "grouping variables" (0/1) indep. of scores

set.seed(987654321)

n_fake <- 500

# Empty matrix to store grouping variables:

fake <- matrix(NA, nrow = n_students, ncol = n_fake)

for(i in 1:n_fake) {
  fake[, i] <- rbinom(n_students, size = 1, prob = 0.5)
}
# Use each grouping variable to split students into x and y # and calculate p-value for test of difference of means

p_values <- rep(NA, n_fake)  # empty vector to store results

for(i in 1:n_fake) {
  group_indicator <- fake[,i]
  x <- subset(scores, group_indicator == 1)
  y <- subset(scores, group_indicator == 0)
  p_values[i] <- get_p_value(x, y)
}

# How many of the tests were statistically significant?
sum(p_values < 0.05)

## [1] 20
# Grouping variable with the lowest p-value

group_indicator <- fake[, which.min(p_values)]

x <- subset(scores, group_indicator == 1)
y <- subset(scores, group_indicator == 0)

# These results look convincing, but are spurious!

mean(x) - mean(y)

## [1] -7.974127

sqrt(var(x) / length(x) + var(y) / length(y))

## [1] 2.240852
Lecture #22 – Regression II

The Population Regression Model

Inference for Regression

Inference for Regression: Predicting Height

Residual Standard Deviation and $R^2$

Multiple Regression
Beyond Regression as a Data Summary

Based on a sample of Econ 103 students, we made the following graph of handspan against height, and fitted a linear regression:

![Graph](attachment://handspan_height_graph.png)

The estimated slope was about 1.4 inches/cm and the estimated intercept was about 40 inches.

What if anything does this tell us about the relationship between height and handspan in the population?
The Population Regression Model

Question

If we want to predict $Y$ using $X$ in the *population* using a line, how should we choose the slope and intercept?

Optimization Problem

Choose $\beta_0, \beta_1$ to minimize $E[(Y - \beta_0 - \beta_1 X)^2]$

Solution

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)}, \quad \beta_0 = E[Y] - \beta_1 E[X]$$

...you will derive this as an extension problem.
The Regression Error Term: $\varepsilon$

**Definition**

$\varepsilon \equiv Y - \beta_0 - \beta_1 X$  
(Hence: $Y = \beta_0 + \beta_1 X + \varepsilon$)

**Interpretation**

$\varepsilon$ is the part of $Y$ that isn’t predicted by $X$

**Properties**

- $E[\varepsilon] = 0$
- $Cov(X, \varepsilon) = 0$
- $Var(\varepsilon) = Var(Y) - Cov(X, Y)^2 / Var(X)$

... using the expressions for $\beta_0$ and $\beta_1$ from the previous slide.
The Population Regression Coefficients: $\beta_0, \beta_1$

Recall

$$Y = \beta_0 + \beta_1 X + \epsilon, \quad \beta_1 = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}, \quad \beta_0 = E[Y] - \beta_1 E[X]$$

Interpretation

▶ $\beta_0, \beta_1$ are population parameters: unknown constants

▶ If $X = 0$, we predict $Y = \beta_0$.

▶ If two people differ by one unit in $X$, we predict that they will differ by $\beta_1$ units in $Y$.

The only problem is, we don’t know $\beta_0, \beta_1$...
Estimating $\beta_0, \beta_1$

Random Sample

Observe $(Y_1, X_1), \ldots, (Y_n, X_n) \sim \text{iid}$ with $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$.

Estimators of $\beta_0, \beta_1$

$$
\hat{\beta}_1 = \frac{S_{XY}}{S_X^2} = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)}{\sum_{i=1}^n (X_i - \bar{X}_n)^2}, \quad \hat{\beta}_0 = \bar{Y}_n - \hat{\beta}_1 \bar{X}_n
$$

Under random sampling, the estimators $(\hat{\beta}_0, \hat{\beta}_1)$ have sampling distributions...
Sampling Uncertainty: Pretend the Class is our Population

Figure: Estimated Slope = 1.4, Estimated Intercept = 40
Sampling Distribution of Regression Coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$

Choose 25 Students from Class List with Replacement

Sample 1

$\hat{\beta}_0^{(1)}, \hat{\beta}_1^{(1)}$

Sample 2

$\hat{\beta}_0^{(2)}, \hat{\beta}_1^{(2)}$

... 

Sample 1000

$\hat{\beta}_0^{(1000)}, \hat{\beta}_1^{(1000)}$

Repeat 1000 times → get 1000 different pairs of estimates

Sampling Distribution: long-run relative frequencies
1000 Replications, $n = 25$
Population: Intercept = 40, Slope = 1.4

Based on 1000 Replications, $n = 25$
Central Limit Theorem

\[
\frac{\hat{\beta} - \beta}{SE(\hat{\beta})} \sim N(0, 1)
\]

How to calculate \( SE \)?

R will do this for us, but we won’t cover the details in Econ 103. You’ll have to wait for Econ 104!
How to get R to display standard errors?

data_url <- 'http://ditraglia.com/econ103/old_survey.csv'
survey <- read.csv(data_url)
survey <- na.omit(survey)
reg1 <- lm(height ~ handspan, data = survey)
reg1 # Gives estimates but not SE

##
## Call:
## lm(formula = height ~ handspan, data = survey)
##
## Coefficients:
## (Intercept)    handspan
##    39.596    1.356
summary gives too much information...

```r
summary(reg1)

##
Call:
lm(formula = height ~ handspan, data = survey)
##
Residuals:
Min 1Q Median 3Q Max
-10.0680 -2.4238 0.2204 2.7073 7.9657
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.5962 3.9596 10.000 1.26e-15 ***
handspan 1.3558 0.1898 7.143 4.20e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 3.556 on 78 degrees of freedom
Multiple R-squared: 0.3955, Adjusted R-squared: 0.3877
F-statistic: 51.03 on 1 and 78 DF, p-value: 4.201e-10
```
display, from my website, cuts the less important info...

```r
source('http://ditraglia.com/econ103/display.R')
display(reg1)

lm(formula = height ~ handspan, data = survey)
coef.est coef.se
(Intercept) 39.60 3.96
handspan 1.36 0.19
##
n = 80, k = 2
residual sd = 3.56, R-Squared = 0.40
```

We will learn what everything in this table means...
Regression with only an intercept: sample mean

See Review Problem #46

\[
\text{reg2 } \leftarrow \text{lm}(\text{height } \sim 1, \text{ data } = \text{survey})
\]

\[
\text{display(reg2)}
\]

\[
\#
\text{lm(formula } = \text{height } \sim 1, \text{ data } = \text{survey})
\]

\[
\#
\text{coef.est coef.se}
\]

\[
\#
\text{(Intercept) 67.74 0.51}
\]

\[
\#
\text{---}
\]

\[
\#
\text{n = 80, k = 1}
\]

\[
\#
\text{residual sd = 4.54, R-Squared = 0.00}
\]
Dummy Variable (aka Binary Variable)

A predictor variable that takes on only two values: 0 or 1. Used to represent two categories, e.g. Male/Female.
Regression with intercept & dummy variable: Male/Female

```r
reg3 <- lm(height ~ sex, data = survey)
display(reg3)

lm(formula = height ~ sex, data = survey)
coef.est coef.se
(Intercept) 64.46 0.56
sexMale 6.10 0.76

n = 80, k = 2
residual sd = 3.38, R-Squared = 0.45
```
Height & Handspan Regression

display(reg1)

```r
lm(formula = height ~ handspan, data = survey)
#
coef.est coef.se
(Intercept) 39.60 3.96
handspan 1.36 0.19
#
n = 80, k = 2
residual sd = 3.56, R-Squared = 0.40
```

What are \( n \), \( k \), residual sd and R-Squared?
Fitted Values and Residuals

Fitted Value $\hat{y}_i$

Predicted $y$-value for person $i$ given her $x$-variables using estimated regression coefficients: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Residual $\hat{\epsilon}_i$

Person $i$’s *vertical deviation* from regression line: $\hat{\epsilon}_i = y_i - \hat{y}_i$.

The residuals are *stand-ins* for the unobserved errors $\epsilon_i$. 
Residual Standard Deviation: $\hat{\sigma}$

- Idea: use residuals $\hat{\epsilon}_i$ to estimate $\sigma$

$$
\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{n - k}}
$$

- Measures avg. distance of $y_i$ from regression line.
  - E.g. if $Y$ is points scored on a test and $\hat{\sigma} = 16$, the regression predicts to an accuracy of about 16 points.

- Same units as $Y$ (Exam practice: verify this)

- Denominator $(n - k) = (\# \text{ Datapoints} - \# \text{ of } X \text{ variables})$
$R^2$: Proportion of $\text{Var}(Y)$ “Explained” by the Regression

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\varepsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \approx 1 - \frac{\hat{\sigma}^2}{s_y^2}$$

- Unitless, between 0 and 1
- Higher value $\implies$ greater proportion of variance “explained”
- Harder to interpret than $\hat{\sigma}$
- Special Case:
  - In a regression with a single $X$-variable (“simple” regression) can show that $R^2 = r_{xy}^2$ hence the name “R-squared”
```r
display(reg1)

lm(formula = height ~ handspan, data = survey)
##
coef.est coef.se
(Intercept) 39.60 3.96
handspan 1.36 0.19
##

n = 80, k = 2
residual sd = 3.56, R-Squared = 0.40

cor(survey$height, survey$handspan)^2

[1] 0.3954669

sqrt(sum(reg1$residuals^2) / (80 - 2))

[1] 3.555941
```
Which Gives Better Predictions: Sex or Handspan?

```r
lm(formula = height ~ handspan, data = survey)
coef.est coef.se
(Intercept) 39.60 3.96
handspan 1.36 0.19

n = 80, k = 2
residual sd = 3.56, R-Squared = 0.40
```

```r
lm(formula = height ~ sex, data = survey)
coef.est coef.se
(Intercept) 64.46 0.56
sexMale 6.10 0.76

n = 80, k = 2
residual sd = 3.38, R-Squared = 0.45
```
Simple vs. Multiple Regression

Terminology

$Y$ is the “outcome” and $X$ is the “predictor.”

Simple Regression

One predictor variable: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

Multiple Regression

More than one predictor variable:

$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i$
Multiple Regression

\[ Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i \]

Ceteris Paribus Interpretation

If two individuals differ by one unit in \( X_j \) but have the same values for all other predictors, we predict they will differ by \( \beta_j \) units in \( Y \).

Estimating \( \beta_0, \beta_1, \ldots, \beta_k \)

The formulas require matrix algebra: R will do it for us.

Inference for Multiple Regression

\[ \frac{\hat{\beta}_j - \beta_j}{SE(\hat{\beta}_j)} \approx N(0, 1) \text{ if } n \text{ is large. } R \text{ will calculate the SE for us.} \]
Multiple Regression Example: Sex and Handspan

```r
reg4 <- lm(height ~ sex + handspan, data = survey)
display(reg4)
```

```r
lm(formula = height ~ sex + handspan, data = survey)
coef.est coef.se
(Intercept) 49.95 4.16
sexMale 4.18 0.89
handspan 0.75 0.21

n = 80, k = 3
residual sd = 3.16, R-Squared = 0.53
```