Problem Set #5

Econ 103

Part I – Problems from the Textbook

Chapter 4: 1, 3, 5, 7, 9, 11, 13, 15, 25, 27, 29 Chapter 5: 1, 3, 5, 9, 11, 13, 17

Part II – Additional Problems

- 1. Suppose X is a random variable with support $\{-1, 0, 1\}$ where p(-1) = q and p(1) = p.
 - (a) What is p(0)?
 - (b) Calculate the CDF, $F(x_0)$, of X.
 - (c) Calculate E[X].
 - (d) What relationship must hold between p and q to ensure E[X] = 0?
- 2. Fill in the missing details from class to calculate the variance of a Bernoulli Random Variable *directly*, that is *without* using the shortcut formula.
- 3. Prove that the Bernoulli Random Variable is a special case of the Binomial Random variable for which n = 1. (Hint: compare pmfs.)
- 4. Suppose that X is a random variable with support $\{1, 2\}$ and Y is a random variable with support $\{0, 1\}$ where X and Y have the following joint distribution:

 $p_{XY}(1,0) = 0.20,$ $p_{XY}(1,1) = 0.30$ $p_{XY}(2,0) = 0.25,$ $p_{XY}(2,1) = 0.25$

- (a) Express the joint distribution in a 2×2 table.
- (b) Using the table, calculate the marginal probability distributions of X and Y.
- (c) Calculate the conditional probability distribution of Y|X = 1 and Y|X = 2.
- (d) Calculate E[Y|X].
- (e) What is E[E[Y|X]]?

- (f) Calculate the covariance between X and Y using the shortcut formula.
- 5. Let X and Y be discrete random variables and a, b, c, d be constants. Prove the following:
 - (a) Cov(a + bX, c + dY) = bdCov(X, Y)
 - (b) Corr(a + bX, c + dY) = Corr(X, Y) provided that b, c are positive.
- 6. Fill in the missing steps from lecture to prove the shortcut formula for covariance:

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

- 7. Let X_1 be a random variable denoting the returns of stock 1, and X_2 be a random variable denoting the returns of stock 2. Accordingly let $\mu_1 = E[X_1], \mu_2 = E[X_2], \sigma_1^2 = Var(X_1), \sigma_2^2 = Var(X_2)$ and $\rho = Corr(X_1, X_2)$. A portfolio, Π , is a linear combination of X_1 and X_2 with weights that sum to one, that is $\Pi(\omega) = \omega X_1 + (1 - \omega)X_2$, indicating the proportions of stock 1 and stock 2 that an investor holds. In this example, we require $\omega \in [0, 1]$, so that negative weights are not allowed. (This rules out short-selling.)
 - (a) Calculate $E[\Pi(\omega)]$ in terms of ω , μ_1 and μ_2 .
 - (b) If $\omega \in [0,1]$ is it possible to have $E[\Pi(\omega)] > \mu_1$ and $E[\Pi(\omega)] > \mu_2$? What about $E[\Pi(\omega)] < \mu_1$ and $E[\Pi(\omega)] < \mu_2$? Explain.
 - (c) Express $Cov(X_1, X_2)$ in terms of ρ and σ_1, σ_2 .
 - (d) What is $Var[\Pi(\omega)]$? (Your answer should be in terms of ρ , σ_1^2 and σ_2^2 .)
 - (e) Using part (d) show that the value of ω that minimizes $Var[\Pi(\omega)]$ is

$$\omega^* = \frac{\sigma_2^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2}$$

In other words, $\Pi(\omega^*)$ is the minimum variance portfolio.

(f) If you want a challenge, check the second order condition from part (e).