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About This Document

Extension problems are designed to give you a deeper understanding of the lecture material

and challenge you to apply what you have learned in new settings. Extension problems

should only be attempted after you have completed the corresponding review problems. As

an extra incentive to keep up with the course material, each exam of the semester will contain

at least one problem taken verbatim from the extension problems. We will circulate solutions

to the relevant extension problems the weekend before each exam. You are also welcome to

discuss them with the instructor, your RI, and your fellow students at any point.

Lecture #1 – Introduction

1. A long time ago, the graduate school at a famous university admitted 4000 of their 8000

male applicants versus 1500 of their 4500 female applicants.

(a) Calculate the difference in admission rates between men and women. What does

your calculation suggest?

Solution: The rate for men is 4000/8000 = 50% while that for women is

1500/4500 ≈ 33% so the difference is 17%. It appears that women are less

likely to be accepted to the graduate school.

(b) To get a better sense of the situation, some researchers broke these data down by

area of study. Here is what they found:

Men Women

# Applicants # Admitted # Applicants # Admitted

Arts 2000 400 3600 900

Sciences 6000 3600 900 600

Totals 8000 4000 4500 1500

1



Calculate the difference in admissions rates for men and women studying Arts. Do

the same for Sciences.

Solution: For Arts, the admission rate is 400/2000 = 20% for men versus

900/3600 = 25% for women. For Sciences 3600/6000 = 60% for men versus

600/900 ≈ 67% for women. In summary:

Men Women Difference

Arts 20% 25% -5%

Sciences 60% 67% -7%

Overall 50% 33% 17%

(c) Compare your results from part (a) to part (b). Explain the discrepancy using what

you know about observational studies.

Solution: When we compare overall rates, women are less likely to be admitted

than men. In each field of study, however, women are more likely to be admitted.

In this example, field of study is a confounder : women are disproportionately

applying to study Arts and Arts have much lower admissions rates than Sciences.

Lecture #2 – Summary Statistics I

2. The mean deviation is a measure of dispersion that we did not cover in class. It is defined

as follows:

MD =
1

n

n∑
i=1

|xi − x̄|

(a) Explain why this formula averages the absolute value of deviations from the mean

rather than the deviations themselves.

Solution: As we showed in class, the average deviation from the sample mean

is zero regardless of the dataset. Taking the absolute value is similar to squaring

the deviations: it makes sure that the positive ones don’t cancel out the negative

ones.

(b) Which would you expect to be more sensitive to outliers: the mean deviation or the

variance? Explain.
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Solution: The variance is calculated from squared deviations. When x is far

from zero, x2 is much larger than |x| so large deviations “count more” when

calculating the variance. Thus, the variance will be more sensitive to outliers.

3. Let m be a constant and x1, . . . , xn be an observed dataset.

(a) Show that
n∑
i=1

(xi −m)2 =
n∑
i=1

x2i − 2m
n∑
i=1

xi + nm2.

Solution:

n∑
i=1

(xi −m)2 =
n∑
i=1

(x2i − 2mxi +m2)

=
n∑
i=1

x2i −
n∑
i=1

2mxi +
n∑
i=1

m2

=
n∑
i=1

x2i − 2m
n∑
i=1

xi + nm2

(b) Using the preceding part, show that
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i − nx̄2.

Solution: Solving this requires two observations. First, note that x̄ is a con-

stant, i.e. that it does not have an index of summation. Second, note that∑n
i=1 xi = nx̄. Hence, taking m = x̄ in the formula from the preceding part,

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i − 2x̄
n∑
i=1

xi + nx̄2

=
n∑
i=1

x2i − 2x̄(nx̄) + nx̄2

=
n∑
i=1

x2i − 2nx̄2 + nx̄2

=
n∑
i=1

x2i − nx̄2

Page 3



Lecture #3 – Summary Statistics II

4. Consider a dataset x1, . . . , xn. Suppose I multiply each observation by a constant d and

then add another constant c, so that xi is replaced by c+ dxi.

(a) How does this change the sample mean? Prove your answer.

Solution:

1

n

n∑
i=1

(c+ dxi) =
1

n

n∑
i=1

c+ d

(
1

n

n∑
i=1

xi

)
= c+ dx̄

(b) How does this change the sample variance? Prove your answer.

Solution:

1

n− 1

n∑
i=1

[(c+ dxi)− (c+ dx̄)]2 =
1

n− 1

n∑
i=1

[d(xi − x̄)]2 = d2s2x

(c) How does this change the sample standard deviation? Prove your answer.

Solution: The new standard deviation is |d|sx, the positive square root of the

variance.

(d) How does this change the sample z-scores? Prove your answer.

Solution: They are unchanged as long as d is positive, but the sign will flip if

d is negative:
(c+ dxi)− (c+ dx̄)

dsx
=
d(xi − x̄)

dsx
=
xi − x̄
sx

Lecture #4 – Regression I

5. Define the z-scores

wi =
xi − x̄
sx

, and zi =
yi − ȳ
sy

.
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Show that if we carry out a regression with zi in place of yi and wi in place of xi, the

intercept a∗ will be zero while the slope b∗ will be rxy, the correlation between x and y.

Solution: All we need to do is replace xi with wi and yi with zi in the formulas we

already derived for the regression slope and intercept:

a = ȳ − bx̄, b =
sxy
s2x

And use the properties of z-scores from class. Let a∗ be the intercept for the regression

with z-scores, and b∗ be the corresponding slope. We have:

a∗ = z̄ − b∗w̄ = 0

since the mean of the z-scores is zero, as we showed in class. To find the slope, we

need to covariance between the z-scores, and the variance of the z-scores for x:

b∗ =
swz
s2w

But since sample variance of z-scores is always one, b∗ = swz. Now, by the definition

of the sample covariance, the fact that the mean of z-scores is zero, and the definition

of a z-score:

swz =
1

n− 1

n∑
i=1

(w − w̄)(z − z̄) =
1

n− 1

n∑
i=1

zxizyi

=
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
= rxy

6. This question concerns a phenomenon called regression to the mean. Before attempting

this problem, read Chapter 17 of Thinking Fast and Slow by Kahneman.

(a) Lothario, an unscrupulous economics major, runs the following scam. After the

first midterm of Econ 103 he seeks out the students who did extremely poorly and

offers to sell them “statistics pills.” He promises that if they take the pills before

the second midterm, their scores will improve. The pills are, in fact, M&Ms and

don’t actually improve one’s performance on statistics exams. The overwhelming

majority of Lothario’s former customers, however, swear that the pills really work:

their scores improved on the second midterm. What’s your explanation?
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Solution: This is an example of regression to the mean. The students Lothario

seeks out were both unprepared for the midterm and got unlucky: the correla-

tion between exam scores is less than one. It is very unlikely that they will be

unlucky twice in a row, so their performance on the second exam will almost

certainly be higher. Our best guess of their second score is closer to the mean

than their first score.

(b) Let ŷ denote our prediction of y from a linear regression model: ŷ = a+ bx and let

r be the correlation coefficient between x and y. Show that

ŷ − ȳ
sy

= r

(
x− x̄
sx

)

Solution:

ŷ = a+ bx

ŷ = (ȳ − bx̄) + bx

ŷ − ȳ = b(x− x̄)

ŷ − ȳ =
sxy
s2x

(x− x̄)

ŷ − ȳ =
sxy
sx

(
x− x̄
sx

)
ŷ − ȳ
sy

=
sxy
sxsy

(
x− x̄
sx

)
ŷ − ȳ
sy

= r

(
x− x̄
sx

)

(c) Using the equation derived in (b), briefly explain“regression to the mean.”

Solution: The formula shows that unless r is one or negative one, perfect pos-

itive or negative correlation, our best linear prediction of y based on knowledge

given x is closer to the mean of the y-observations (relative to the standard de-

viation of the y-observations) than x is to mean of the x-observations (relative

to the standard deviation of the x-observations). If x is very large, for example,

we would predict that y will be large too, but not as large.
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No extension problems for Lecture #5

Lecture #6 – Basic Probability II

7. You have been entered into a very strange tennis tournament. To get the $10,000 Grand

Prize you must win at least two sets in a row in a three-set series to be played against

your Econ 103 professor and Venus Williams alternately: professor-Venus-professor or

Venus-professor-Venus according to your choice. Let p be the probability that you win

a set against your professor and v be the probability that you win a set against Venus.

Naturally p > v since Venus is much better than your professor! Assume that each set

is independent.

(a) Let W indicate win and L indicate lose, so that the sequence WWW means you

win all three sets, WLW means you win the first and third set but lose the middle

one, and so on. Which sequences of wins and losses land you the Grand Prize?

Solution: To get the prize, you have to win the middle set. Thus, the only

possibilities are WWW, WWL, and LWW.

(b) If you elect to play the middle set against Venus, what is the probability that you

win the Grand Prize?

Solution: The probabilities of mutually exclusive events sum. Thus,

P (WWW ) + P (LWW ) + P (WWL) = pvp+ (1− p)vp+ pv(1− p)
= p2v + pv − p2v + pv − p2v
= 2pv − p2v
= pv(2− p)

(c) If you elect to play the middle set against your professor, what is the probability

that you win the Grand prize?

Solution: Again, the probabilities of mutually exclusive events sum. Thus,

P (WWW ) + P (LWW ) + P (WWL) = vpv + (1− v)pv + vp(1− v)

= v2p+ vp− v2p+ vp− v2p
= 2pv − v2p
= pv(2− v)
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(d) To maximize your chance of winning the prize, should you choose to play the middle

set against Venus or your professor?

Solution: Manipulating the inequality,

p > v

−p < −v
2− p < 2− v

pv(2− p) < pv(2− v)

You can’t get the prize without winning the middle set, so it turns out that it’s

better to face Venus twice rather than face her in the middle set. You should

elect to play the middle set against your professor.

8. Rossa and Rodrigo are playing their favorite game: matching pennies. The game pro-

ceeds as follows. In each round, both players flip a penny. If the flips match (TT or HH)

Rossa gets one point; if the flips do not match (TH or HT) Rodrigo gets one point. The

game is best of three rounds: as soon as one of the players reaches two points, the game

ends and that player is declared the winner. Since there’s a lot of money on the line and

graduate students aren’t paid particularly well, Rossa secretly alters each of the pennies

so that the probability of heads is 2/3 rather than 1/2. In spite of Rossa’s cheating, the

individual coin flips remain independent.

(a) (6 points) Calculate the probability that Rossa will win the first round of this game.

Solution: Rossa wins a given round if either of the two mutually exclusive

outcomes HH or TT occurs. Thus:

P (Rossa Wins) = P (HH) + P (TT ) = (2/3)2 + (1/3)2 = 5/9

(b) Calculate the probability that the game will last for a full three rounds.

Solution: We need to calculate the probability of a tie after two rounds. There

are two ways that a tie could occur: either Rossa wins the first round while

Rodrigo wins the second, or Rodrigo wins the first round while Rossa wins the

second. These two events are mutually exclusive and the probability of each is

5/9×4/9 = 20/81 since successive coin flips are independent. Thus, the desired

probability is 40/81.
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(c) Calculate the probability that Rodrigo will win the game.

Solution: Rodrigo needs to win two rounds to win the game. There are three

ways this can happen. First, Rodrigo could win both rounds 1 and 2, in which

case no third round is played. The probability of this event is 4/9×4/9 = 16/81.

Second Rodrigo could lose round 1 but win rounds 2 and 3. The probability of

this event is 5/9× 4/9× 4/9 = 80/729. Finally, Rodrigo could lose round 2 but

win rounds 1 and 3. The probability of this event is 4/9× 5/9× 4/9 = 80/729.

Summing these probabilities, since their corresponding events are mutually ex-

clusive, the probability that Rodrigo wins the game is 304/729 ≈ 0.417.

(d) Yiwen is walking down the hallway and sees Rodrigo doing his victory dance: clearly

Rossa has lost in spite of rigging the game. Given that Rodrigo won, calculate the

probability that the game lasted for three rounds.

Solution: By the definition of conditional probability,

P (3 Rounds|Rodrigo Won) =
P (3 Rounds ∩ Rodrigo Won)

P (Rodrigo Won)

We already calculated the denominator in the preceding part: it equals 304/729.

To calculate the numerator we simply add up the probabilities of the two mu-

tually exclusive ways in which Rodrigo could win in three rounds: (Win, Lose,

Win) and (Lose, Win, Win). We calculated these probabilities in the preceding

part: both were 80/729 so the numerator is 160/729. Taking the ratio of these

gives 160/304 ≈ 0.526. Given that Rodrigo won, it is slightly more likely than

not that the game lasted for a full three rounds.

Lecture #7 – Basic Probability III / Discrete RVs I

9. A plane has crashed in one of three possible locations: the mountains (M), the desert

(D), or the sea (S). Based on its flight path, experts have calculated the following

prior probabilities that the plane is in each location: P (M) = 0.5, P (D) = 0.3 and

P (S) = 0.2. If we search the mountains then, given that the plane is actually there, we

have a 30% chance of failing to find it. If we search the desert then, given that the plane

is actually there, we have a 20% chance of failing to find it. Finally, if we search the sea

then, given that the plane is actually there, we have a 90% chance of failing to find it.

Naturally if the plane is not in a particular location but we search for it there, we will

not find it. You may assume that searches in each location are independent. Let FM be

the event that we fail to find the plane in the mountains. Define FD and FS analogously.
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(a) We started by searching the mountains. We did not find the plane. What is the

conditional probability that the plane is nevertheless in the mountains? Explain.

Solution: By Bayes’ Rule: P (M |FM) = P (FM |M)P (M)/P (FM). We first

calculate the denominator using the Law of Total Probability:

P (FM) = P (FM |M)P (M) + P (FM |MC)P (MC)

= 0.3× 0.5 + 1× 0.5 = 0.15 + 0.5 = 0.65

Hence, the desired probability is 15/65 = 3/13 ≈ 0.23.

(b) After failing to find the plane in the mountains, we searched the desert, and the

sea. We did not find the plane in either location. After this more exhaustive search

what is the conditional probability that the plane is in the mountains? Explain.

Solution: We are asked to calculate P (M |FM ∩ FD ∩ FS). By Bayes’ rule,

P (M |FM ∩ FD ∩ FS) =
P (FM ∩ FD ∩ FS|M)P (M)

P (FM ∩ FD ∩ FS)

Define the shorthand A = FM ∩ FD ∩ FS. By the Law of Total Probability

P (A) = P (A|M)P (M) + P (A|D)P (D) + P (A|S)P (S)

= (0.3× 1× 1)× 0.5 + (1× 0.2× 1)× 0.3 + (1× 1× 0.9)× 0.2

= 0.15 + 0.06 + 0.18 = 0.39

using independence. Hence, the desired probability is 15/39 ≈ 0.38.

Lecture #8 – Discrete RVs II

10. I have an urn that contains two red balls and three blue balls. I offer you the chance to

play the following game. You draw one ball at a time from the urn. Draws are made

at random and without replacement. You win $1 for each red ball that you draw, but

lose $1 for each blue ball that you draw. You are allowed to stop the game at any point.

Find a strategy that ensures your expected value from playing this game is positive.

Solution: There are
(
5
2

)
= 10 possible sequences of two red and blue balls, each of

which has probability 1/10 of occurring. The following table enumerates all of them:
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WBBBW BWBWB

WBBWB BBWWB

WBWBB BBBWW

WWBBB BBWBW

BWWBB BWBBW

I have found two strategies that yield a positive expected value. (There may be more.)

The first to keep playing if and only if your cumulative winnings are negative. For

example, if your first draw is W, your cumulative winnings are +1 so you should

stop. On the other hand, if your first draw is B then you cumulative winnings are

−1 so you should keep playing. If your first draw is a B and your second draw is a W,

then your cumulative winnings are zero, so you should stop playing. The following

table uses parentheses to show how this rule applies to each possible sequence of

draws. You should stop playing as soon as you hit the first parenthesis. The value

to the right of the arrow denotes your winnings for a given sequence when following

the strategy.

W(BBBW) → +1 BW(BWB) → 0

W(BBWB) → +1 BBWW(B) → 0

W(BWBB) → +1 BBBWW() → −1

W(WBBB) → +1 BBWBW() → −1

BW(WBB) → 0 BW(BBW) → 0

The expected value of this strategy is (1 + 1 + 1 + 1 − 1 − 1)/10 = 1/5 since each

sequence has a probability of 1/10.

A slightly different strategy that also gives a positive expected value is as follows:

If your first draw is W, stop; if your first draw is B, keep drawing until

both white balls are removed.

Following the same notational convention as above, we can summarize the results of

this strategy as follows:

W(BBBW) → +1 BWBW(B) → 0

W(BBWB) → +1 BBWW(B) → 0

W(BWBB) → +1 BBBWW() → −1

W(WBBB) → +1 BBWBW() → −1

BWW(BB) → +1 BWBBW() → −1

so the expected value is (1 + 1 + 1 + 1 + 1 − 1 − 1 − 1)/10 = 1/5. Although these

two strategies have the same expected value, they different. Let p denote the pmf of
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your winnings under the first strategy and q denote the pmf of your winnings under

the second. Then we see that:

p(−1) = 2/10, p(0) = 4/10, p(1) = 4/10

while

q(−1) = 3/10, q(0) = 2/10, p(1) = 5/10

Hence, you have a larger chance of winning a positive amount using the second

strategy, but also a larger chance of losing a positive amount. A helpful review

problem would be to calculate the variance of your winnings under each strategy.

11. An ancient artifact worth $100,000 fell out of Indiana Jones’s airplane and landed in the

Florida Everglades. Unless he finds it within a day, it will sink to the bottom and be

lost forever. Dr. Jones can hire one or more helicopters to search the Everglades. Each

helicopter charges $1,000 per day and has a probability of 0.9 of finding the artifact. If

Dr. Jones wants to maximize his expected value, how many helicopters should he hire?

Solution: Let p(n) be the probability of finding the artifact if Indiana Jones hires

n helicopters. By the complement rule, p(n) = 1− 1/10n since the probability of not

finding the artifact when n helicopters are search for it is (1 − 0.9)n = 1/102. Now

let E(n) denote Indiana Jones’s expected value if he hires n helicopters. If he does

not find the artifact, Jones loses n×$1,000. If he does find the artifact, Jones gains

$100,000−n×$1,000. Therefore,

E(n) = [1− p(n)]× (−1000× n) + p(n)× [100000− 1000× n]

= 100000× p(n)− 1000× n
= 1000× [100× p(n)− n]

The question of whether Jones should hire an additional – i.e. marginal – helicopter

comes down to whether the marginal expected benefit, 100000 × [p(n+ 1)− p(n)],

exceeds the marginal expected cost, 1000. From the factorization above, we see that

this will be the case whenever 100 × [p(n+ 1)− p(n)] is larger than one. Notice

that, because you cannot hire a fraction of a helicopter, it may not be possible to

exactly equate marginal expected cost and benefit as we would do in a continuous

optimization problem. Instead we’ll make a table of values. It’s easy enough to do

this by hand, but we could also use R:
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n <- 1:4

p <- 1 - 1/10^n

EV <- 100000 * p - 1000 * n

cbind(n,p,EV)

## n p EV

## [1,] 1 0.9000 89000

## [2,] 2 0.9900 97000

## [3,] 3 0.9990 96900

## [4,] 4 0.9999 95990

From the table is appears that the optimal number of helicopters is 2. But how can

we be sure when we have only examined five possible values for n? Notice that the

marginal expected cost is a constant $1000 regardless of n. In contrast, the marginal

expected benefit is

p(n+ 1)− p(n) =

(
1− 1

10n+1

)
−
(

1− 1

10n

)
=

1

10n
− 1

10n+1

=
1

10n

(
1− 1

10

)
=

1

10n
× 0.9

This is decreasing with n, so we know that it is it unnecessary to examine larger

values of n. An alternative way to solve this problem is to “pretend” that n is

continuous, derive the first and second order conditions to characterize the unique

global optimum, and then look at the whole number values of n on each side of the

(infeasible) optimum from the continuous problem.

No extension problems for Lecture #9

Lecture #10 – Discrete RVs IV

12. Let X and Y be discrete random variables. Prove that if X and Y are independent,

then Cov(X, Y ) = 0. Hint: write out the definition of covariance for two discrete RVs

in terms of a double sum, and use independence to substitute pXY (x, y) = pX(x)pY (y).
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Solution:

Cov(X, Y ) = E[(X − µX)(Y − µY )]

=
∑
x

∑
y

(x− µX)(y − µY )p(x, y)

=
∑
x

∑
y

(x− µX)(y − µY )p(x)p(y)

=
∑
x

(x− µX)p(x)

[∑
y

(y − µY )p(y)

]
= E[Y − µY ]

∑
x

(x− µX)p(x)

= E[Y − µY ]E[X − µX ]

= 0

13. Let a, b, c be constants and X, Y be RVs. Show that:

V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ).

Hint: the steps are similar our proof that V ar(aX + b) = a2V ar(X) from lecture.

Solution:

V ar(aX + bY ) = E
[
{(aX + bY )− E[aX + bY ]}2

]
= E

[
{a(X − µX) + b(Y − µY )}2

]
= E

[
a2(X − µX)2 + b2(Y − µY )2 + 2ab(X − µX)(Y − µY )

]
= a2E[(X − µX)2] + b2E[(Y − µY )2] + 2abE[(X − µX)(Y − µY )]

= a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y )

14. Let X1 be a random variable denoting the returns of stock 1, and X2 be a random variable

denoting the returns of stock 2. Accordingly let µ1 = E[X1], µ2 = E[X2], σ
2
1 = V ar(X1),

σ2
2 = V ar(X2) and ρ = Corr(X1, X2). A portfolio, Π, is a linear combination of X1 and

X2 with weights that sum to one, that is Π(ω) = ωX1 + (1 − ω)X2, indicating the

proportions of stock 1 and stock 2 that an investor holds. In this example, we require

ω ∈ [0, 1], so that negative weights are not allowed. (This rules out short-selling.)

(a) Express V ar[Π(ω)] in terms of ρ, σ2
1 and σ2

2.
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Solution:

V ar[Π(ω)] = V ar[ωX1 + (1− ω)X2]

= ω2V ar(X1) + (1− ω)2V ar(X2) + 2ω(1− ω)Cov(X1, X2)

= ω2σ2
1 + (1− ω)2σ2

2 + 2ω(1− ω)ρσ1σ2

(b) Find the value of ω∗ that minimizes V ar[Π(ω)]. You do not have to check the

second order condition. In finance, Π(ω∗) is called the minimum variance portfolio.

Solution: The First Order Condition is:

2ωσ2
1 − 2(1− ω)σ2

2 + (2− 4ω)ρσ1σ2 = 0

Dividing both sides by two and rearranging:

ωσ2
1 − (1− ω)σ2

2 + (1− 2ω)ρσ1σ2 = 0

ωσ2
1 − σ2

2 + ωσ2
2 + ρσ1σ2 − 2ωρσ1σ2 = 0

ω(σ2
1 + σ2

2 − 2ρσ1σ2) = σ2
2 − ρσ1σ2

So we have

ω∗ =
σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

(c) I have posted five years of daily closing stock prices for Apple (AAPL) and Google

(GOOG) on my website: http://ditraglia.com/econ103/closing_prices.csv.

Write code to read this data into R and store it in a dataframe called prices.

Solution:

data_url <- 'http://ditraglia.com/econ103/closing_prices.csv'

prices <- read.csv(data_url)

(d) If Pt is today’s closing price and Pt−1 is yesterday’s closing price, then we define the

log daily return as log(Pt)−log(Pt−1) where log denotes the natural logarithm. Write

R code that uses prices to create two vectors apple returns and google returns

containing log returns for Apple and Google respectively. The R function for natural

logarithms is log while diff takes successive differences of a vector.
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Solution:

google_returns <- diff(log(prices$GOOG))

apple_returns <- diff(log(prices$APPL))

(e) Using apple returns and google returns, write R code to compute the sample

standard deviation of Apple and Google daily log returns, along with the sample

correlation between them.

Solution:

s1 <- sd(google_returns)

s2 <- sd(apple_returns)

r <- cor(google_returns, apple_returns)

(f) Suppose we make the assumption that future Apple and Google returns are ran-

dom variables with the standard deviations and correlation equal to the values you

computed in the preceding part. If we have $100 and wish to invest in these two

companies, how much money should we allocate to Apple and Google stock to min-

imize the variance of our portfolio? (If we take variance as a measure of risk, this

problem is asking you to calculate the “safest” portfolio.)

Solution: The formula from part (b) gives

wstar <- (s2^2 - r * s1 * s2) / (s1^2 + s2^2 - 2 * r * s1 * s2)

wstar

## [1] 0.5422114

so we should invest $54 in Google and $46 in Apple.

No extension problems for Lecture #11

Lecture #12 – Continuous RVs II

15. Suppose that X is continuous RV with PDF f(x) = 3x2 for x ∈ [0, 1], zero otherwise.

Calculate the median of X.
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Solution: To answer this question, we need to derive the quantile function of X.

Since Q(p) is simply the inverse of the CDF, we first need to derive F (x0). We have:

F (x0) ≡
∫ x0

−∞
f(x) dx =

∫ x0

0

3x2 dx = x30

for x0 ∈ [0, 1], F (x0) = 0 for x0 < 0 and F (x0) = 1 for x0 > 1. Hence the quantile

function of X is Q(p) = F−1(p) = 3
√
p. To find the median of X, we simply evaluate

this at p = 0.5, yielding median = 3
√

0.5 ≈ 0.79.

16. Students applying for a job at a consulting firm are required to take two tests. For a

given applicant, scores on the two tests can be viewed as random variables: X and Y .

From information on past applicants, we know that both tests have means equal to 50,

and standard deviations equal to 10. The correlation between scores on the two tests is

0.62. Let Z = X + Y denote an applicant’s combined score.

(a) Calculate E[Z]

Solution: E[Z] = E[X + Y ] = E[X] + E[Y ] = 50 + 50 = 100

(b) Calculate V ar(Z).

Solution:

Var(Z) = V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

= 102 + 102 + 2σXσY ρXY

= 200 + 2× 10× 10× 0.62 = 324

(c) Only students whose combined score is at least 136 are hired. If Z is normally

distributed, approximately what percentage of applicants applicants will be hired?

Solution: From the preceding parts µZ = 100 and σZ =
√

324 = 18. Hence,

P (Z > 136) = 1− P (Z ≤ 136) = 1− P
(
Z − 100

18
≤ 136− 100

18

)
= 1− P

(
Z − 100

18
≤ 2

)
= 1− pnorm(2) ≈ 0.025

So about 2.5% of applicants will be hired.
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(d) Continuing under the assumption that Z is normally distributed, as in the preceding

part, suppose the firm wanted to hire the top 16% of applicants. Approximately

what cutoff should they use for each applicant’s combined score?

Solution: We need to find c such that P (Z > c) = 0.16. Using the same

reasoning as in the preceding solution,

P (Z > c) = 1− P
(
Z − 100

18
≤ c− 100

18

)
= 0.16

and hence

1− pnorm
(
(c− 100)/18

)
= 0.16

Rearranging,

pnorm
(
(c− 100)/18

)
= 0.84

Since pnorm and qnorm are inverses of each other, if we apply them to both

sides, we get

(c− 100)/18 = qnorm(0.84)

Here’s another way of saying the same thing: we need to choose c so that

pnorm
(
(c−100)/18

)
= 0.84 which means that (c−100)/18 needs to be the 0.84

quantile of the standard normal distribution. Since qnorm(0.84) ≈ 1, we have

(c− 100)/18 ≈ 1

c− 100 ≈ 18

c ≈ 118

So the firm should lower their cutoff from 136 to about 118 if they want to hire

the top 16% of applicants.

Lecture #13 – Sampling and Estimation I

17. Garth wants to learn how much taller NBA players are than Penn Undergraduates, on

average. To answer this question, he’s recruited volunteers to make up two independent

random samples. The first sample contains 10 NBA players: X1, . . . , X10 ∼ iid with

mean µX and variance σ2. The second sample is independent of the first and contains 15

Penn Undergrads: Y1, . . . , Y15 ∼ iid with mean µY and variance σ2. Just to be completely

clear, in this question we are assuming that the variance is identical for Penn Students

and NBA players to make the calculations simpler.

(a) To answer his question, Garth needs to estimate µX − µY . There is an obvious
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unbiased estimator of this quantity. What is it? Prove that it is unbiased.

Solution: The obvious choice is the difference of sample means: X̄ − Ȳ . We

know that this is unbiased because X̄ is an unbiased estimator of µX , Ȳ is an

unbiased estimator of µY and by the linearity of expectation

E[X̄ − Ȳ ] = E[X̄]− E[Ȳ ] = µX − µY

(b) Calculate the variance of the estimator you proposed in part (a).

Solution:

V ar(X̄ − Ȳ ) = V ar(X̄) + V ar(Ȳ ) =
σ2

10
+
σ2

15
=
σ2

6

(c) When measuring the players and students Garth makes a mistake: although he

accurately records each of the 25 heights, he forgets to note which correspond to

Penn students and which correspond to NBA players. Fortunately Garth remembers

that, among the first 10 heights on his list, there were exactly 5 students and 5 NBA

players. In other words, the first 10 heights on his list are X1, . . . , X5 and Y1, . . . , Y5
in some unknown order and the last 15 are X6, . . . , X10 and Y6, . . . , Y15 in some

unknown order. Let Z̄1 be the sample mean of the first 10 heights on Garth’s list

and Z̄2 be the sample mean of the last 15. Prove that

E[Z̄1] =
µX + µY

2
and E[Z̄2] =

1

3
µX +

2

3
µY

Solution: We have

Z̄1 =
1

10
(X1 +X2 + · · ·+X5 + Y1 + Y2 + · · ·+ Y5)

Hence, by the linearity of expectation,

E[Z̄1] =
1

10
(5µX + 5µY ) =

µX + µY
2

Similarly,

Z̄2 =
1

15
(X6 +X7 + · · ·+X10 + Y6 + Y7 + · · ·+ Y15)

and, again, by the linearity of expectation

E[Z̄2] =
1

15
(5µX + 10µY ) =

1

3
µX +

2

3
µY
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(d) Let α and β be two arbitrary constants. Using part (c), calculate E[αZ̄1 + βZ̄2].

Simplify your answer so that it takes the form c1µX + c2µY where c1 and c2 are two

constants that will depend on α and β.

Solution: By the linearity of expectation:

E[αZ̄1 + βZ̄2] = αE[Z̄1] + βE[Z̄2]

= α

(
µX + µY

2

)
+ β

(
1

3
µX +

2

3
µY

)
= µX

(
α

2
+
β

3

)
+ µY

(
α

2
+

2β

3

)

(e) Back to Garth’s problem: amazingly it’s still possible to construct an unbiased

estimator of µX − µY without knowning which observations corresponded to NBA

players and which corresponded to Penn students. The trick is to take a particular

linear combination of Z̄1 and Z̄2. Use your answer to the previous part to find the

values of α and β that give E[αZ̄1 + βZ̄2] = µX − µY .

Solution: We have two linearly independent equations in two unknowns:

α/2 + β/3 = 1

α/2 + 2β/3 = −1

Solving the first equation gives α/2 = 1−β/3. Substituting this into the second:

(1− β/3) + 2β/3 = −1

β = −6

Hence α = 2(1−β/3) = 6. Plugging these values into the result of the previous

part, we can verify that these values indeed give an unbiased estimator:

E[6Z̄1 − 6Z̄2] = 3(µX + µY )− (2µX + 4µY ) = µX − µY

(f) Although it’s unbiased, there’s a clear downside to the estimator from the previous

part: it has a very high variance. Calculate its variance and compare it to that of

the estimator from part (a). Explain the intuition behind the difference.

Solution: We have:

V ar(6Z̄1 − 6Z̄2) = 36
[
V ar(Z̄1) + V ar(Z̄2)

]
= 36(σ2/10 + σ2/15) = 6σ2
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which is 36 times as large as V ar(X̄ − Ȳ )! Although V ar(X̄ − Ȳ ) = V ar(Z̄1 −
Z̄2), when we multiplied Z̄1 and Z̄2 by six to get an unbiased estimator, this

multiplied the variance by 62 = 36.

Lecture #14 – Sampling and Estimation II

18. Problem 7-13 parts (a)–(c) from Wonnacott & Wonnacott.

Solution: The point is that S, the number of successes in n trials each with prob-

ability π of success, is a Binomial(n, π) random variable. We calculated the mean

and variance of such a RV in class (see the slides) and we will use this information

to find the MSE of P = S/n as well as that of

P ∗ =
nP + 1

n+ 2
=

(
n

n+ 2

)
P +

(
1

n+ 2

)
The reason the book gives you the above expression is to give you a hint: namely

that once you’ve solved for the MSE of P you can use this to get the MSE of P ∗

fairly easily by writing it as above.

E[P ] = E[S/n] = E[S]/n = nπ/n = π

Bias(P ) = E[P ]− π = π − π = 0

V ar(P ) = V ar(S/n) = V ar(S)/n2 = nπ(1− π)/n2 = π(1− π)/n

MSE(P ) = Bias(P )2 + V ar(P ) = 02 + π(1− π)/n = π(1− π)/n

where we have used our rules for manipulating expectation and variance, as well as
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the expressions for the mean and variance of a Binomial random variable. Now:

E[P ∗] = E

[(
n

n+ 2

)
P +

(
1

n+ 2

)]
=

(
n

n+ 2

)
E[P ] +

(
1

n+ 2

)
=

(
n

n+ 2

)
π +

(
1

n+ 2

)

Bias(P ∗) = E[P ∗]− π =

(
n

n+ 2

)
π +

(
1

n+ 2

)
− π

=

(
n

n+ 2
− 1

)
π +

(
1

n+ 2

)
=

1− 2π

n+ 2

V ar(P ∗) = V ar

[(
n

n+ 2

)
P +

(
1

n+ 2

)]
=

(
n

n+ 2

)2

V ar(P )

=
n2

(n+ 2)2
π(1− π)

n
=
nπ(1− π)

(n+ 2)2

MSE(P ∗) = Bias(P ∗)2 + V ar(P ∗) =

(
1− 2π

n+ 2

)2

+
nπ(1− π)

(n+ 2)2

=
(1− 2π)2 + nπ(1− π)

(n+ 2)2
=

1− 4π + 4π2 + nπ − nπ2

(n+ 2)2

=
1 + (n− 4)π − (n− 4)π2

(n+ 2)2
=

1 + π(1− π)(n− 4)

(n+ 2)2

If we take limits, we’ll see that both P and P ∗ are consistent, since their mean-

squared errors go to zero as n → ∞. For different values of π and n, however, the

two estimators will have different MSE.

19. Problem 7-18 from Wonnacott & Wonnacott.

Solution: 7-18

The point of this question is non-response bias: the people who respond are not

representative of the population as a whole. Note that P and P ∗ as defined in this

question do not correspond to question 7-13. Our goal is to estimate the population

proportion who will buy a computer. Using the table, we calculate the total number

of people who will buy a computer as:

0.02× 40 + 0.04× 5 + 0.1× 3 + 0.2× 2 = 1.7 million

which corresponds to a fraction π∗ = 1.7/50 = 0.034. Again using the table, the

number of people who will buy a computer among the sub-population who would
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respond can be calculated as:

0.02× 7 + 0.04× 1 + 0.1× 1 + 0.2× 1 = 0.48 million

which corresponds to a fraction π = 0.48/10 = 0.048. The point is that π 6= π∗.

In other words, the proportion of people who would buy a computer differs across

people who would and would not respond to the phone survey. The estimator P

is based on calling 1000 people chosen at random and recording responses for only

those who reply. The proportion of people who will reply is 10/50 = 1/5. Thus,

P will end up with a sample size of approximately n = 200 individuals. These

individuals correspond to the sub-population for which the proportion who would buy

a computer is π∗ = 0.048. In contrast, the estimator P ∗ is based on calling n∗ = 100

people chosen at random and then following up with these people repeatedly until

all of them respond. Thus, P ∗ draws from the full population, in which a proportion

π∗ = 0.034 of people will buy a computer. The true parameter is π∗ since we want

to estimate the overall fraction of people who will buy a computer, not the fraction

of people who would buy a computer among those who are likely to respond to a

telephone survey. Hence bias is calculated relative to π∗. Variance is calculated

relative to the mean of each sampling distribution. For P this mean is π while for P ∗

it is π∗. That is:

MSE(P ) = Bias(P )2 + V ar(P ) = (E[P ]− π∗)2 + E[(P − π)2]

= (π − π∗)2 + E[(P − π)2]

= (π − π∗)2 + π(1− π)/n

MSE(P ∗) = Bias(P ∗)2 + V ar(P ∗) = (π∗ − π∗)2 + E[(P ∗ − π∗)2]
= E[(P ∗ − π∗)2] = π∗(1− π∗)/n∗

The estimator P ∗ does not have any bias because of the follow-ups to ensure that

everyone in the original random sample responds. However, since it is based on a

smaller sample, we would expect it to have a higher variance. The question is how

this trade-off comes out in the expressions for MSE. To find out, we simply plug in the

values π∗ = 0.034, π = 0.048, n = 200 and n∗ = 100. We find MSE(P ∗) ≈ 0.000328

and MSE(P ) ≈ 0.000424.

20. Problem 7-19 from Wonnacott & Wonnacott. (Note that the answer in the back of the

book is incorrect.)

Solution: The book’s solution erroneously takes n = 100 rather than n = 200 when

calculating the variance of P . This is wrong because 1000 is the number of peo-
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ple called not the number of people who reply. The question statement specifically

states that P should be calculated for those who respond. The correct simply re-

quires us to take the square root of the answers from the previous question. We

find that RMSE(P ∗) ≈ 0.018 and RMSE(P ) ≈ 0.021. These are the root mean

squared errors for estimators of the population proportion. To answer the question

for estimators of market size, i.e. the population proportion multiplied by the size of

the market (50 million), we simply multiply each of the RMSE values by 50 million

yielding values of approximately 900,000 and 1,000,000 respectively.

Lecture #15 – Confidence Intervals I

21. In this question you will carry out a simulation exercise similar to the one I used to make

the plot of twenty confidence intervals from lecture 16.

(a) Write a function called get CI that calculates a confidence interval for the mean of

a normal population when the population standard deviation is known. It should

take three arguments: data is a vector containing the observed data from which

we will calculate the sample mean, pop sd is the population standard deviation,

and alpha controls the confidence level (e.g. alpha = 0.1 for a 90% confidence

interval). Your function should return a vector whose first element is the lower

confidence limit and whose second element is the upper confidence limit. Test out

your function on a simple example to make sure it’s working properly.

Solution:
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get_CI <- function(data, pop_sd, alpha){

x_bar <- mean(data)

n <- length(data)

SE <- pop_sd / sqrt(n)

ME <- qnorm(1 - alpha/2) * SE

lower <- x_bar - ME

upper <- x_bar + ME

out <- c(lower, upper)

return(out)

}

Testing this out on fake data containing twenty-five zeros and assuming a pop-

ulation variance of one, we have

fake_data <- rep(0, 25)

get_CI(fake_data, pop_sd = 1, alpha = 0.05)

## [1] -0.3919928 0.3919928

If we calculated the corresponding interval by hand, assuming a population

standard deviation of one, we’d get

0± 2× 1× 1/5 = (−0.4, 0.4)

Which is almost exactly the same. The reason for the slight discrepancy is that

when working by hand we use the approximation qnorm(0.975)≈ 2 whereas

the exact value, which R provides, is more like 1.96.

(b) Write a function called CI sim that takes a single argument sample size. Your

function should carry out the following steps. First generate sample size draws

from a standard normal distribution. Second, pass your sample of standard normals

to get CI with alpha set to 0.05 and pop sd set to 1. Third, return the resulting

confidence interval. Test your function on a sample of size 10. (What we’re doing

here is constructing a 95% confidence interval for the mean of a normal population

using simulated data. The population mean is in fact zero, but we want to see how

our confidence interval procedure works. To do this we “pretend” that we don’t

know the population mean and only know the population variance. Think about

this carefully and make sure you understand the intuition.)
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Solution:

CI_sim <- function(sample_size){
sims <- rnorm(sample_size)

CI <- get_CI(sims, pop_sd = 1, alpha = 0.05)

return(CI)

}
CI_sim(10)

## [1] -0.9288126 0.3107775

(c) Use replicate to construct 10000 confidence intervals based on simulated data us-

ing the function CI sim with sample size equal to 10. (Note that replicate will,

in this case, return a matrix with 2 rows and 10000 columns. Each column corre-

ponds to one of the simulated confidence intervals. The first row contains the lower

confidence limit while the second row contains the upper confidence limit.) Calcu-

late the proportion of the resulting confidence intervals contain the true population

mean. Did you get the answer you were expecting?

Solution:

simCIs <- replicate(10000, CI_sim(10))

simCIs[,1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] -0.6429955 -0.6474871 -0.3554235 -0.1951084 -0.3309972

## [2,] 0.5965946 0.5921029 0.8841666 1.0444817 0.9085928

lower <- simCIs[1,]

upper <- simCIs[2,]

covers_truth <- (lower < 0) & (upper > 0)

sum(covers_truth) / length(covers_truth)

## [1] 0.9478

The answer is pretty much dead on: almost exactly 95% of the intervals contain

the true population mean (zero).

(d) Repeat the preceding but rather than using CI sim write a new function called

CI sim2. This new function should be identical to CI sim except that, when calling

get CI, it sets pop sd = 1/2 rather than 1. How do your results change? Try to

provide some intuition for any differences you find.

Solution:
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CI_sim2 <- function(sample_size){
sims <- rnorm(sample_size)

CI <- get_CI(sims, pop_sd = 1/2, alpha = 0.05)

return(CI)

}
simCIs <- replicate(10000, CI_sim2(10))

simCIs[,1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.4284204 -0.232400 -0.4313465 -0.64034061 -1.102286

## [2,] 1.0482155 0.387395 0.1884485 -0.02054558 -0.482491

lower <- simCIs[1,]

upper <- simCIs[2,]

covers_truth <- (lower < 0) & (upper > 0)

sum(covers_truth) / length(covers_truth)

## [1] 0.6701

In this case the procedure didn’t work: many fewer than 95% of the intervals

contain the true population mean. The problem is that CI.sim2 constructs

a confidence interval using the wrong population standard deviation! Since it

uses 1/2 rather than 1, the resulting intervals are too short, so too few of them

contain the true population mean.

Lecture #16 – Confidence Intervals II

22. Write R code to carry out the simulation experiments presented on slides 13–15 of Lecture

16 illustrating the central limit theorem. In each case, plot population density (or mass

function) and compare it to the histograms of the sample mean. Use a sample size of 20

and 10,000 simulation replications. The R command for making n draws from a χ2(5)

distribution is rchisq(n, df = 5) and the density is dchisq(x, df = 5). You can use

curve to plot both the uniform and χ2(5) densities, but you’ll need another approach

to plot the Bernoulli pmf. I suggest that you create a vector x to represent the support

set, and another called p to represent the pmf. You can then use the plot command

with the option type = ‘h’ to plot vertical bars as in my slides. I also suggest setting

ylim = c(0,1) so that the y-axis in this plot starts at zero and ends at one. You can

also try setting xlim to make it easier to see the vertical bars.
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Solution:

# Uniform

uniform_means <- replicate(10000, mean(runif(20)))

par(mfrow = c(1, 2))

curve(dunif(x), 0, 1, main = "Uniform(0,1) Density", ylab = 'f(x)')

hist(uniform_means, main = "Uniform(0,1), n = 20")

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

1.
0

1.
4

Uniform(0,1) Density

x

f(
x)

Uniform(0,1), n = 20

uniform_means

F
re

qu
en

cy

0.3 0.4 0.5 0.6 0.7

0
10

00
25

00

par(mfrow = c(1, 1))

# Chi-squared(5)

chisq_means <- replicate(10000, mean(rchisq(20, df = 5)))

par(mfrow = c(1,2))

curve(dchisq(x, 5), 0.01, 15,

main = "Chi-squared Density, df = 5", ylab = 'f(x)')

hist(chisq_means, main = "Chi-squared(5), n = 20")
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par(mfrow = c(1, 1))

# Bernoulli(0.3)

par(mfrow = c(1, 2))

x <- c(0,1)

p <- c(0.7, 0.3)

plot(x, p, type = 'h', main = "Bernoulli(0.3) pmf", ylim = c(0, 1),

xlim = c(-1, 2))

bernoulli_means <- replicate(10000, mean(rbinom(20, 1, 0.3)))

hist(bernoulli_means, main = "Bernoulli(0.3), n = 20")
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par(mfrow = c(1, 1))
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Lecture #17 – Confidence Intervals III

23. In April of 2013, Public Policy Polling carried out a survey of 1247 registered voters

to determine whether Republicans and Democrats differ in their beliefs about various

conspiracy theories. To answer this question, you’ll need to download the full results of

their survey which I’ve posted on my website for convenience: http://www.ditraglia.

com/econ103/conspiracy.pdf. Note that this is a pdf file so you can’t import it into

R. You’ll need to go read through the document to find the relevant data from the poll.

(a) Construct a 99% confidence interval for the proportion of registered voters who

belive that a UFO crashed at Roswell, New Mexico in 1947 and the US Government

covered it up.

Solution: Overall percentages appear on page 2 of the report, and this question

refers to Q3. The sample size is 1247 and p̂ = 0.21. We can carry out the

calculations in R as follows:

p <- 0.21

n <- 1247

SE <- sqrt(p * (1 - p)/n)

ME <- qnorm(1 - 0.01/2) * SE

LCL <- p - ME

UCL <- p + ME

c(LCL, UCL)

## [1] 0.1802897 0.2397103

(b) Is there evidence that male and female voters differ in their beliefs about Roswell

and UFOs?

Solution: Percentages broken down by sex appear on page 15, while overall

percentages of men and women appear on page 3. Of the 1247 registered voters

in the poll, about 50% were women and 50% were men. We’ll call that n = 623

for each. The sample proportions are p̂W = 0.19 for women versus p̂M = 0.24

for men. Using R, we find:
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n <- 623

p_M <- 0.24

p_W <- 0.19

SE <- sqrt(p_M * (1 - p_M)/n + p_W * (1 - p_W) / n)

ME <- qnorm(1 - 0.01/2) * SE

LCL <- (p_M - p_W) - ME

UCL <- (p_M - p_W) + ME

c(LCL, UCL)

## [1] -0.009846188 0.109846188

This 99% CI just barely includes zero. A 95% wouldn’t (try this out for your-

self). We have found evidence suggesting that a higher proportion of men believe

in the Roswell conspiracy compared to women.

(c) Is there evidence that Romney voters differ from Obama voters in their beliefs about

Roswell and UFOs?

Solution: Percentages broken down by 2012 vote appear in page 5. Overall

percentages of Romney and Obama voters in the sample appear on page 3. Of

the 1247 registered voters in the sample, 50% voted for Obama and 44% voted

for Romney. We’ll call this nO = 623 and nR = 547. The sample proportions

are p̂O = 0.16 for Obama voters versus p̂R = 0.27 for Romney voters. Using R,

we find:

n_R <- 547

p_R <- 0.27

n_O <- 623

p_O <- 0.16

SE <- sqrt(p_R * (1 - p_R) / n_R + p_O * (1 - p_O) / n_O)

ME <- qnorm(1 - 0.01/2) * SE

LCL <- (p_R - p_O) - ME

UCL <- (p_R - p_O) + ME

c(LCL, UCL)

## [1] 0.04817691 0.17182309

We have found strong evidence that a substantially greater proportion of Rom-

ney voters believe in the Roswell conspiracy.

(d) How should we interpret the results of the preceding two parts?
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Solution: Since we know the men are more likely to vote for Republican can-

didates than women, it’s difficult to tell whether the effect has to do with sex or

political affiliation. To learn more, we’d need to compare female Romney vot-

ers to female Obama voters and then separately compare male Obama voters

to male Romney voters.

24. In this question you will analyze data from the Spring 2019 anchoring experiment in

Econ 103, contained in the columns rand.num and africa.percent of our class survey:

http://ditraglia.com/econ103/survey-spring-2019.csv.

(a) Make a boxplot of the results from the anchoring experiment and discuss your

findings.

Solution:

data_url <- "http://ditraglia.com/econ103/survey-spring-2019.csv"

survey <- read.csv(data_url)

anchoring <- survey[,c("rand.num", "africa.percent")]

boxplot(africa.percent ~ rand.num, anchoring)
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(b) Construct an approximate 95% confidence interval for the magnitude of the anchor-

ing effect, based on the CLT.

Solution:
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lo <- subset(anchoring, rand.num == "10")$africa.percent

hi <- subset(anchoring, rand.num == "65")$africa.percent

lo <- na.omit(lo)

hi <- na.omit(hi)

SE <- sqrt(var(hi) / length(hi) + var(lo) / length(lo))

ME <- qnorm(0.975) * SE

LCL <- (mean(hi) - mean(lo)) - ME

UCL <- (mean(hi) - mean(lo)) + ME

c(LCL, UCL)

## [1] 0.4461888 12.7182195

(c) Do your results differ from those of the past semester, discussed in the lecture slides?

25. This question is based on a recent paper examining how “organic” labeling changes

people’s perceptions of different food products. Researchers recruited volunteers at a

local mall in Ithaca, New York and gave each two samples of yogurt to taste. Although

both yogurts were in fact identical, the volunteers were told that one of them was organic

while the other was not. After tasting both, each volunteer was asked to estimate how

many calories each of the samples of yogurt contained. (Since, unknown to the volunteer,

both samples contained exactly the same kind of yogurt, each in fact contained the

same number of calories.) To prevent confounding from anchoring or other behavioral

effects, the order in which a given volunteer tasted the two yogurts, i.e. “organic” first

or “organic” second, was chosen at random. The results of this experiment are stored

in an R dataframe called yogurt. Here are the first few rows:

> head(yogurt)

regular organic

1 60 40

2 5 0

3 200 100

4 60 40

5 100 100

6 90 90

Each row in this dataframe corresponds to a single individual’s guess of the number of

calories contained in each of the two yogurts. For example, the values 60 and 40 in row

1 mean that volunteer number one guessed that the regular yogurt sample contained 60

calories and the organic sample contained 40. Summary statistics for the two columns

are as follows:
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regular organic

Sample Mean 113 90

Sample Var 3600 2916

Sample SD 60 54

Sample Corr. 0.8

Sample Size 115

(a) Give the units of each of the summary statistics from above.

Solution: calories, calories2, calories, unitless.

(b) Sara thinks that this experiment should be analyzed as independent samples data.

Assume that she is correct and construct an approximate 95% CI for the difference

of means (regular - organic) based on the CLT.

Solution: The difference of means (regular minus organic) is 23 calories. Sara

calculates her standard error assuming independent samples:√
σ2
X/n+ σ2

Y /m =
√

3600/115 + 2916/115 =
√

6516/115 ≈ 7.5

so her confidence interval is approximately 23± 15, in other words (8, 38).

(c) Kevin thinks that this experiment should be analyzed as matched pairs data. As-

sume that he is correct and construct an approximate 95% CI for the difference of

means (regular - organic) based on the CLT.

Solution: Kevin takes into account the sample correlation between columns

when calculating his standard error. He does this by using the sample statistics

from the table to calculate the sample variance of the differences : regular minus

organic. In particular, he calculates:

s2D = 3600 + 2916− 2 · 0.8 · 60 · 54 = 1332

which gives a standard error of√
s2D/n =

√
1332/115 ≈ 3.4

This is the only difference between his procedure and Sara’s. Hence, Kevin’s

confidence interval is approximately 23± 6.8, in other words (16.2, 29.8).

(d) How do the confidence intervals constructed by Sara and Kevin differ? Explain

the source of the discrepancy. Which of them has constructed the appropriate
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confidence interval for this example?

Solution: Kevin is right and Sara is wrong. This is matched pairs data because

each row corresponds to a single individual. Unsurprisingly, we find a high sam-

ple correlation between the two columns: individuals who overestimate caloric

content for one yogurt sample tend to do so for the other, as do individuals

who underestimate. The only difference between Kevin and Sara’s confidence

intervals comes from how they calculated their standard errors. Both intervals

are correctly centered, but Sara’s is too wide because she calculated the stan-

dard error assuming independence between the two samples. When the sample

correlation is positive this results in an overestimate of the standard error.

(e) Using what you know about experiments, observational studies, and confidence

intervals, what conclusions can we draw from this study?

Solution: It appears that merely labeling a product “organic” causes con-

sumers to assume that this product contains fewer calories. Because this is

a randomized experiment (randomly assigning labels to identical samples of yo-

gurt and randomizing the order in which subjects tasted), we don’t have to

worry about confounding. It is less clear, however, whether this result would

generalize to foods other than yogurt. Further, people from Ithaca New York

who visit the mall and volunteer for a taste test may not be representative of US

consumers as a whole. Ideally we would repeat this experiment using different

subject pools and different foods to see how robust the result is.

No Extension Questions for Lecture #18

No Extension Questions for Lecture #19

Lecture #20 – Hypothesis Testing III

26. This question revisits the data from this semester’s anchoring experiment. In a previous

question you used these data to construct confidence intervals. In this question you will

carry out hypothesis tests. You may assume throughout that the sample size is large

enough to use the Central Limit Theorem. Details of how to load the data from my

website appear in Lecture 19. Be sure to properly account for missing values.

(a) Suppose we want to test the null hypothesis of equality of population means across

the two groups. What is the value of our test statistic?
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Solution:

data_url <- "http://ditraglia.com/econ103/survey-spring-2019.csv"

survey <- read.csv(data_url)

anchoring <- survey[,c("rand.num", "africa.percent")]

lo <- subset(anchoring, rand.num == "10")$africa.percent

hi <- subset(anchoring, rand.num == "65")$africa.percent

lo <- na.omit(lo)

hi <- na.omit(hi)

SE <- sqrt(var(lo) / length(lo) + var(hi) / length(hi))

test_stat <- abs(mean(hi) - mean(lo)) / SE

test_stat

## [1] 2.102485

(b) Suppose we want to test the equality of population means against the one-sided

alternative that the the “Hi” group has a higher mean at the 10% level. What is

our critical value, and what is our decision rule? Do we reject the null hypothesis?

Solution: The critical value is

qnorm(1 - 0.1)

## [1] 1.281552

Our decision rule is to reject if the test statistic exceeds the critical value:

test_stat > qnorm(1 - 0.1)

## [1] TRUE

(c) Calculate the p-value for a test of the equality of population means against the

one-sided alternative that the “Hi” group has a higher mean.

Solution:

1 - pnorm(test_stat)

## [1] 0.01775539

(d) Suppose we wanted to test the equality of population means against the two-sided

alternative at the 10% level. What is our critical value, and what is our decision

rule? Do we reject the null hypothesis?

Solution: The critical value is
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qnorm(1 - 0.1/2)

## [1] 1.644854

Our decision rule is to reject if the absolute value of the test statistic exceeds

the critical value:

abs(test_stat) > qnorm(1 - 0.1/2)

## [1] TRUE

(e) Calculate the p-value for a test of the equality of population means against the

two-sided alternative.

Solution:

2 * (1 - pnorm(test_stat))

## [1] 0.03551077

Lecture #21 – Hypothesis Testing IV

27. In April of 2013, Public Policy Polling carried out a survey of 1247 registered voters

to determine whether Republicans and Democrats differ in their beliefs about various

conspiracy theories. To answer this question, you’ll need to download the full results of

their survey which I’ve posted on my website for convenience:

http://www.ditraglia.com/econ103/conspiracy.pdf

In an earlier extension question you used these data to construct confidence intervals.

In this question you’ll use them to carry out hypothesis tests. Throughout you may

assume that the sample size is large enough for the approximate based on the central

limit theorem to be valid.

(a) Suppose we wanted to test the null hypothesis that 20% of registered voters believe

that a UFO crashed at Roswell, New Mexico in 1947 and the US Government

covered it up. Calculate our test statistic.

Solution: Overall percentages appear on page 2 of the report, and this question

refers to Q3. The sample size is 1247 and p̂ = 0.21
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phat <- 0.21

pnull <- 0.2

n <- 1247

SE <- sqrt(pnull * (1 - pnull)/n)

test_stat <- (phat - pnull) / SE

test_stat

## [1] 0.8828222

(b) Suppose that we wanted to test the null hypothesis from the preceding part against

the one-sided alternative that more than 20% of registered voters believe in the

UFO conspiracy. Calculate the p-value for this test.

Solution:

1 - pnorm(test_stat)

## [1] 0.1886662

(c) Repeat the preceding part for the two-sided alternative.

Solution:

2 * (1 - pnorm(test_stat))

## [1] 0.3773324

(d) Calculate the p-value for a test of the null hypothesis that equal proportions of

Romney and Obama voters believe in the UFO conspiracy against the two-sided

alternative.

Solution: Percentages broken down by 2012 vote appear in page 5 of the survey

results. Overall percentages of Romney and Obama voters in the sample appear

on page 3. Of the 1247 registered voters in the sample, 50% voted for Obama

and 44% voted for Romney. We’ll call this nO = 623 and nR = 547. The sample

proportions are p̂O = 0.16 for Obama voters versus p̂R = 0.27 for Romney

voters:
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nR <- 547

pR <- 0.27

nO <- 623

pO <- 0.16

p_pooled <- ((nO * pO) + (nR * pR)) / (nR + nO)

SE_pooled <- sqrt(p_pooled * (1 - p_pooled) * (1/nO + 1/nR))

test_stat <- abs((pO - pR)) / SE_pooled

test_stat

## [1] 4.597651

2 * (1 - pnorm(test_stat))

## [1] 4.272809e-06

We find very strong evidence against the null hypothesis.

28. This question is based on a dataset containing the results of the tae kwon do event in the

2004 Athens Olympics. (In case this event is unfamiliar to you, my dictionary defines

tae kwon do as “a modern Korean martial art similar to karate.”) The competition is a

tournament consisting of a number of bouts. In each bout, a pair of competitors fight

each other, points are awarded, and a winner is declared by the judges. In accordance

with Olympic regulations, one of the competitors in each bout is randomly chosen to wear

blue body protectors. The other wears red body protectors. This question investigates

whether wearing one color or the other gives an advantage in the competition. The data

are stored in an R data frame called taekwondo. Each row corresponds to a single bout

in the competition. The columns are as follows:

class weight class of the bout

red.id competitor id number for the fighter who wore red

blue.id competitor id number for the fighter who wore blue

round round of the tournament (i.e. semifinals, finals, etc.)

winner color worn by the fighter who won the bout

method method of win (i.e. points, knockout, etc.)

red.points number of points awarded to the fighter who wore red

blue.points number of points awarded to the fighter who wore blue

(a) We’ll restrict attention to the “last 16” round of the competition. This ensures that

each row contains a unique pair of fighters. Write R code to extract only those rows

of taekwondo for which the value in the column round is “last 16” and store the

result in a data frame called last16.
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Solution:

last16 <- subset(taekwondo, round == 'last 16')

(b) To begin, we’ll analyze the proportion of bouts won by the blue fighter. Write R

code to: (i) count the number of elements in the column winner of last16 and

store the result in a variable called n, and (ii) count the number of bouts won by

the blue fighter and store the result in a variable called n blue.

Solution:

n <- length(last16$winner)

n_blue <- sum(last16$winner == 'Blue')

As it happens there are 32 bouts in last16, 8 bouts for each weight class times 4

weight classes, of which 19 were won by the blue fighter. Using this information,

test the null hypothesis that the population proportion of bouts won by fighters

wearing blue equals 0.5 against the two-sided alternative. Approximately what is

the p-value for this test? Interpret your results.

Solution: The test statistic is:

T =
p̂− 0.5√

0.52/n
=

19/32− 0.5√
0.25/32

≈ 1.06

If the test statistic were exactly one, the p-value for a two-sided test would be

2 * (1 - pnorm(1))≈ 2× 0.16 = 0.32. The test statistic here is slightly larger

than one, so the p-value should be slighly smaller than 0.32. This is a very large

p-value: we would fail to reject the null at any of the standard significance levels

(i.e. 10%, 5%, 1%). We have not found convincing evidence that wearing either

color conveys a competitive advantage.

(c) (6 points) For the remainder of the question, we will examine the relative difference

in the number of points scored by the blue and red fighters in each bout. Write R

code accomplish the following: (i) select only those rows of last16 for which the

value in the column method is Points and store the result in a data frame called

last16.points, (ii) create a vector called D whose entries contain the difference in

the number of points scored by blue versus red (Blue - Red) in each bout.

Solution:

last16_points <- subset(last16, method == 'Points')

D <- last16_points$blue.points - last16_points$red.points
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(d) I calculated the mean of the column red.points in last16.points and got 10.1.

Similarly, I calculated the mean of the column blue.points and got 11.7. If I were

to run the command mean(D) at the R console what result would I get?

Solution: 11.7− 10.1 = 1.6

(e) I entered the command var(D) at the R console and got 25. Next I entered

var(last16 points$red points) and var(last16 points$blue points) and got

17 and 31, respectively. Calculate the sample correlation between the columns

red points and blue points of the data frame last16 points.

Solution: Rearranging the formula from class and substituting values from the

question statement:

s2d = s2x + s2y − 2sxsyrxy

2sxsyrxy = s2x + s2y − s2d

rxy =
s2x + s2y − s2d

2sxsy

=
17 + 31− 25

2
√

17× 31
=

23

2×
√

527
≈ 0.5

(f) (10 points) To test the null hypothesis that red and blue fighters are awarded, on

average, the same number of points against the two-sided alternative, should we

use a test for independent samples or matched pairs data? Explain briefly and then

carry out the appropriate test at the 5% level based on the CLT. To answer, you

will need the fact that there are 29 rows in the data frame last16.points. Be sure

to report: (i) the test statistic, (ii) the decision rule, and (iii) the result of the test.

Solution: This is matched pairs data: the score earned by the red fighter in

a given bout cannot possibly be independent of the score earned by the blue

fighter in the same bout. The test statistic is

T =
D̄

sd/
√
n

= 1.6/(5/
√

29) ≈ 1.7

For a 5% test, the decision rule is: Reject H0 if |T | > 2. In this case we fail to

reject the null hypothesis.
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Lecture #22 – Regression II

29. Let Y and X be RVs. Find the constants β0 and β1 that solve

min
β0,β1

E[(Y − β0 − β1X)2]

Hint: For the purposes of this question you may assume that expectation and differen-

tiation can be interchanged, i.e. that ∂
∂Z
E[f(Z)] = E[ ∂

∂Z
f(Z)].

Solution: Differentiating with respect to β0 gives the first order condition

−2E[Y − β0 − β1X] = 0

Re-arranging using the linearity of expectation, β0 = E[Y ] − β1E[X] Substituting

this expression for β0 back into the objective function,

E[(Y − µY − β1µX − β1X)2] = E
[
{(Y − µY )− β1(X − µX)}2

]
using the shorthand E[Y ] = µY and E[X] = µX . Now, differentiating with respect

to β1 gives the first order condition

−2E [{(Y − µY )− β1(X − µX)} (X − µX)] = 0

Finally, rearranging and solving for β1 using the linearity of expectation, we have

E[(Y − µY )(X − µX)] = E[β1(X − µX)2]

Cov(X, Y ) = β1V ar(X)

β1 =
Cov(X, Y )

V ar(X)

30. This example is based on 12-1 from WW4, but has been adapted somewhat for you to

carry out in R. Suppose that the population regression line is Y = 2.4 + 0.3X, i.e. that

the population regression parameters are β0 = 2.4 and β1 = 0.3. Normally we don’t

know these parameters but rather use data to estimate them. In this question, however,

we will pretend that we know these parameters and carry out a Monte Carlo simulation

to understand sampling variability in the context of regression.

(a) Write an R function called simulate y that takes as its input a vector x of X-values

and returns the corresponding Y values from the above equation plus a standard

normal error term ε.
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Solution:

simulate_y <- function(x){
n <- length(x)

epsilon <- rnorm(n)

y <- 2.4 + 0.3 * x + epsilon

return(y)

}

(b) Define x test <- 0:12, a vector containing all the integers from 0 to 12. Test your

function from part (a) by inputting x test and assigning the result to y sim. Make

a plot of the function Y = 2.40 + 0.30X along with the points x test and y sim

and the estimated regression line Ŷ = β̂0 + β̂1X obtained by running a regression in

which x test is used to predict y sim. Re-run your code a few times with different

random seeds to see how the estimated regression line varies depending on the

realizations of the error term. This illustrates sampling variability in the estimated

regression slope and intercept.

Solution: To make it easier for me to repeat the code several times, I will

encapsulate it into a function, repeat it using a loop, and arrange the resulting

plots on a grid. I also change some other graphics parameters just to make

things fit more easily into the answer key: you don’t have to worry about this

as long as you understand the code used to make the plot.

set.seed(8372)

x_test <- 0:12

sim_plot <- function() {
y_sim <- simulate_y(x_test)

curve(2.4 + 0.3 * x, 0, 12, xlab = 'X', ylab = 'Y')

points(x_test, y_sim)

reg <- lm(y_sim ~ x_test)

abline(coef(reg), col = 'red', lty = 2) # red, dashed line

}
# Make the plot four times with different random draws

par(mfrow = c(2,2), mar=c(3,3,2,1), mgp=c(2,.7,0), tck=-.01)

for(i in 1:4) sim_plot()
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par(mfrow = c(1,1))

(c) Write a function called get slope that carries out the following steps:

(i) Use x test and simulate y to generate a vector y sim of simulated y-values

from the regression model from above.

(ii) Run a regression using x test to predict y sim and store the result in an R

object called reg.

(iii) Return the estimated regression slope coefficient from reg.

Solution:
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get_slope <- function() {
y_sim <- simulate_y(x_test)

reg <- lm(y_sim ~ x_test)

slope <- coef(reg)[2]

return(slope)

}

(d) Use your function get slope and the R function replicate to approximate the

sampling distribution of the sample regression estimator of β1 using 5000 simulation

draws. Construct a histogram of your results and calculate the approximate bias

and standard error of the regression slope estimator. Discuss your findings.

Solution:

sim_slopes <- replicate(5000, get_slope())

mean(sim_slopes)

## [1] 0.2993407

sd(sim_slopes)

## [1] 0.07582773

hist(sim_slopes)

Histogram of sim_slopes

sim_slopes

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
40

0
80

0
12

00

Page 45



We see that the sampling distribution of the estimated regression slope coeffi-

cient is centered at the population slope coefficient β = 0.3 and the sampling

distribution is approximately normal. The standard error is around 0.075.

Lecture #23 – Regression III

31. This question is based on the dataset on child test scores and mother characteristics we

studied during our final lecture of the semester. The columns contained in this dataset

are as follows:

Variable Name Description

kid.score Child’s Test Score at Age 3

mom.age Age of Mother at Birth of Child

mom.hs Mother Completed High School? (1 = Yes)

mom.iq Mother’s IQ Score

(a) Run a regression of kid.score on mom.age. Plot both the data and the fitted

regression line, making sure to label the axes. Interpret the results.

Solution:

source('http://ditraglia.com/econ103/display.R')

data_url <- "http://www.ditraglia.com/econ103/child_test_data.csv"

child <- read.csv(data_url)

reg1 <- lm(kid.score ~ mom.age, child)

display(reg1)

## lm(formula = kid.score ~ mom.age, data = child)

## coef.est coef.se

## (Intercept) 70.96 8.31

## mom.age 0.70 0.36

## ---

## n = 434, k = 2

## residual sd = 20.35, R-Squared = 0.01

plot(child$mom.age, child$kid.score, pch = 20,

xlab = 'Mother Age (at birth)', ylab = 'Child Test Score (Age 3)')

abline(coef(reg1))
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Our model suggests that the children of mothers who were older when they gave

birth tend to score higher. In particular, comparing two children whose mothers’

age at birth differed by one year, we would predict that the child of the older

mother will score, on average, 0.7 points higher. The standard error associated

with the estimate, however, is fairly large. An approximate 95% CI would just

barely include zero. Nevertheless, this result is suggestive that the children of

older mothers do better on the test. A naive reading of these results would be

that women should wait to have children until they are as old as possible. The

regression results, however, most emphatically do not establish this. There are

many possible confounders here: for example, teenage pregnancy is correlated

with economic disadvantage and lower levels of education.

(b) Augment your model from part (a) by allowing a different intercept for children

whose mother completed high school. Plot the data along with the regression lines

for each group (those whose mother completed high school and those whose mother

did not). Interpret your results and compare them to those you got in part (a).

Solution:
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reg2 <- lm(kid.score ~ mom.hs + mom.age, child)

display(reg2)

## lm(formula = kid.score ~ mom.hs + mom.age, data = child)

## coef.est coef.se

## (Intercept) 70.48 8.11

## mom.hs 11.31 2.38

## mom.age 0.33 0.36

## ---

## n = 434, k = 3

## residual sd = 19.86, R-Squared = 0.06

b_both <- coef(reg2)[3]

a_HS <- coef(reg2)[1] + coef(reg2)[2]

a_no_HS <- coef(reg2)[1]

colors <- ifelse(child$mom.hs == 1, 'gray', 'black')

plot(child$mom.age, child$kid.score, pch = 20, col = colors,

xlab = 'Mother Age (at Birth)', ylab = 'Child Test Score (Age 3)')

abline(a = a_HS, b = b_both, col = 'gray')

abline(a = a_no_HS, b = b_both, col = 'black')
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By adding a dummy variable that equals one if a child’s mother completed

high school, we have controlled for one of the possible confounders from above:
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mother’s level of education. We have done this by allowing the regression line

to have a different intercept depending on mother’s education. Comparing two

children whose mothers are of the same age but only one whom attended high

school, we predict that the child of the better educated mother will score, on

average, 11 points higher. The standard error associated with this estimate is

quite small, yielding a 95% CI that is is nowhere near zero. We have strong

evidence of a large effect from mother’s education level. In contrast, once we’ve

controlled from mother’s education, the estimated effect of mom.age falls sub-

stantially while the associated standard error stays the same. This results in an

approximate 95% CI that includes many negative values. After controlling for

mother’s education, there is much less evidence to suggest that older mothers

have higher-scoring children. In terms of predictive accuracy, the second model

is slightly better but neither is particularly effective: we are only predicting test

scores to an accuracy of about 20 points.

(c) Now allow different slopes as well as intercepts for each group (those whose mother

completed high school and those whose mother did not). Plot the data and the

regression lines for each group and interpret your results.

Solution:
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reg3 <- lm(kid.score ~ mom.hs + mom.age + mom.hs:mom.age, child)

display(reg3)

## lm(formula = kid.score ~ mom.hs + mom.age + mom.hs:mom.age, data = child)

## coef.est coef.se

## (Intercept) 110.54 16.45

## mom.hs -41.29 18.99

## mom.age -1.52 0.75

## mom.hs:mom.age 2.39 0.86

## ---

## n = 434, k = 4

## residual sd = 19.70, R-Squared = 0.07

a_no_HS <- coef(reg3)[1]

a_HS <- coef(reg3)[1] + coef(reg3)[2]

b_no_HS <- coef(reg3)[3]

b_HS <- coef(reg3)[3] + coef(reg3)[4]

plot(child$mom.age, child$kid.score, pch = 20, col = colors,

xlab = 'Mother Age (at birth)', ylab = 'Child Test (Age 3)')

abline(a = a_HS, b = b_HS, col = 'gray')

abline(a = a_no_HS, b = b_no_HS, col = 'black')
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When we allow for different slopes as well as intercepts, by adding an interaction
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between mom.hs and mom.hs, namely mom.hs:mom.age, we find very different

results depending on mother’s education. There is substantial evidence that we

should allow for different slopes, since the approximate 95% CI for the interac-

tion does not include zero. For children whose mothers attended high school,

there is a positive relationship between mother’s age at birth and child’s test

score. For children whose mothers did not attend high school, the relationship

is negative. For children whose mothers were 18 when they gave birth, there

is essentially no difference across mothers with different education levels. As

mothers’ age at birth increases, however, a difference emerges.
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