
Problem Set # 10

Econ 103

Part I – Problems from the Textbook

Chapter 6: 15, 17, 19(b), 21

Chapter 8: 17(c), 17(d), 19, 21

I’ll provide full solutions to 6-17 and 8-21.

Solution: (6-17) There are a number of different ways to solve this question. The

“exact” solution, which is not the one in the book, directly uses the fact that this is a

Binomial sampling model: given that 20% of the cars in the population are defective,

what is the probability that no more than 5 of the cars in a sample of size 50 are

defective? We can calculate the answer in R as follows:

pbinom(5, size = 50, prob = 0.2)

## [1] 0.04802722

The “point” of this question, however, is to get an approximate answer using what

we know about the Central Limit Theorem. Since this is a result about the sampling

distribution of sample means, we need to re-express the desired probability in these

terms. The mechanic wants to know the probability that no more than 5 out of 50

cars are defective. This is the same thing as saying that the sample mean, which is

just the sample proportion, is no greater than 5/50 = 0.1. Now, by the CLT, if we

center the sample mean at the population mean and scale it by its standard error,

the result is approximately standard normal:

P (X̄n ≤ 0.1) = P

(
X̄n − µ

SE(X̄n)
≤ 0.1 − µ

SE(X̄n)

)
≈ pnorm((0.1 − µ)/SE(X̄n))

In this example the standard error is:
√
p(1 − p)/n where n is the sample size, 50,

and p is the population proportion: 0.2. The population mean for this problem is

simply the population proportion: 0.2. Thus, we have
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p <- 0.2

n <- 50

SE <- sqrt(p * (1 - p) / n)

pnorm((0.1 - 0.2)/SE)

## [1] 0.03854994

which agrees with the answer in the back of the book. Notice that this is slightly

different from the “exact” answer given above. This is because the CLT is an ap-

proximation.

Solution: (8-21) Although the answer is in the back of the book, there has been

some confusion about part (b) in past semesters. Here are my calculations using R.

(a) I enter the data and calculate the rates as follows:

group <- c('treatment', 'control', 'refused')

n.children <- 1000 * c(200, 200, 340)

n.polio <- c(57, 142, 157)

rate <- n.polio/n.children

polio.data <- data.frame(group, n.children, n.polio, rate)

polio.data

## group n.children n.polio rate

## 1 treatment 200000 57 0.0002850000

## 2 control 200000 142 0.0007100000

## 3 refused 340000 157 0.0004617647

(b) Now I construct the confidence interval for the rates :
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treatment <- subset(polio.data, group == 'treatment')

control <- subset(polio.data, group == 'control')

estimate <- control$rate - treatment$rate

SE <- sqrt(

control$rate * (1 - control$rate)/control$n.children

+ treatment$rate * (1 - treatment$rate)/control$n.children

)

ME <- qnorm(1 - 0.05/2) * SE

CI <- c(estimate - ME, estimate + ME)

before converting them to cases per 100,000 children:

estimate * 10^5

## [1] 42.5

ME * 10^5

## [1] 13.82028

CI * 10^5

## [1] 28.67972 56.32028

After rounding, this agrees with the answer in the book.

Part II – Additional Problems

1. Write R code to carry out the simulation experiments presented on slides 14–16 of

Lecture 16 illustrating the central limit theorem. The R command for drawing from

a Uniform(0, 1) distribution is runif and the corresponding density is dunif. The R

command for making n draws from a χ2(5) distribution is rchisq(n, df = 5) and

the corresponding density is dchisq(x, df = 5). In each case, plot the density or

mass function of the population and compare it to the histograms of the sample mean

computed for random samples drawn from that population. In each simulation, use
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10000 replications.

Solution: First the Uniform(0, 1)

x <- seq(0, 1, 0.01)

y <- dunif(x)

plot(x, y, main = "Uniform(0,1) Density", type = 'l', ylab = 'f(x)')

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

Uniform(0,1) Density

x

f(
x)

uniform.means <- replicate(10000, mean(runif(20)))

hist(uniform.means, main = "Uniform(0,1), n = 20")
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Next, the χ2(5)

x <- seq(0.01, 15, 0.01)

y <- dchisq(x, df = 5)

plot(x,y, type = 'l', main = "Chi-squared Density, df = 5", ylab = 'f(x)')
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chisq.means <- replicate(10000, mean(rchisq(20, df = 5)))

hist(chisq.means, main = "Chi-squared(5), n = 20")
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Chi−squared(5), n = 20
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Finally, the Bernoulli(0.3)

x <- c(0,1)

y <- dbinom(x, size = 1, p = 0.3)

plot(x, y, type = 'h', main = "Bernoulli(0.3) pmf", ylim = c(0,1), xlim = c(-1, 2), ylab = 'p(x)')
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bernoulli.means <- replicate(10000, mean(rbinom(20, 1, 0.3)))

hist(bernoulli.means, main = "Bernoulli(0.3), n = 20")
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Bernoulli(0.3), n = 20
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2. In April of 2013, Public Policy Polling carried out a survey of 1247 registered voters

to determine whether Republicans and Democrats differ in their beliefs about various

conspiracy theories. To answer this question, you’ll need to download the full results of

their survey which I’ve posted on my website for convenience: http://www.ditraglia.

com/econ103/conspiracy.pdf. Note that this is a pdf file so you can’t import it into

R. You’ll need to go read through the document to find the data from the poll.

(a) Construct a 99% confidence interval for the proportion of registered voters who

belive that a UFO crashed at Roswell, New Mexico in 1947 and the US Government

covered it up.

Solution: Overall percentages appear on page 2 of the report, and this question

refers to Q3. The sample size is 1247 and p̂ = 0.21. We can carry out the

calculations in R as follows:
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p.hat <- 0.21

n <- 1247

SE <- sqrt(p.hat * (1 - p.hat)/n)

ME <- qnorm(1 - 0.01/2) * SE

LCL <- p.hat - ME

UCL <- p.hat + ME

c(LCL, UCL)

## [1] 0.1802897 0.2397103

(b) Is there evidence that male and female voters differ in their beliefs about Roswell

and UFOs?

Solution: Percentages broken down by sex appear on page 15, while overall

percentages of men and women appear on page 3. Of the 1247 registered voters

in the poll, about 50% were women and 50% were men. We’ll call that n = 623

for each. The sample proportions are p̂W = 0.19 for women versus p̂M = 0.24

for men. Using R, we find:

n <- 623

p.M <- 0.24

p.W <- 0.19

SE.M <- sqrt(p.M * (1 - p.M)/n)

SE.W <- sqrt(p.W * (1 - p.W)/n)

SE <- sqrt(SE.M^2 + SE.W^2)

ME <- qnorm(1 - 0.01/2) * SE

diff <- p.M - p.W

LCL <- diff - ME

UCL <- diff + ME

c(LCL, UCL)

## [1] -0.009846188 0.109846188

This 99% CI just barely includes zero. A 95% wouldn’t (try this out for your-

self). We have found evidence suggesting that a higher proportion of men believe

in the Roswell conspiracy compared to women.

(c) Is there evidence that Romney voters differ from Obama voters in their beliefs about

Roswell and UFOs?

Solution: Percentages broken down by 2012 vote appear in page 5. Overall
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percentages of Romney and Obama voters in the sample appear on page 3. Of

the 1247 registered voters in the sample, 50% voted for Obama and 44% voted

for Romney. We’ll call this nO = 623 and nR = 547. The sample proportions

are p̂O = 0.16 for Obama voters versus p̂R = 0.27 for Romney voters. Using R,

we find:

n.R <- 547

p.R <- 0.27

SE.R <- sqrt(p.R * (1 - p.R)/n.R)

n.O <- 623

p.O <- 0.16

SE.O <- sqrt(p.O * (1 - p.O)/n.O)

SE <- sqrt(SE.R^2 + SE.O^2)

ME <- qnorm(1 - 0.01/2) * SE

diff <- p.R - p.O

UCL <- diff + ME

LCL <- diff - ME

c(LCL, UCL)

## [1] 0.04817691 0.17182309

We have found strong evidence that a substantially greater proportion of Rom-

ney voters believe in the Roswell conspiracy.

(d) How should we interpret the results of the preceding two parts?

Solution: Since we know the men are more likely to vote for Republican can-

didates than women, it’s difficult to tell whether the effect has to do with sex or

political affiliation. To learn more, we’d need to compare female Romney vot-

ers to female Obama voters and then separately compare male Obama voters

to male Romney voters.

3. Construct an approximate 95% confidence interval for the Anchoring Experiment based

on the CLT using this semester’s data, following the details in Lecture 17. Be sure to

properly account for missing values. How does it compare to the interval based on the

data from lecture?

Solution:
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data.url <- "http://www.ditraglia.com/econ103/survey_clean.csv"

survey <- read.csv(data.url)

anchoring <- survey[,c("rand.num", "africa.percent")]

lo <- subset(anchoring, rand.num == "10")$africa.percent

hi <- subset(anchoring, rand.num == "65")$africa.percent

lo <- lo[!is.na(lo)]

hi <- hi[!is.na(hi)]

SE.lo <- sd(lo)/sqrt(length(lo))

SE.hi <- sd(hi)/sqrt(length(hi))

SE <- sqrt(SE.hi^2 + SE.lo^2)

ME <- qnorm(0.975) * SE

diff <- mean(hi) - mean(lo)

LCL <- diff - ME

UCL <- diff + ME

c(LCL, UCL)

## [1] -3.820790 4.624669

4. This problem concerns a dataset comparing the scores of men and women on the Armed

Forces Qualifying Test (AFQT). The data are available from my website:

data.url <- "http://www.ditraglia.com/econ103/ex0222.csv"

test.scores <- read.csv(data.url)

head(test.scores)

## Gender Arith Word Parag Math AFQT

## 1 male 19 27 14 14 70.3

## 2 female 23 34 11 20 60.4

## 3 male 30 35 14 25 98.3

## 4 female 30 35 13 21 84.7

## 5 female 13 30 11 12 44.5

## 6 female 8 15 6 4 4.0

Each row is an individual who took the test. The first column gives that individual’s

sex, while the second through fifth columns give the individual’s score on four parts of

the test. The final column is an overall percentile score for the test.

(a) Suppose we want to compare the scores of men and women. Is this a problem based

on two independent samples or matched pairs data?

Page 12



Solution: Independent samples: each person’s score on the exam is indepen-

dent of every other person’s score. There is no sensible way to match up pairs

of observations here. Indeed, there are different numbers of men and women!

(b) For each of the four parts of the test, as well as for the overall percentile score,

construct an approximate 95% CI for the difference of population means (men -

women) based on the CLT. To make the calculations easier, notice that we can use

the function apply to calculate the mean and variance of each column at once. For

example, extracting the data for men:

test.men <- subset(test.scores, Gender == 'male')[,-1]

means.men <- apply(test.men, 2, mean)

var.men <- apply(test.men, 2, var)

Setting the second argument equal to 2 tells R to apply the function in the third

argument to the columns of test.men.

Solution:

test.men <- subset(test.scores, Gender == 'male')[,-1]

test.women <-subset(test.scores, Gender == 'female')[,-1]

means.men <- apply(test.men, 2, mean)

var.men <- apply(test.men, 2, var)

n.men <- nrow(test.men)

means.women <- apply(test.women, 2, mean)

var.women <- apply(test.women, 2, var)

n.women <- nrow(test.women)

diff.means <- means.men - means.women

SE <- sqrt(var.women/n.women + var.men/n.men)

ME <- qnorm(1 - 0.05/2) * SE

LCL <- diff.means - ME

UCL <- diff.means + ME

CI <- rbind(LCL, UCL)

round(diff.means, 2)

## Arith Word Parag Math AFQT

## 2.04 -0.02 -0.57 0.75 2.04

round(CI, 2)

## Arith Word Parag Math AFQT

## LCL 1.49 -0.57 -0.81 0.27 -0.10

## UCL 2.58 0.52 -0.33 1.24 4.18
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(c) Interpret your results.

Solution: Men score, on average, higher on the Arithmetic Reasoning and

Mathematical Knowledge portions of the test. Women score higher, on average,

on the Paragraph Comprehension portion of the test, while men and women

appear to score about the same on the Word Knowledge portion. In terms of

overall results, men seem to score higher than women, although the 95% CI

does include zero.

5. This problem uses a dataset that investigates the relationship between schizophrenia

and the volume (in cm3) of a particular region of the brain (the left hippocampus)

measured using an MRI machine. The dataset contains 15 sets of monozygotic (i.e.

identical) twins, one of whom has schizophrenia (“Affected”) and the other who does

not (“Unaffected”). The idea of using identical twins is to hold constant unobserved

genetic and socioeconomic confounding variables that might influence whether someone

develops schizophrenia. You can download the data from my website as follows:

data.url <- "http://www.ditraglia.com/econ103/case0202.csv"

twins <- read.csv(data.url)

head(twins)

## Unaffected Affected

## 1 1.94 1.27

## 2 1.44 1.63

## 3 1.56 1.47

## 4 1.58 1.39

## 5 2.06 1.93

## 6 1.66 1.26

(a) Should these data be analyzed as independent samples or matched pairs?

Solution: This is matched pairs data. We would expect the size of the left

hippocampus to be very similar for identical twins!

(b) Construct an approximate 95% confidence interval for the difference of means using

the CLT and treating the data as two independent samples.

Solution:
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mean.affected <- mean(twins$Affected)

var.affected <- var(twins$Affected)

n.affected <- length(twins$Affected)

mean.unaffected <- mean(twins$Unaffected)

var.unaffected <- var(twins$Unaffected)

n.unaffected <- length(twins$Unaffected)

diff.means <- mean.unaffected - mean.affected

SE.indep <- sqrt(

var.affected/n.affected

+ var.unaffected/n.unaffected)

ME.indep <- qnorm(1 - 0.05/2) * SE.indep

CI.indep <- c(diff.means - ME.indep, diff.means + ME.indep)

round(CI.indep, 3)

## [1] 0.003 0.394

(c) Construct an approximate 95% confidence interval for the difference of means using

the CLT and treating the data as matched pairs.

Solution:

twin.diff <- twins$Unaffected - twins$Affected

n.twins <- length(twin.diff)

SE.paired <- sqrt(var(twin.diff)/n.twins)

ME.paired <- qnorm(1 - 0.05/2) * SE.paired

CI.paired <- c(diff.means - ME.paired, diff.means + ME.paired)

round(CI.paired, 3)

## [1] 0.078 0.319

(d) The dataset only contains 15 pairs, a fairly small sample. Since the CLT is a large

sample approximation, it may not work well in this situation. Suppose we were

willing to assume that the within-twin differences came from a normal population.

Construct an exact 95% confidence interval for the difference of means (again treat-

ing the data as matched pairs) under this assumption.

Solution:
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ME.t <- qt(1 - 0.05/2, df = n.twins - 1) * SE.paired

CI.paired.t <- c(diff.means - ME.t, diff.means + ME.t)

round(CI.paired.t, 3)

## [1] 0.067 0.331

(e) Compare each of the intervals you have constructed. Why and how do they differ?

What should we conclude?

Solution: The shortest interval is the one based on matched pairs using the

CLT (qnorm). The widest is the one that assumes the samples are independent,

which they are not. This interval is wider because the measurements are corre-

lated across twins so that the sample variance of the differences is less than the

sum of the sample variances of the affected and unaffected twins.

The interval based on the assumption that the differences come from a normal

distribution is narrower than that based on assuming independent samples for

the same reason, but wider than the equivalent interval based on the CLT. This

is because each of them uses the same standard error estimate but qt(0.975,

df = 14) is larger than qnorm(0.975).

Although we may doubt that 15 is large enough for the approximation based on

the CLT to work well, we may equally well doubt that the differences come from

a normal population. Fortunately, both of the intervals based on differences give

the same basic result: the twin with schizophrenia has, on average, a smaller

left hippocampus. If we wanted to be conservative, we could report the wider

of the two intervals.

6. This question examines a situation in which the textbook confidence interval for a pop-

ulation proportion, based on the CLT, performs poorly but the refined interval works

well. Recall that the refined CI is based on the quantity

p̃ =
1

n+ 4

(
2 +

n∑
i=1

Xi

)

while the textbook CI is based on p̂ = (
∑n

i=1Xi)/n.

(a) Show that p̃ = (np̂+ 2)/(n+ 4)
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Solution:

p̃ =
1

n+ 4

(
2 +

n∑
i=1

Xi

)

=
2

n+ 4
+

n

n+ 4

(
1

n

n∑
i=1

Xi

)

=
2

n+ 4
+

(
n

n+ 4

)
p̂

=
np̂+ 2

n+ 4

(b) Suppose the true population proportion is p = 0.5 and we draw an iid sample of

size 50, that is X1, . . . , X50 ∼ iid Bernoulli(0.5). We want to examine how often

the textbook CI contains the true population proportion (0.5) in a large number of

repeated samples. Since p̂ does not use the individual Xi, but only their sum, we

can simulate p̂ based on an iid sample of size 50 by drawing a single Binomial(50,

0.5) random variable and dividing it by 50. In R,

rbinom(1, size = 50, prob = 0.5)/50

## [1] 0.48

Note that you may get a different answer from me since this is random. Indeed, if

you run it repeatedly, you will typically get a different answer. The idea is to run

this many times, and construct a confidence interval based on each result and see

how many of them contain 0.5. Here is some code that does exactly that. Explain,

step-by-step, how it works and what the result means. Then try running it yourself.

n <- 50

p <- 0.5

N.reps <- 100

p.hat <- rbinom(N.reps, size = n, prob = p)/n

ME.hat <- qnorm(0.975) * sqrt(p.hat * (1 - p.hat) / n)

LCL.hat <- p.hat - ME.hat

UCL.hat <- p.hat + ME.hat

CI.hat <- cbind(LCL.hat, UCL.hat)

Coverage <- (LCL.hat <= p) & (p <= UCL.hat)

Coverage <- sum(Coverage)/N.reps

Coverage

## [1] 0.95
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Solution: The first four lines calculate 100 values of p̂ from 100 repeated sam-

ples of size 50 from a Bernoulli population with probability of success 0.5. These

values are stored in the vector p.hat. The next four lines construct the approxi-

mate textbook 95% confidence interval for a population proportion correspond-

ing to each of the 100 values for p̂ from the repeated samples. The third to last

command checks each of these intervals to make sure that it contains the true

value: 0.5. If so, it stores the value TRUE otherwise it stores the value FALSE.

The second to last command uses a clever trick: if you sum a vector of TRUE

and FALSE in R, it will treat the TRUE values as 1 and the FALSE values as 0.

Thus, the sum counts how many of the intervals contain the true population

parameter before dividing it by 100 to get the fraction of intervals that contain

the truth. The result is close to what it should be: 0.95.

(c) How would the results change if you re-ran the above code with N.reps <- 10000?

Try making the change and re-running the code.

Solution: This just changes how many times we repeat the sampling. It does

not change the sample size. If we increase this number, we get closer to what we

actually mean by repeated sampling, namely an infinite number of replications.

In practical terms, the answer is much more precise and once again is close to

0.95 which is what we would expect.

(d) From here on, use N.reps <- 10000. What happens if you re-run the above code

with p <- 0.1 and n <- 10?

Solution: This changes the population from which we are sampling as well as

the sample size. Formerly the population proportion was 0.5 and the sample

size 50 whereas now the population proportion is 0.1 and the sample size is 0.1.

The result is as follows:
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n <- 10

p <- 0.1

N.reps <- 10000

p.hat <- rbinom(N.reps, size = n, prob = p)/n

ME.hat <- qnorm(0.975) * sqrt(p.hat * (1 - p.hat) / n)

LCL.hat <- p.hat - ME.hat

UCL.hat <- p.hat + ME.hat

CI.hat <- cbind(LCL.hat, UCL.hat)

Coverage <- (LCL.hat <= p) & (p <= UCL.hat)

Coverage <- sum(Coverage)/N.reps

Coverage

## [1] 0.6461

As we talked about in class, the textbook CI for a population proportion can

work poorly if p is close to zero or one and n is small.

(e) Adapt the above code to examine the performance of the refined CI when p = 0.1

and n = 10. Use N.reps <- 10000 as above. Hint: you can reuse the p.hat vector

from part (c) by using the formula from part (a).

Solution:

p.tilde <- (n * p.hat + 2) / (n + 4)

ME.tilde <- qnorm(0.975) * sqrt(p.tilde * (1 - p.tilde) / (n + 4))

LCL.tilde <- p.tilde - ME.tilde

UCL.tilde <- p.tilde + ME.tilde

CI.tilde <- cbind(LCL.tilde, UCL.tilde)

Cover.tilde <- (LCL.tilde <= p) & (p <= UCL.tilde)

Cover.tilde <- sum(Cover.tilde)/N.reps

Cover.tilde

## [1] 0.9309
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